

Contents lists available at ScienceDirect

# Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy



journal homepage: www.elsevier.com/locate/saa

# Conformational stability, *r*<sup>0</sup> structural parameters, and vibrational assignments of mono-substituted cyclobutanes: Fluorocyclobutane

Arindam Ganguly<sup>a,1</sup>, Joshua J. Klaassen<sup>a,2</sup>, Gamil A. Guirgis<sup>b</sup>, Todor K. Gounev<sup>a</sup>, James R. Durig<sup>a,\*</sup>

<sup>a</sup> Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110, USA
<sup>b</sup> Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA

# ARTICLE INFO

Article history: Received 20 November 2009 Received in revised form 11 July 2010 Accepted 26 August 2010

Keywords: Infrared spectrum Xenon solutions Conformational stability r<sub>0</sub> structural parameters Fluorocyclobutane

# ABSTRACT

Variable temperature (-55 to -100 °C) studies of the infrared spectra (3500-400 cm<sup>-1</sup>) of fluorocyclobutane, c-C<sub>4</sub>H<sub>7</sub>F, dissolved in liquid xenon have been carried out as well as the infrared spectra of the gas. By utilizing eight pairs of conformers at 10 different temperatures, the enthalpy difference between the more stable equatorial conformer and the axial form has been determined to be  $496 \pm 40$  cm<sup>-1</sup> (5.93  $\pm$  0.48 kJ/mol). The percentage of the axial conformer present at ambient temperature is estimated to be  $8 \pm 1\%$ . The *ab initio* MP2(full) average predicted energy difference from a variety of basis sets is  $732 \pm 47$  cm<sup>-1</sup> (9.04 ± 0.44 kJ/mol) and the average value of  $602 \pm 20$  cm<sup>-1</sup> from density functional theory predictions by the B3LYP method are significantly larger than the experimentally determined enthalpy value. By utilizing previously reported microwave rotational constants for the equatorial and axial conformers combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted  $r_0$  parameters have been obtained. The determined heavy atom structural parameters for the equatorial [axial] conformer are: distances (Å) C-F=1.383(3) [1.407(3)],  $C_{\alpha}$ -C<sub>B</sub>=1.543(3) [1.546(3)],  $C_{\beta}-C_{\gamma}=1.554(3)$  [1.554(3)] and angles (°)  $\angle C_{\alpha}C_{\beta}C_{\gamma}=85.0(5)$  [89.2(5)],  $\angle C_{\beta}C_{\alpha}C_{\beta}=89.3(5)$ [89.2(5)],  $\angle F - (C_B C_\alpha C_B) = 117.4(5)$  [109.2(5)] and a puckering angle of 37.4(5) [20.7(5)]. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some other monosubstituted cyclobutanes with halogen and pseudohalogen substituents.

© 2010 Elsevier B.V. All rights reserved.

# 1. Introduction

The cyclobutane molecule is puckered in the ground vibrational state which results from the steric forces being larger than the ring strain forces. The structural parameters of cyclobutane have been determined from a microwave investigation of four different deuterated isotopomers and the puckering angle was determined [1] to be  $29.55(9)^\circ$ . Prior to this study only the structural parameters of the equatorial chlorocyclobutane had been reported [2] from a microwave study but the reported *A* rotational constants were found to differ significantly from those parameters obtained by the weighted least-squares adjusted method from *ab initio* predicted

\* Corresponding author. Tel.: +1 816 235 6038; fax: +1 816 235 2290. *E-mail address*: durigj@umkc.edu (J.R. Durig). values [3]. However, from a more recent microwave investigation of both the equatorial and axial conformers of chlorocyclobutane [4] it has been possible to obtain the complete structural parameters [5] from the revised rotational constants of the equatorial conformer along with those for axial conformer combined with those predicted from the *ab initio* MP2(full)/6-311+G(d,p) calculations. By utilizing the *ab initio* predicted parameters in combination with previously reported microwave rotational constants it has been possible to obtain complete  $r_0$  structural parameters in addition to chlorocyclobutane for cyclobutylamine [6], bromocyclobutane [7], cyanocyclobutane [8], and cyclobutanol [9]. All of these molecules have at least two conformers present at ambient temperature. By variable temperature infrared investigations of rare gas solutions [5-9] the enthalpy differences have been determined after confident vibrational assignments have been made by using ab initio predicted frequencies, infrared band contours and intensities, along with Raman activities and depolarization values. From far infrared and low frequency Raman spectra of the gases it has been possible to obtain the potential function governing the conformational interchange for many of these molecules. A comparison of the dif-

<sup>&</sup>lt;sup>1</sup> Taken in part from the thesis of Arindam Ganguly, which will be submitted to UMKC in partial fulfillment of the Ph.D. degree.

<sup>&</sup>lt;sup>2</sup> Taken in part from the thesis of Joshua J. Klaassen, which will be submitted to UMKC in partial fulfillment of the Ph.D. degree.

<sup>1386-1425/\$ –</sup> see front matter 0 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2010.08.082

ferent values of the heavy atom structural parameters and the barrier to inversion and enthalpy differences has been made along with predicted energy differences.

