Mol.	A tom- verh. Fe ²⁺ : Al ³⁺	Die Oxidationsprodukte								
Verh. FeSO ₄ : NaOH		Farbe	% Fe ₂ O ₃	% FeO	% Al ₂ O ₃	% SO ₃	% H ₂ O	Ferrom tismus direkt	hagne- bei 300°	Röntgenbefund
1:3	1:0	gelbbraun	83,5	0,0	_	0,05	16,4	0	0	α-FeOOH
1:3	1:0,02	braun	82,4	0,2	0,8	0,03	16,6	schv	wach	α-FeOOH + einige schwache Magnetitlinien
1:3	1:0,2	dunkel- braun	75,7	1,9	7,5	0,03	14,9	deut- lich	deut- lich	$\begin{array}{l} \alpha \text{-} \mathrm{FeOOH} + \\ \mathrm{Magnetit} \end{array}$
	Mol. Verh. FeSO4: NaOH 1:3 1:3	Mol. Atom- Verh. verh. FeSO ₄ : Fe ²⁺ : Al ³⁺ NaOH 1:3 1:0 1:3 1:0,02 1:3 1:0,2	Mol.Atom- verh.Die Oxidati FarbeVerh. FeSO4:Fe²+: Al³+Farbe1:31:0gelbbraun1:31:0,02braun1:31:0,2dunkel- braun	Mol.Atom- verh.Die OxidationsproduktVerh. FeSO4: $Fe^{2+}: AI^{3+}$ $Farbe$ $%$ Fe_2O_3 1:31:0gelbbraun83,51:31:0,02braun82,41:31:0,2dunkel- braun75,7	Mol. Verh. FeSO4: NaOHAtom- verh. $Fe^{2+}:Al^{3+}$ Die Oxidationsprodukte1:31:0 1:0,02 $Harboreta = 10^{-10}$ braun $Harboreta = 10^{-10}$ $Harboreta = 10^{-10}$ 1:31:0,02 $Harboreta = 10^{-10}$ braun $Harboreta = 10^{-10}$ $Harboreta = 10^{-10}$ 1:31:0,02 $Harboreta = 10^{-10}$ braun $Harboreta = 10^{-10}$ $Harboreta = 10^{-10}$ 1:31:0,02 $Harboreta = 10^{-10}$ braun $Harboreta = 10^{-10}$ $Harboreta = 10^{-10}$ 1:31:0,02 $Harboreta = 10^{-10}$ braun $Harboreta = 10^{-10}$ $Harboreta = 10^{-10}$	Mol. Verh. FeSO4: NaOHAtom- verh. $Fe^{2+}:Al^{9+}$ Die Oxidationsprodukte1:31:0gelbbraun $\%$ Fe_2O_3 $\%$ FeO1:31:0,02braun83,5 $0,0$ $-$ 1:31:0,02braun82,4 $0,2$ $0,8$ 1:31:0,2dunkel- braun75,7 $1,9$ $7,5$	Mol. Verh. FeSO ₄ : NaOH Atom- verh. Fe ²⁺ : Al ³⁺ Die Oxidationsprodukte 1:3 $Fe^{2+}: Al^{3+}$ Farbe % Fe ₂ O ₃ % FeO % Al ₂ O ₃ % SO ₃ 1:3 1:0 gelbbraun 83,5 0,0 - 0,05 1:3 1:0,02 braun 82,4 0,2 0,8 0,03 1:3 1:0,2 dunkel- braun 75,7 1,9 7,5 0,03	Mol. Verh. FeSO ₄ : NaOH Atom- verh. Fe ²⁺ : Al ³⁺ Die Oxidationsprodukte 1:3 1:0 $\frac{9}{120}$	Mol. Verh. FeSO ₄ : NaOH Atom- verh. Fe ²⁺ : Al ³⁺ Die Oxidationsprodukte 1:3 1:0 gelbbraun $\%$ Fe ₂ O ₃ $\%$ FeO $\%$ Al ₂ O ₃ $\%$ SO ₃ H_2O Ferrom tismus direkt 1:3 1:0 gelbbraun 83,5 0,0 - 0,05 16,4 0 1:3 1:0,02 braun 82,4 0,2 0,8 0,03 16,6 schv 1:3 1:0,2 dunkel- braun 75,7 1,9 7,5 0,03 14,9 deut- lich	$ \begin{array}{c} \mbox{Mol.}\\ \mbox{Verh.}\\ \mbox{FeSO}_4:\\ \mbox{NaOH} \end{array} \begin{array}{c} \mbox{Atom-}\\ \mbox{Verh.}\\ \mbox{Fe}^{2+}: \mbox{Al}^{2+} \end{array} \\ \mbox{NaOH} \end{array} \begin{array}{c} \mbox{Die Oxidationsprodukte} \\ \hline \mbox{Farbe} \end{array} \begin{array}{c} \mbox{NaOH} \end{array} \begin{array}{c} \mbox{New} \\ \mbox{Fe}^{2}O_3 \end{array} \begin{array}{c} \mbox{New} \\ \mbox{Fe}_2O_3 \end{array} \begin{array}{c} \mbox{New} \\ \mbox{Fe} \\ \mbox{SO}_3 \end{array} \begin{array}{c} \mbox{New} \\ \mbox{NaOH} \end{array} \begin{array}{c} \mbox{New} \\ \mbox{NaOH} \end{array} \begin{array}{c} \mbox{New} \\ \mbox{NaOH} \end{array} \begin{array}{c} \mbox{New} \\ \mbox{So}_3 \end{array} \begin{array}{c} \mbox{New} \\ \mbox{New} \\ \mbox{New} \\ \mbox{New} \end{array} \begin{array}{c} \mbox{New} \\ \mbox{New} \\ \mbox{New} \\ \mbox{New} \end{array} \begin{array}{c} \mbox{So}_3 \end{array} \begin{array}{c} \mbox{New} \\ \mbox{New} \\ \mbox{New} \\ \mbox{New} \\ \mbox{New} \\ \mbox{New} \end{array} \begin{array}{c} \mbox{So}_3 \end{array} \begin{array}{c} \mbox{New} \\ \mb$