As a continuation of our conformational and structural determination of monosubstituted cyclobutanes with halogen and pseudo-halogen substituents we have investigated the temperature dependent infrared spectra of fluorocyclobutane in xenon solutions to obtain the enthalpy difference between the two conformers. In the initial study [2] of the microwave spectrum of fluorocyclobutane the structural parameters could not be obtained from the three experimentally obtained rotational constants. Therefore, corresponding parameters from chlorocyclobutane were used for fluorocyclobutane along with an estimated C–F bond distance of 1.37 Å. These parameters were sufficient to provide rotational constants which satisfactorily agreed with the experimentally determined ones [2].

Later by weighted least-squares adjustment method the C–F distance and the angle of the fluorine atom to the plane of the ring were determined [10], by utilizing the three experimentally determined rotational constants from the initial microwave study [2] along with the remaining parameters, to be the same as the corresponding parameters obtained for chlorocyclobutane [3]. Therefore, to obtain a more complete structural parameter determination for fluorocyclobutane we have combined the *ab initio* MP2(full)/6-311+G(d,p) predicted parameters with the six experimentally determined rotational constants [4] for the two forms to obtain the complete structural parameters for both conformers of fluorocyclobutane.

# 2. Experimental

The fluorocyclobutane sample was prepared by replacing the chlorine atom in chlorocyclobutane (Sigma–Aldrich Chemical Co., with stated purity of 97%) with a fluorine atom by allowing the chlorocyclobutane to drip onto powdered  $AgF_2$  which had been dried under vacuum at 110 °C for 24 h. The sample was purified by a low-temperature, low-pressure fractionation column and the purity of the sample was verified by comparing the infrared spectrum with that previously reported [11].

The mid-infrared spectrum of the gas (Fig. 1B) was obtained from 4000 to  $250 \,\mathrm{cm^{-1}}$  on a Perkin-Elmer model 2000 Fourier transform spectrometer equipped with a Ge/CsI beamsplitter and a DTGS detector. Atmospheric water vapor was removed from the spectrometer housing by purging with dry nitrogen. The theoretical resolution used to obtain the spectrum of the gas was  $0.5 \,\mathrm{cm^{-1}}$ . One hundred twenty-eight interferograms were added and transformed with a boxcar truncation function. The frequencies for the predicted and observed fundamentals are listed in Tables 1 and 2.

The mid-infrared spectra  $(4000-400 \text{ cm}^{-1})$  of the sample dissolved in liquefied xenon (Fig. 1C) were recorded on a Bruker model IFS-66 Fourier transform spectrometer equipped with a globar source, a Ge/KBr beamsplitter and a DTGS detector. In all cases, 100 interferograms were collected at  $1.0 \text{ cm}^{-1}$  resolution, averaged and transformed with a boxcar truncation function. For these studies, a specially designed cryostat cell was used. It consists of a copper cell with a path length of 4 cm with wedged silicon windows sealed to the cell with indium gaskets. The copper cell was enclosed in an evacuated chamber fitted with KBr windows. The temperature was maintained with boiling liquid nitrogen and monitored by two Pt thermo resistors.

# 3. Ab initio calculations

The *ab initio* calculations were performed with the Gaussian-03 program [12] using Gaussian-type basis functions. The energy minima with respect to nuclear coordinates were obtained by the



**Fig. 1.** Comparison of experimental and predicted mid-infrared spectra of fluorocyclobutane: (A) simulated spectrum of equatorial conformer; (B) observed infrared spectrum of the gas, asterisk denotes an impurity and (C) Xe solution at  $-70 \,^{\circ}$ C.

simultaneous relaxation of all geometric parameters using the gradient method of Pulay [13]. A variety of basis sets as well as the corresponding ones with diffuse functions were employed with the Møller–Plesset perturbation method [14] to the second order MP2 with full electron correlation as well as with the density functional theory by the B3LYP method. The predicted conformational energy differences are listed in Table 3.

In order to obtain descriptions of the molecular motions involved in the fundamental modes of fluorocyclobutane, a normal coordinate analysis was carried out. The force field in Cartesian coordinates was obtained with the Gaussian 03 program at the MP2(full) level with the 6-31G(d) basis set. The internal coordinates used to calculate the **G** and **B** matrices are given in Table 4 with the atomic numbering shown in Fig. 2. By using the **B** matrix [15], the force field in Cartesian coordinates was converted to a force field in internal coordinates. Subsequently, 0.88 was used as the scaling factor for the CH stretches and CH<sub>2</sub> scissors whereas 0.90 was used as the scaling factor for all other modes to obtain



Fig. 2. Fluorocyclobutane showing atomic numbering.

| Table 1                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|
| Observed <sup>a</sup> and calculated <sup>b</sup> frequencies for the <i>equatorial</i> conformer of fluorocyclobutane. |

|            |          | Fundamental                                | Ab initio | Fixed scaled <sup>c</sup> | IR int. | Raman act. | dp ratio                     | Gas <sup>d</sup>  | Gas <sup>f</sup>                                                                              | Gas                | Xe                                      | P.E.D. <sup>h</sup>                                                        | Band o                               | contour |     |  |  |  |  |
|------------|----------|--------------------------------------------|-----------|---------------------------|---------|------------|------------------------------|-------------------|-----------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|----------------------------------------------------------------------------|--------------------------------------|---------|-----|--|--|--|--|
|            |          |                                            |           |                           |         |            |                              |                   |                                                                                               |                    |                                         |                                                                            | A                                    | В       | С   |  |  |  |  |
| A'         | $\nu_1$  | β-CH <sub>2</sub> antisymmetric stretch    | 3214      | 3015                      | 38.3    | 41.5       | 0.74                         | 3006              | 2992                                                                                          | 3003               | 2995                                    | 52S <sub>1</sub> ,47S <sub>2</sub>                                         | 52S <sub>1</sub> ,47S <sub>2</sub> – |         |     |  |  |  |  |
|            | $\nu_2$  | γ-CH <sub>2</sub> antisymmetric stretch    | 3199      | 3001                      | 5.3     | 81.8       | 0.51                         | 2992              | 2 2970 2991 - 50S <sub>2</sub> ,44S <sub>1</sub>                                              |                    | 50S <sub>2</sub> ,44S <sub>1</sub>      | 93                                                                         | -                                    | 7       |     |  |  |  |  |
|            | $\nu_3$  | γ-CH <sub>2</sub> symmetric stretch        | 3141      | 2947                      | 18.7    | 142.9      | 0.10                         | 2950              | 2961                                                                                          | 2947               | 2950                                    | 90S <sub>3</sub>                                                           | 88                                   | -       | 12  |  |  |  |  |
|            | $\nu_4$  | $\beta$ -CH <sub>2</sub> symmetric stretch | 3138      | 2944                      | 8.9     | 117.4      | 0.21                         | 2912              | 2950                                                                                          | 2910               | 2895                                    | 92S4                                                                       | 27 – 7                               |         | 73  |  |  |  |  |
|            | $v_5$    | CH stretch                                 | 3131      | 2937                      | 27.1    | 83.7       | 0.28                         | 2861*             | 2934                                                                                          | 2892               | 2878                                    | 91S <sub>5</sub>                                                           | 17 –                                 |         | 83  |  |  |  |  |
|            | $\nu_6$  | $\beta$ -CH <sub>2</sub> scissors          | 1578      | 1480                      | 6.4     | 6.4        | 0.66                         | 1472              | 1471                                                                                          | 1473               | 1466                                    | 56S <sub>6</sub> ,38S <sub>7</sub>                                         | 84                                   | -       | 16  |  |  |  |  |
|            | $v_7$    | $\gamma$ -CH <sub>2</sub> scissors         | 1553      | 1457                      | 4.7     | 15.4       | 0.75                         | 1453              | 1453                                                                                          | 1454               | 1446 60S <sub>7</sub> ,39S <sub>6</sub> |                                                                            | -                                    | -       | 100 |  |  |  |  |
|            | $\nu_8$  | CH in-plane bend                           | 1449      | 1375                      | 44.8    | 8.3        | 0.66                         | 1361              | 1361                                                                                          | 1361 1362 1358     |                                         | 49S <sub>8</sub> ,27S <sub>17</sub>                                        | 100                                  | -       | -   |  |  |  |  |
|            | $\nu_9$  | $\beta$ -CH <sub>2</sub> wag               | 1314      | 1247                      | 16.4    | 2.5        | 0.74                         | 1242              | 1242                                                                                          | 1244               | 1240                                    | 61S <sub>9</sub> ,16S <sub>14</sub>                                        | 96                                   | -       | 4   |  |  |  |  |
|            | $v_{10}$ | $\beta$ -CH <sub>2</sub> twist             | 1279      | 1213                      | 3.1     | 9.2        | 0.74                         | 1140              | 1221                                                                                          | 1222               | 1218                                    | 72S <sub>10</sub> ,12S <sub>15</sub>                                       | 85                                   | -       | 15  |  |  |  |  |
|            | $v_{11}$ | $\beta$ -CH <sub>2</sub> rock              | 1199      | 1137                      | 25.2    | 1.9        | 1.9 0.67 1098 1140 1141 1136 |                   | 41S <sub>11</sub> ,16S <sub>17</sub> ,15S <sub>12</sub> ,15S <sub>15</sub> ,11S <sub>18</sub> | 83                 | -                                       | 17                                                                         |                                      |         |     |  |  |  |  |
|            | $v_{12}$ | C–F stretch                                | 1168      | 1108                      | 58.9    | 8.0        | 0.22                         | 1079*             | 1098                                                                                          | 1099               | 1090                                    | 39S <sub>12</sub> ,40S <sub>13</sub>                                       | 96                                   | -       | 4   |  |  |  |  |
|            | $v_{13}$ | Ring breathing                             | 1016      | 964                       | 14.4    | 15.2       | 0.11                         | 959               | 959                                                                                           | 961                | 954                                     | 46S <sub>13</sub> ,17S <sub>12</sub> ,14S <sub>16</sub>                    | 79                                   | -       | 21  |  |  |  |  |
|            | $v_{14}$ | Ring deformation 1                         | 955       | 906                       | 1.8     | 1.3        | 0.74                         | 783*              | 851                                                                                           | 914                | 911                                     | 40S <sub>14</sub> ,19S <sub>16</sub> ,17S <sub>15</sub> ,12S <sub>9</sub>  | 99 –                                 |         | 1   |  |  |  |  |