Luftoxidation von Fe(OH)₂ im alkalischen Medium bei 20 °C, auch bei Zusatz von Al³⁺

eine Zeitlang vor der Oxidation schützt, bis dieses zur Bildung des Magnetits verbraucht wird, das übrigens kaum luftempfindlich ist. Die betreffenden Präparate waren daher FeO-haltig, ferromagnetisch und zeigten das Magnetitgitter. Bei saurer und stöchiometrischer Fällung des Fe(OH)₂ hatte das Al³⁺ keinen Einfluss auf die Qualität der Oxidationsprodukte.

Zwecks Ausführung der Versuche löst man 6 g $FeSO_4$ · $7H_2O$ in 100 cm³ destilliertem Wasser und versetzt dieses bei 20 °C mit 1N NaOH in einem Mol.-Verhältnis $FeSO_4$ ·NaOH = 1:3. Al³⁺-Ionen verwendet man in Form von Al(NO₈)₈·9H₂O in einem bestimmten Atomverhältnis Fe^{2+} :Al³⁺. Nach Auffüllung mit destilliertem Wasser auf 200 cm³ behandelt man das Reaktionsgemisch 3 Std. mit einem Luftstrom (1,6 l/min) bei 20 °C. Die sorgfältig ausgewaschenen und luftgetrockneten Oxidationsprodukte wurden auf ihre Zusammensetzung geprüft, worüber die Tabelle Auskunft gibt.

Summary. It has been proved that $Fe(OH)_2$, precipitated in alkaline solution and oxidated by air-oxygen, transforms to α -FeOOH. In presence of Al³⁺, besides α -FeOOH magnetite also appears.

A. KRAUSE und J. IGNASIAK

Forschungsanstalt des Instituts für Kommunale Wirtschaft, Rycerska 4, Poznau (Polen), 31. März 1970.

¹ A. KRAUSE, Z. anorg. allg. Chem. 174, 145 (1928).

² A. KRAUSE und A. BORKOWSKA, Z. anorg. allg. Chem. 326, 216 (1963).

³ A. KRAUSE und A. BORKOWSKA, Roczn. Chem. 29, 999 (1955).

Structure and Activity of Corticotrophic Peptides: Synthesis and Biological Activity of Two Corticotrophic Peptides with Neutral Amino Acids in Positions 17 and 18

Positions 17 and 18 in the amino acid sequence¹ of ACTH are of considerable importance, since appreciable stimulation of the adrenal cortex only occurs if the chain length exceeds 16 amino acids, starting from the amino end of the molecule²⁻⁵. In the natural sequence these positions are occupied by two arginine residues, which are known to be strongly basic (Table I). If these are replaced, in synthetic ACTH fragments, by the less basic ornithine or lysine residues, corticotrophic activity is retained^{6,7}. It is even intensified if serine in position 1 is in the D-form instead of the L-form⁸⁻¹³.

In order to assess the influence of a further decrease in basicity in positions 17 and 18 with regard to biological activity, we synthesized the two nonadecapeptides Xaand Xb. They are substituted in both positions 17 and 18 by the neutral amino acids norvaline (Xa) and norleucine (Xb) and have D-serine in position 1.

Norvaline has the same alkyl side chain as arginine and ornithine, and norleucine the same alkyl side chain as lysine, both being devoid of the respective basic groups. Moreover, the length of the norleucine side chain is equal to that of the ornithine side chain (including the basic group).

Synthesis. The synthesis was carried out in the same way for both the a and b series of the compounds (numbers refer to formulae in Table II): I was reacted with hydrazine hydrate to produce the hydrazide II, which was condensed with proline amide to III by the method of HONZL and RUDINGER¹⁴. Catalytic hydrogenation of the benzyloxycarbonyl group led to compound IV, which was coupled with Z-Lys(Boc)-Pro-Val-Gly-Lys(Boc)-Lys(Boc)- N_3 (prepared in situ from the corresponding hydrazide V¹⁰ by HONZL and RUDINGER's method¹⁴), forming the protected, crystalline nonapeptide amides VI. Removal of the benzyloxycarbonyl group, again by catalytic hydrogenation, gave VII, and condensation with Boc-D-Ser-Tyr-Ser-Met-Glu (OBut)-His-Phe-Arg-Trp-Gly-OH VIII¹² by the carbodiimide method yielded IX. These fully protected nonadecapeptide amides IXa and IXb were purified by countercurrent-distribution. Then all protecting groups were split off with trifluoroacetic acid. Finally, the resultant trifluoroacetates were

Table I. β-Corticotrophin-(1-24)-tetracosipeptide (Synacthen[®])¹⁶

H-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro-OH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