|            | $v_{15}$ | $\gamma$ -CH <sub>2</sub> rock             | 792       | 751                       | 3.5     | 1.9        | 0.32                         | 750               | 750                                                                                           | 750                | 750                                     | 44S <sub>15</sub> ,25S <sub>14</sub> ,16S <sub>10</sub>                    | 13 –                                 |         | 87  |  |  |  |  |
|            | $v_{16}$ | Ring deformation 2                         | 618       | 586                       | 2.3     | 3.0        | 0.49                         | 599               | 599                                                                                           | 599                | 599                                     | 62S <sub>16</sub> ,14S <sub>11</sub> ,12S <sub>12</sub>                    | 94                                   | -       | 6   |  |  |  |  |
|            | $v_{17}$ | C-F in-plane bend                          | 474       | 450                       | 7.2     | 0.4        | 0.49                         | 456               | 456                                                                                           | 455                | 454                                     | 32S <sub>17</sub> ,27S <sub>8</sub> ,14S <sub>18</sub> ,13S <sub>11</sub>  | 80                                   | -       | 20  |  |  |  |  |
|            | $v_{18}$ | Ring puckering                             | 202       | 192                       | 1.6     | 0.1        | 0.02                         | 166               | 166                                                                                           | (166) <sup>g</sup> | -                                       | 72S <sub>18</sub> ,13S <sub>8</sub> ,11S <sub>17</sub>                     | 28                                   | -       | 72  |  |  |  |  |
| <i>A</i> ″ | $v_{19}$ | β-CH <sub>2</sub> antisymmetric stretch    | 3204      | 3006                      | 20.1    | 61.6       | 0.75                         | 2988              | 2988                                                                                          | 2993               | 2986                                    | 99S <sub>19</sub>                                                          | -                                    | 100     | -   |  |  |  |  |
|            | $v_{20}$ | $\beta$ -CH <sub>2</sub> symmetric stretch | 3135      | 2941                      | 29.4    | 0.1        | 0.75                         | 2966*             | 2914*                                                                                         | 2941               | 2940                                    | 99S <sub>20</sub>                                                          | -                                    | 100     | -   |  |  |  |  |
|            | $v_{21}$ | $\beta$ -CH <sub>2</sub> scissors          | 1537      | 1442                      | 3.1     | 7.8        | 0.75                         | 1441              | 1441                                                                                          | 1441               | 1435                                    | 99S <sub>21</sub>                                                          | -                                    | 100     | -   |  |  |  |  |
|            | $v_{22}$ | CH out-of-plane bend                       | 1359      | 1289                      | 1.4     | 3.7        | 0.75                         | 1263              | 1246                                                                                          | 1260               | 1257                                    | 60S <sub>22</sub> ,16S <sub>23</sub>                                       | -                                    | 100     | -   |  |  |  |  |
|            | $v_{23}$ | $\gamma$ -CH <sub>2</sub> wag              | 1294      | 1228                      | 1.5     | 0.1        | 0.75                         | 1221              | 1263                                                                                          | 1223               | 1221                                    | 58S <sub>23</sub> ,17S <sub>27</sub> ,16S <sub>22</sub>                    | -                                    | 100     | -   |  |  |  |  |
|            | $v_{24}$ | $\gamma$ -CH <sub>2</sub> twist            | 1282      | 1216                      | 0.3     | 5.0        | 0.75                         | 1161              | 1216                                                                                          | 1218               | 1215                                    | 42S <sub>24</sub> ,43S <sub>25</sub>                                       | -                                    | 100     | -   |  |  |  |  |
|            | $v_{25}$ | $\beta$ -CH <sub>2</sub> wag               | 1221      | 1158                      | 0.3     | 8.6        | 0.75                         | 1049              | 1161                                                                                          | 1159               | 1161                                    | 46S <sub>25</sub> ,21S <sub>24</sub>                                       | -                                    | 100     | -   |  |  |  |  |
|            | $v_{26}$ | Ring deformation 1                         | 1102      | 1045                      | 8.5     | 1.5        | 0.75                         | 1057 <sup>e</sup> | 1026                                                                                          | 1050               | 1048                                    | 24S <sub>26</sub> ,29S <sub>28</sub> ,26S <sub>27</sub> ,10S <sub>30</sub> | -                                    | 100     | -   |  |  |  |  |
|            | $v_{27}$ | $\beta$ -CH <sub>2</sub> twist             | 974       | 924                       | 2.8     | 1.1        | 0.75                         | 921               | 921                                                                                           | 926                | 921                                     | 42S <sub>27</sub> ,18S <sub>24</sub> ,17S <sub>22</sub> ,14S <sub>26</sub> | -                                    | 100     | -   |  |  |  |  |
|            | $v_{28}$ | Ring deformation 2                         | 957       | 908                       | 0.5     | 12.6       | 0.75                         | 899               | 843                                                                                           | 897                | 893                                     | 57S <sub>28</sub> ,26S <sub>26</sub>                                       | -                                    | 100     | -   |  |  |  |  |
|            | $v_{29}$ | $\beta$ -CH <sub>2</sub> rock              | 821       | 779                       | 0.3     | 1.2        | 0.75                         | 835*              | 783*                                                                                          | 781                | 774                                     | 79S <sub>29</sub> ,13S <sub>24</sub>                                       | -                                    | 100     | -   |  |  |  |  |
|            | $v_{30}$ | C-F out-of-plane bend                      | 374       | 355                       | 3.4     | 1.1        | 0.75                         | 371               | 371                                                                                           | -                  | -                                       | 81S <sub>30</sub> ,12S <sub>26</sub>                                       | -                                    | 100     | -   |  |  |  |  |