No.	Chemical formula ¹	Mp.	$[\alpha]_{D}^{20}$ concentration solvent	Thin-layer chron Rf on silica gel	ıatography	Elemental formula	Element 1. found, C	al analysis , 2. calc. H	Z
I a)	Z-Nva-Nva-OCH ₃	124-125°	-30°	0.65 (Cy/E 1:1),	0.76 (T/A 1:1)	C ₁₉ H ₃₈ O ₅ N ₂	62.62	7.74	7.69
(q	Z-Nie-Nie-OCH ₃	•6676	2.0% EtOH 23°	0.72 (Cy/E 1:1),	0.78 (T/A 1:1)	(364.4) $C_{21}H_{32}O_{5}N_{2}$	62.46 64.26	7.60	7.83
II a)	Z-Nva-Nva-NHNH ₂	207–208°	1.9% EtOH —9%	0.41 (C/M 9:1),	0.48 (T/A 1:1)	(392.5) $C_{18}H_{28}O_4N_4$	64.61 59.32	8.28	7.24
(q	Z-Nle-Nle-NHNH2	182–183°	2.0% DMF —8°	0.46 (C/M 9:1),	0.55 (T/A 1:1)	(364.4) $C_{20}H_{32}O_4N_4$	59.41 61.20	7.71 8.22 0.02	15.29 14.28
III a)	Z-Nva-Nva-Pro-NH ₂	156–159°	2.0% DMF 	0.38 (C/M 9:1),	0.17 (T/A 1:1)	(392.5) C ₂₃ H ₃₄ O ₅ N ₄	61.27 61.86	8.05 7.68	14.31
(q	$Z-NIe-NIe-Pro-NH_2$	157–159°	2.1% DMF 35° 2.2% DMF	0.46 (C/M 9:1),	0.25 (T/A 1:1)	$^{(446.5)}_{26} m C_{26} m H_{38} m O_5 m N_4$	61.59 63.27 63.21	8.07 70.7	12.70 11.81
IV a)	H-Nva-Nva-Pro-NH2-tosylate	$105{-}112^{\circ}$		0.38 (C/M 1:1),	0.58 (121 A)	(111-10)	17.00	16.1	11./ 1
(q	H-Nle-Nle-Pro-NH2	$104-105^{\circ}$		0.36 (102 A),	0.66 (121 A)	C ₁₇ H ₃₂ O ₃ N ₄ (340.5)	59.97 50.02	9.48 0.33	16.46 16.43
VI a) b)	Z-Lys(Boc)-Pro-Val-Gly-Lys (Boc)-Lys(Boc)-Nva-Nva-Pro-NH ₂ Z-Lys(Boc)-Pro-Val-Gly-Lys (Pro-1) Yu- Nu - Nu - Nu	(147°) $188-191^{\circ}$ (139°)		0.25 (C/M 9:1), 0.77 (102 A) 0.29 (C/M 9:1),	0.74 (43 A) 0.77 (43 A)	$C_{68}H_{113}O_{17}N_{18}$ (1384.7)	58.98 58.69	8.23 8.33 8.33	13.15 13.15 12.91
VII a)	(Boc)-LYS(Boc)-ME-ME-FTO-MA H-Lys(Boc)-Pro-Val-Gly-Lys (Boc)-Lys(Boc)-Nva-Nva-Pro-NH2	$104-170^{\circ}$ (158°) 171-175°	—72° 1.9% MeOH	0.80 (102 A) 0.53 (C/M 1:1), 0.44 (52 A)	0.38 (102 A)	$\begin{array}{c} C_{60}H_{107}O_{15}N_{13}\cdot H_{2}O\\ (1268.61) \end{array}$	56.81 57.09	8.66 8.54	14.35 14.33
(q	H-Lys(Boc)-Pro-Val-Gly-Lys (Boc)-Lys(Boc)-Nle-Nle-Pro-NH ₂	dec. (141°) 165–169°	—71° 1.9% McOH	0.71 (C/M 1:1), 0.37 (52),	0.45 (102 A) 0.49 (52 A)	$\begin{array}{c} C_{62}H_{111}O_{15}N_{13}\cdot H_{2}O\\ (1296.66) \end{array}$	57.43 57.49	8.78 8.82	14.04 13.85
IX a) b)	countercurrent distribution: K = 0.55 (20°) system: MeOH-buffor*-CHCl ₃ -CCl ₄ 10 + K = 0.04 (20°)	-3+7+4		$\begin{array}{c} 0.77 & (121), \\ 0.75 & (37) \\ 0.78 & (121), \\ 0.78 & (221), \end{array}$	0.29 (102 A) 0.35 (102 A)				
X a) **	system. MeChrounder "-LILU ₃ 3 \pm 7 - clectrophoretic mobilities on cellulose p 200 V 1.5 h pH = 1.9 :8.2 cm pH = 4.75:5.2 cm	ates:		$(J_{c}) = (J_{c}) = (J_{$	1 oxide: 0.45 (121 A)	UV in 0.1-N NaOH: $\lambda_{max} = 282 \text{ nm} (\varepsilon = 290 \text{ nm} (\varepsilon = \varepsilon)$	6050) 5900)		
b) **	200 V 1.5 h pH = 1.9 :8.2 cm pH = 4.75:5.2 cm			0.63 (121), 0.41 (111 B)	0.50 (121 A)	$\lambda_{max} = 283 \text{ nm} (\varepsilon = 290 \text{ nm} (\varepsilon = 290 \text{ nm} (\varepsilon = \varepsilon))$	7350) 7350)		
	$R_1 \text{-} \mathbf{r}$ $IX: R_1 = Boc, R_2$ $X: R_1 = R_2 = H$	-Ser-Tyr-Ser-Mei 1 2 3 4 = But = protec	$\begin{array}{c c} OR_2 & H_a^{\oplus} \\ \text{t-Glu-His-Phe-Arg-Trp} \\ 5 & 6 & 7 & 8 & 9 \\ \text{ted} & [\text{p-Ser}^1, X^{17,16}] \end{array}$	R ₁ -Gly-Lys-Pro-Val-Gly- 10 11 12 13 14 ³]-β-corticotrophin-(1-1	R ₁ R ₁ Lys-Lys-X-X-Pro 15 16 17 18 19 (9)-nonadecapeptide an	$-NH_2$ nide a: $X = Nva$ b: $X = Nfe$			

43 A = t-amylalcohol-isopropanol-water 67 + 26 + 7, 52 = n-butanol-acetic acid-water 75 + 7.5 + 21, 52 A = do 67 + 10 + 23, 102 A = ethylacetate-methyl-ketone-formic acid-water 50 + 30 + 10 + 10, 121 = isopropanol-ammonia conc. water 70 + 10 + 20, 121 A = do 85 + 5 + 10, 111 B = n-butanol-pyridine-conc. ammonia-water 40 + 24 + 6 + 30.
* Buffer: 19.3 g ammonium acetate and 28.6 ml acetic acid in 11 water.
** Xa and Xb after total hydrolysis (6-N HCl, 24 h, 110°) gave the expected amino acid ratios on a Beckman Unichrome Amino Acid Analyzer.