<sup>a</sup> Observed spectra: gas and Xe are IR.

<sup>b</sup> MP2(full)/6-31G(d) *ab initio* calculations, scaled frequencies, infrared intensities (km/mol), Raman activities (Å<sup>4</sup>/u), depolarization ratios (dp) and potential energy distributions (P.E.D.s).

 $^{c}$  Scaled frequencies with scaling factors of 0.88 for the CH stretches,  $\beta$ -CH<sub>2</sub> and  $\gamma$ -CH<sub>2</sub> scissors and 0.90 for all other modes.

<sup>d</sup> Frequencies listed are taken from Ref. [11], values marked with an asterisk (\*) are from the Raman spectrum, all others are from the IR spectrum of the gas.

<sup>e</sup> Frequency taken from the IR spectrum of the solid.

<sup>f</sup> Frequencies listed are taken from Ref. [10].

<sup>g</sup> Frequency taken from far infrared of the gas.

<sup>h</sup> Symmetry coordinates with P.E.D. contribution less than 10% are omitted.

| Table 2                              |                                       |                         |            |
|--------------------------------------|---------------------------------------|-------------------------|------------|
| Observed <sup>a</sup> and calculated | <sup>b</sup> frequencies for the axia | l conformer of fluorocy | clobutane. |

|            |            | Fundamental                                     |      | Fixed scaled <sup>c</sup> | IR int. | Raman act. | dp ratio                                  | Gas <sup>d</sup>                                        | Gas                                                              | Xe                                 | P.E.D. <sup>f</sup>                                                                           | Banc | contour |    |
|------------|------------|-------------------------------------------------|------|---------------------------|---------|------------|-------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------|------|---------|----|
|            |            |                                                 |      |                           |         |            |                                           |                                                         |                                                                  |                                    |                                                                                               | A    | В       | С  |
| A'         | $\nu_1$    | $\gamma$ -CH <sub>2</sub> antisymmetric stretch | 3217 | 3018                      | 32.2    | 41.3       | 0.74                                      |                                                         |                                                                  |                                    | 69S <sub>1</sub> ,30S <sub>2</sub>                                                            | 53   | _       | 47 |
|            | $\nu_2$    | $\beta$ -CH <sub>2</sub> antisymmetric stretch  | 3198 | 3000                      | 4.9     | 71.6       | 0.62                                      | 67S <sub>2</sub> ,30S <sub>1</sub>                      |                                                                  | 67S <sub>2</sub> ,30S <sub>1</sub> | -                                                                                             | -    | 100     |    |
|            | $\nu_3$    | CH stretch                                      | 3152 | 2957                      | 45.1    | 179.1      | 0.07                                      | 79S <sub>3</sub> ,17S <sub>5</sub>                      |                                                                  |                                    |                                                                                               | 19   | -       | 81 |
|            | $\nu_4$    | $\gamma$ -CH <sub>2</sub> symmetric stretch     | 3146 | 2951                      | 41.8    | 62.1       | 0.15                                      |                                                         |                                                                  |                                    | 95S4                                                                                          | 56   | -       | 44 |
|            | $\nu_5$    | $\beta$ -CH <sub>2</sub> symmetric stretch      | 3131 | 2937                      | 3.0     | 121.6      | 0.37                                      | 80S <sub>5</sub> ,16S <sub>3</sub>                      |                                                                  |                                    | 80S <sub>5</sub> ,16S <sub>3</sub>                                                            | 98   | -       | 2  |
|            | $\nu_6$    | $\gamma$ -CH <sub>2</sub> scissors              | 1566 | 1469                      | 3.1     | 5.8        | 0.65                                      | 64S <sub>6</sub> ,34S <sub>7</sub>                      |                                                                  |                                    | 64S <sub>6</sub> ,34S <sub>7</sub>                                                            | 100  | -       | -  |
|            | $\nu_7$    | $\beta$ -CH <sub>2</sub> scissors               | 1538 | 1443                      | 3.9     | 18.2       | 0.75                                      | 64S <sub>7</sub> ,35S <sub>6</sub>                      |                                                                  |                                    |                                                                                               | 30   | -       | 70 |
|            | $\nu_8$    | CH in-plane bend                                | 1425 | 1352                      | 27.6    | 2.6        | 0.72                                      |                                                         | 1348 1348 47S <sub>8</sub> ,29S <sub>17</sub> ,11S <sub>10</sub> |                                    |                                                                                               |      | -       | 2  |
|            | $\nu_9$    | $\beta$ -CH <sub>2</sub> wag                    | 1336 | 1267                      | 11.7    | 1.4        | 0.55                                      | 5 78S <sub>9</sub> ,14S <sub>13</sub>                   |                                                                  |                                    |                                                                                               | 81   | -       | 19 |
|            | $v_{10}$   | $\beta$ -CH <sub>2</sub> twist                  | 1276 | 1211                      | 5.8     | 16.4       | 0.74 63S <sub>10</sub> ,11S <sub>16</sub> |                                                         |                                                                  |                                    | 63S <sub>10</sub> ,11S <sub>16</sub>                                                          | 60   | -       | 40 |
|            | $v_{11}$   | $\beta$ -CH <sub>2</sub> rock                   | 1194 | 1133                      | 24.1    | 0.9        | 0.43                                      | 35S <sub>11</sub> ,23S <sub>15</sub> ,15S <sub>17</sub> |                                                                  |                                    | 35S <sub>11</sub> ,23S <sub>15</sub> ,15S <sub>17</sub> ,15S <sub>16</sub> ,12S <sub>18</sub> | 38   | -       | 62 |
|            | $v_{12}$   | Ring breathing                                  | 1095 | 1039                      | 17.5    | 19.4       | 0.16                                      |                                                         | 1039 1037                                                        |                                    | 70S <sub>12</sub> ,13S <sub>15</sub>                                                          | 89   | -       | 11 |
|            | $v_{13}$   | Ring deformation 2                              | 970  | 920                       | 14.4    | 5.5        | 0.09                                      |                                                         |                                                                  |                                    | 36S <sub>13</sub> ,19S <sub>15</sub> ,15S <sub>12</sub> ,10S <sub>10</sub>                    | 72   | -       | 28 |
|            | $v_{14}$   | Ring deformation 1                              | 927  | 879                       | 7.5     | 4.0        | 0.42                                      |                                                         |                                                                  |                                    | 26S <sub>14</sub> ,26S <sub>16</sub> ,20S <sub>13</sub>                                       | 98   | -       | 2  |
|            | $v_{15}$   | C–F stretch                                     | 895  | 849                       | 16.2    | 4.4        | 0.50                                      | 825                                                     | 832                                                              | 832                                | 27S <sub>15</sub> ,28S <sub>14</sub> ,20S <sub>11</sub> ,10S <sub>13</sub>                    | 45   | -       | 55 |
|            | $v_{16}$   | γ-CH <sub>2</sub> rock                          | 708  | 672                       | 1.7     | 0.6        | 0.60                                      |                                                         |                                                                  |                                    | 39S <sub>16</sub> ,27S <sub>14</sub> ,16S <sub>11</sub>                                       | 10   | -       | 90 |
|            | $v_{17}$   | C–F in-plane bend                               | 403  | 382                       | 1.8     | 0.3        | 0.14                                      |                                                         |                                                                  |                                    | 30S <sub>17</sub> ,18S <sub>8</sub> ,16S <sub>18</sub> ,15S <sub>11</sub> ,13S <sub>14</sub>  | 100  | -       | -  |
|            | $v_{18}$   | Ring puckering                                  | 180  | 171                       | 1.5     | 0.1        | 0.19                                      | 131                                                     | (131) <sup>e</sup>                                               |                                    | 69S <sub>18</sub> ,13S <sub>8</sub> ,10S <sub>17</sub>                                        | 60   | -       | 40 |
| <i>A</i> ″ | $v_{19}$   | $\beta$ -CH <sub>2</sub> antisymmetric stretch  | 3204 | 3006                      | 9.3     | 72.4       | 0.75                                      |                                                         |                                                                  |                                    | 97S <sub>19</sub>                                                                             | -    | 100     | -  |
|            | $v_{20}$   | $\beta$ -CH <sub>2</sub> symmetric stretch      | 3131 | 2937                      | 26.7    | 0.8        | 0.75                                      |                                                         |                                                                  |                                    | 97S <sub>20</sub>                                                                             | -    | 100     | -  |
|            | $v_{21}$   | $\beta$ -CH <sub>2</sub> scissors               | 1523 | 1429                      | 4.4     | 6.5        | 0.75                                      |                                                         |                                                                  |                                    | 99S <sub>21</sub>                                                                             | -    | 100     | -  |
|            | $v_{22}$   | CH out-of-plane bend                            | 1344 | 1275                      | 0.8     | 1.5        | 0.75                                      |                                                         |                                                                  |                                    | 46S <sub>22</sub> ,29S <sub>23</sub> ,19S <sub>28</sub>                                       | -    | 100     | -  |
|            | $v_{23}$   | $\gamma$ -CH <sub>2</sub> wag                   | 1303 | 1236                      | 2.4     | 6.4        | 0.75                                      |                                                         |                                                                  |                                    | 31S <sub>23</sub> ,33S <sub>25</sub> ,15S <sub>26</sub> ,11S <sub>22</sub>                    | -    | 100     | -  |
|            | $v_{24}$   | $\beta$ -CH <sub>2</sub> wag                    | 1292 | 1226                      | 0.3     | 0.1        | 0.75                                      |                                                         |                                                                  |                                    | 65S <sub>24</sub> ,15S <sub>23</sub> ,11S <sub>22</sub>                                       | -    | 100     | -  |
|            | $v_{25}$   | $\gamma$ -CH <sub>2</sub> twist                 | 1217 | 1155                      | 5.2     | 5.5        | 0.75                                      |                                                         |                                                                  |                                    | 31S <sub>25</sub> ,20S <sub>27</sub> ,16S <sub>24</sub> ,14S <sub>23</sub>                    | -    | 100     | -  |
|            | $v_{26}$   | $\beta$ -CH <sub>2</sub> twist                  | 1098 | 1042                      | 2.3     | 6.1        | 0.75                                      |                                                         |                                                                  |                                    | 63S <sub>26</sub> ,10S <sub>25</sub>                                                          | -    | 100     | -  |
|            | $v_{27}$   | Ring deformation 1                              | 979  | 929                       | 0.8     | 14.6       | 0.75                                      |                                                         |                                                                  |                                    | 64S <sub>27</sub> ,13S <sub>24</sub>                                                          | -    | 100     | -  |
|            | $\nu_{28}$ | Ring deformation 2                              | 953  | 904                       | 5.8     | 0.6        | 0.75                                      |                                                         |                                                                  |                                    | 57S <sub>28</sub> ,10S <sub>22</sub> ,10S <sub>29</sub>                                       | -    | 100     | -  |
|            | $\nu_{29}$ | $\beta$ -CH <sub>2</sub> rock                   | 779  | 739                       | 0.2     | 0.2        | 0.75                                      | 63S <sub>29</sub> ,19S <sub>28</sub> ,11S <sub>25</sub> |                                                                  |                                    | 63S <sub>29</sub> ,19S <sub>28</sub> ,11S <sub>25</sub>                                       | -    | 100     | -  |
|            | $v_{30}$   | C-F out-of-plane bend                           | 397  | 377                       | 3.2     | 0.7        | 0.75                                      |                                                         |                                                                  |                                    | 83S <sub>30</sub> ,10S <sub>29</sub>                                                          | -    | 100     | -  |