15. 10. 1970

Specialia

1051

converted to the acetate salts and biologically assayed in the form of their lyophilizates.

Biological activity. Steroidogenesis in the adrenal cortex of male, hypophysectomized (24 h before injection) rats was taken as the criterion of biological activity. In accordance with the in vivo method described in detail by DESAULLES and RITTEL⁶ the time-dependant rise in the plasma corticosterone concentration after subcutaneous administration was determined.

The new compounds Xa and Xb were compared with the following synthetic corticotrophic peptides¹:

XI: $[D-Ser^1]-\beta$ -corticotrophin-(1-16)-

hexadecapeptide amide¹⁵

XII: $[D-Ser^1]$ - $\hat{\beta}$ -corticotrophin-(1-19)-nonadecapeptide¹⁵

XIII: β -Corticotrophin-(1-24)-

tetracosipeptide (Synacthen®)

Results. The reference hexadecapeptide amide XI restores the plasma corticosterone concentrations to normal (normal value: $19.4 \pm 4.6 \ \mu g/100$ ml at 08.00 h in intact, male rats; mean of 48 determinations) within half an hour of the injection. Subsequently the concentration declines relatively rapidly. After 1.5 h there is no longer any perceptible response. The duration of action therefore is distinctly shorter than that of peptide XIII (Synacthen)¹⁶. At the same time, the plasma corticosterone concentration after 1 h is significantly smaller.

The norvaline nonadecapeptide amide Xa induces a rise in the plasma corticosterone concentration to about half the normal level (after 30 min: $10.5 \ \mu g/100$ ml), the duration of effect is 1.5 h (the values after 1.5 h being only slightly above the limits of accuracy). The norleucine substituted nonadecapeptide amide X b elicits a response rather similar to that evoked by Xa, but its duration of action is much shorter. Both compounds Xa and Xb display less activity with regard to plasma corticosterone concentration than the hexadecapeptide amide XI, and only Xa has the same duration of action 17.

The reference nonadecapeptide XII acts over a period of 2 h, and raises the plasma corticosterone concentration to between 20 and $35 \mu g/100$ ml in the first 1.5 h. Its duration of action is thus about twice that of the hexadecapeptide amide XI.

 $D_{iscussion}^{i}$. Hofmann et al.¹⁸ have shown that the N-terminal hexadecapeptide amide with L-serine in position 1 is virtually devoid of adrenocortical activity¹⁸. Substitution with D-serine, resulting in compound XI, yields a corticotrophic peptide with a distinct, though weak, hormonal activity. Elongation of the peptide chain from 16 to 19 amino acids with the natural sequence Arg^{17} - Arg^{18} - Pro^{19} (compound XII) increases the activity considerably (see Table III)¹⁹. The introduction of the

Table III. Rise in plasma corticosterone concentrations ($\mu g/100$ ml) in relation to time after a single, s.c. dose of 0.3 mg/kg

Sub-	nª	Time (h)							
sub- stance		1/2	1	$1^{1}/_{2}$	2	4			
 XI	12	22.1 + 3.7 ^b	8.5 ± 2.8	< 3	< 3	_			
Ха	9	$10.5 {\pm} 1.8$	7.3 ± 2.5	4.7 ± 1.7	< 3	-			
Xb	9	12.4 ± 3.8	< 3	< 3	< 3				
XII	6	27.2 ± 2.6	34.2 ± 4.1	23.4 ± 4.7	17.4 ± 7.1	< 3			
XIII	18	30.3 ± 2.5	30.2 ± 3.7	14.3 ± 2.9	< 3	< 3			

Base value: $< 3 \mu g/100$ ml. ^a *n*, number of animals. ^b Standard deviation of the mean. The peptides are listed in increasing order of chain length.