<sup>a</sup> Observed spectra: gas, Xe, are IR.

<sup>b</sup> MP2(full)/6-31G(d) *ab initio* calculations, scaled frequencies, infrared intensities (km/mol), Raman activities (Å<sup>4</sup>/u), depolarization ratios (dp) and potential energy distributions (P.E.D.s).

 $^{c}$  Scaled frequencies with scaling factors of 0.88 for the CH stretches,  $\beta$ -CH<sub>2</sub> and  $\gamma$ -CH<sub>2</sub> scissors and 0.90 for all other modes.

<sup>d</sup> Frequencies listed are taken from Ref. [10].

<sup>e</sup> Frequency taken from far infrared of the gas.

<sup>f</sup> Symmetry coordinates with P.E.D. contribution less than 10% are omitted.

# Table 3

Calculated energies in H and energy differences (cm<sup>-1</sup>) for the two conformers, and transition state of fluorocyclobutane.

| Method/basis set           | Energy <sup>a</sup> , E | Energy differences | , $arDelta$              |                          |
|----------------------------|-------------------------|--------------------|--------------------------|--------------------------|
|                            | Equatorial              | Axial <sup>b</sup> | Planar ring <sup>b</sup> | Planar ring <sup>c</sup> |
| RHF/6-31G(d)               | 0.952938                | 583                |                          |                          |
| MP2(full)/6-31G(d)         | 1.661929                | 658                | 1189                     | 531                      |
| MP2(full)/6-31+G(d)        | 1.682782                | 668                |                          |                          |
| MP2(full)/6-31G(d,p)       | 1.719525                | 722                |                          |                          |
| MP2(full)/6-31+G(d,p)      | 1.739104                | 712                |                          |                          |
| MP2(full)/6-311G(d,p)      | 1.906145                | 779                |                          |                          |
| MP2(full)/6-311+G(d,p)     | 1.915779                | 793                | 1377                     | 584                      |
| MP2(full)/6-311G(2d,2p)    | 1.976511                | 694                |                          |                          |
| MP2(full)/6-311+G(2d,2p)   | 1.984410                | 730                |                          |                          |
| MP2(full)/6-311G(2df,2pd)  | 2.065639                | 762                | 1279                     | 516                      |
| MP2(full)/6-311+G(2df,2pd) | 2.073066                | 794                | 1236                     | 443                      |
| MP2(full)/aug-cc-pVTZ      | 2.087353                | 740                |                          |                          |
| Average MP2(full)          | -                       | $732\pm47$         | $1270\pm69$              | $518\pm50$               |
| B3LYP/6-31G(d)             | 2.447881                | 643                | 659                      | 15                       |
| B3LYP/6-31+G(d)            | 2.465403                | 585                |                          |                          |
| B3LYP/6-311G(d,p)          | 2.524013                | 600                |                          |                          |
| B3LYP/6-311+G(d,p)         | 2.531097                | 596                | 555                      | 41                       |
| B3LYP/6-311G(2d,2p)        | 2.533492                | 577                |                          |                          |
| B3LYP/6-311+G(2d,2p)       | 2.539708                | 587                |                          |                          |
| B3LYP/6-311G(2df,2pd)      | 2.539411                | 612                | 584                      | 29                       |
| B3LYP/6-311+G(2df,2pd)     | 2.545645                | 612                | 566                      | 46                       |
| B3LYP/aug-cc-pVTZ          | 2.554573                | 605                |                          |                          |
| Average B3LYP              | -                       | $602\pm20$         | $591\pm47$               | $33\pm14$                |

<sup>a</sup> Energy of conformer is given as -(E+254) H.

<sup>b</sup> Difference is relative to *equatorial* form and given in cm<sup>-1</sup>.

<sup>c</sup> Difference is relative to *axial* form and given in cm<sup>-1</sup>.

the fixed scaled force field and resultant wavenumbers. A set of symmetry coordinates was used similar to those used for chlorocyclobutane [5] to determine the corresponding potential energy distributions (P.E.D.s). A comparison between the observed and calculated wavenumbers, along with the calculated infrared intensities, Raman activities, depolarization ratios and potential energy distributions for the *equatorial* and *axial* conformers of fluorocyclobutane, is given in Tables 1 and 2, respectively.