This finding leads further support to the apparant positive correlation between the net positive charge associated with peptide portion 15 to 18 on the one hand and its corticotrophic potency on the other (LI and OELOFSEN²⁰). The fact that both new peptides Xa and Xb are even less potent than the hexadecapeptide amide XI (whose structure they completely incorporate) shows that the added sequences, Nva-Nva-Pro and Nle-Nle-Pro respectively, abolish some of the original activity of the 1-16 core. In terms of hormone-receptor affinity, this could be explained by a suppressed binding capacity of the hormone to a negative site of the receptor due to the added neutral moieties.

Zusammenfassung. $[D-Ser^1, Nva^{17, 18}]$ - β -Corticotropin-(1-19)-nonadecapeptidamid Xa und $[D-Ser^1, Nle^{17, 18}]$ - β -Corticotropin-(1-19)-nonadecapeptidamid Xb wurden synthetisiert und ihre biologischen Aktivitäten diskutiert.

> M. Brugger, P. Barthe and P. A. Desaulles

Chemical and Biological Research Laboratories, Pharmaceutical Department, CIBA Limited, CH-4007 Basel (Switzerland), 10 June 1970.

- ¹ Nomenclature and abbreviations: IUPAC-IUB Commission on Biochemical Nomenclature, Tentative Rules, Biochemistry 5, 2485 (1966); 6, 362 (1967).
- ² S. BAJUSZ and M. MEDZIHRADSZKY, *Peptides*, Proc. 8th European Peptide Symposium (North-Holland Publ. Co., Amsterdam 1967), p. 210.
- ³ J. RAMACHANDRAN, D. CHUNG and CH. H. LI, J. Am. chem. Soc. 87, 2696 (1965).
- ⁴ R. SCHWYZER, Ergebn. Physiol. 53, 1 (1963).
- ⁵ R. SCHWYZER, Excerpta Medica Intern. Congress Series Nr. 161: Protein and Polypeptide Hormones, 1968, p. 201.
- ⁶ P. A. DESAULLES and W. RITTEL, in *The Investigation of Hypo-thalamic-Pituitary-Adrenal Function*, Memoirs of the Soc. for Endocrinology No. 17 (University Press, Cambridge 1968), p. 125. Proc. R. Soc. Med. 60, 906 (1967).
- ⁷ G. I. TESSER and R. SCHWYZER, Helv. chim. Acta 49, 1013 (1966).
- ⁸ P. A. DESAULLES, B. RINIKER and W. RITTEL, reference ⁵, p. 489.
- ⁹ A. WALSER and TH. MÜLLER, reference ⁵, p. 487.
- ¹⁰ B. RINIKER and W. RITTEL, Helv. chim. Acta 53, 513 (1970).
- ¹¹ ST. GUTTMANN, J. PLESS and R. A. BOISSONNAS, Acta chim. Acad. Sci. Hung. 44, 141 (1965).
- ¹² H. KAPPELER, B. RINIKER, W. RITTEL, P. DESAULLES, R. MAIER, B. SCHÄR and M. STAEHELIN, reference ², p. 214.
- ¹³ W. RITTEL, Pharmacology of Hormonal Polypeptides and Proteins (Plenum Press, New York 1968), p. 35.
- ¹⁴ J. HONZL and J. RUDINGER, Coll. Czech. chem. Commun. 26, 2333 (1961).
- ¹⁵ Kindly supplied by Dr. W. RITTEL, CIBA Limited Basle.
- ¹⁶ W. Schuler, B. Schär and P. DESAULLES, Schweiz. med. Wschrift 93, 1027 (1963).
- ¹⁷ In vivo and in vitro determinations of *lipolytic activity* of X a and X b showed the same trend in relation to the reference substances XI-XIII; personal communication by Dr. R. MAIER, CIBA Limited, Basel.
- ¹⁸ K. HOFMANN and H. YAJIMA, in *Polyamino Acids*, *Polypeptides and Proteins* (Ed. M. A. STAHMANN; University of Wisconsin Press, Madison 1962), p. 21.
- ¹⁹ The C-terminal amide of compound XII should be of even more prolonged activity in analogy to the series described by J. RAMA-CHANDRAN et al.³.
- ²⁰ CH. H. LI and W. OELOFSEN, in *The Adrenal Cortex* (Ed. A. B. EISENSTEIN; Little and Brown Co., Boston 1967), p. 185.