#### Table 4

Structural parameters (Å and degrees), rotational constants (MHz) and dipole moments (Debye) for equatorial and axial fluorocyclobutane.

| Structural parameters                            | Int. coor.     | MP2(full)/6-3 | 11+G(d,p) | B3LYP/6-311+ | G(d,p)  | Microwave <sup>a</sup> | Adjusted $r_0^{b}$ |                    |
|--------------------------------------------------|----------------|---------------|-----------|--------------|---------|------------------------|--------------------|--------------------|
|                                                  |                | Equatorial    | Axial     | Equatorial   | Axial   | Equatorial             | Equatorial         | Axial <sup>c</sup> |
| rC <sub>α</sub> -F                               | $R_1$          | 1.386         | 1.398     | 1.398        | 1.407   | 1.386(2)               | 1.383(3)           | 1.407(3)           |
| $rC_{\alpha}-C_{\beta},C_{\beta'}$               | $R_2$          | 1.530         | 1.534     | 1.536        | 1.541   | 1.535                  | 1.543(3)           | 1.546(3)           |
| $rC_{\gamma}-C_{\beta},C_{\beta'}$               | R <sub>3</sub> | 1.551         | 1.552     | 1.557        | 1.557   | 1.548                  | 1.554(3)           | 1.554(3)           |
| $rC_{\alpha}-H$                                  | $r_1$          | 1.094         | 1.092     | 1.093        | 1.091   | 1.092                  | 1.094(2)           | 1.092(2)           |
| $rC_{\beta}-H_1$ , $C_{\beta'}-H_1$              | $r_2$          | 1.093         | 1.092     | 1.092        | 1.091   | 1.094                  | 1.093(2)           | 1.092(2)           |
| $rC_{\beta}-H_2, C_{\beta'}-H_2$                 | $r_3$          | 1.091         | 1.094     | 1.091        | 1.092   | 1.093                  | 1.091(2)           | 1.094(2)           |
| $rC_{\gamma}-H_1$                                | $r_4$          | 1.090         | 1.091     | 1.090        | 1.091   | 1.092                  | 1.090(2)           | 1.091(2)           |
| $rC_{\gamma}-H_2$                                | $r_5$          | 1.093         | 1.091     | 1.092        | 1.091   | 1.094                  | 1.093(2)           | 1.091(2)           |
| $\angle C_{\beta}C_{\alpha}F$                    | $\phi_1$       | 117.3         | 109.6     | 116.6        | 111.2   | 116.9                  | 117.4(5)           | 109.2(5)           |
| $\angle C_{\beta}C_{\alpha}C_{\beta}$            | $\theta_1$     | 89.4          | 88.9      | 90.0         | 89.9    | 89.7                   | 89.3(5)            | 89.2(5)            |
| $\angle C_{\gamma}C_{\beta}C_{\alpha}$           | $\theta_2$     | 86.4          | 88.0      | 87.4         | 89.3    | 87.1                   | 85.0(5)            | 89.2(5)            |
| $\angle C_{\beta}C_{\gamma}C_{\beta}$            | $\theta_3$     | 87.8          | 87.6      | 88.4         | 88.7    | 88.7                   | 88.6(5)            | 88.6(5)            |
| $\angle HC_{\alpha}C_{\beta}$                    | $\sigma_1$     | 112.1         | 120.2     | 113.2        | 118.8   | 112.5                  | 112.1(5)           | 120.4(5)           |
| $\angle HC_{\alpha}F$                            | $\sigma_2$     | 107.7         | 107.2     | 106.7        | 106.4   | 107.7                  | 107.7(5)           | 107.2(5)           |
| $\angle H_1 C_\beta C_\alpha$                    | $\lambda_1$    | 109.3         | 116.3     | 110.0        | 114.8   | 109.9                  | 109.3(5)           | 116.3(5)           |
| $\angle H_1 C_\beta C_\gamma$                    | $\lambda_2$    | 110.4         | 119.1     | 111.3        | 117.6   | 109.7                  | 112.8(5)           | 123.3(5)           |
| $\angle H_2 C_\beta C_\alpha$                    | $\lambda_3$    | 118.8         | 110.4     | 118.0        | 111.9   | 118.2                  | 118.8(5)           | 110.4(5)           |
| $\angle H_2 C_\beta C_\gamma$                    | $\lambda_4$    | 119.6         | 111.4     | 119.0        | 113.1   | 117.9                  | 118.5(5)           | 105.8(5)           |
| $\angle H_1 C_{\beta} H_2$                       | $\lambda_5$    | 110.2         | 109.9     | 109.4        | 109.0   | 109.3                  | 110.2(5)           | 109.9(5)           |
| $\angle H_1 C_{\gamma} C_{\beta}$                | $\pi_1$        | 117.7         | 111.3     | 117.1        | 112.7   | 116.1                  | 116.4(5)           | 108.3(5)           |
| $\angle H_2 C_{\gamma} C_{\beta}$                | $\pi_2$        | 111.4         | 117.8     | 112.2        | 116.5   | 111.2                  | 112.4(5)           | 120.1(5)           |
| $\angle H_1 C_{\gamma} H_2$                      | $\pi_3$        | 109.4         | 109.6     | 108.8        | 108.6   | 108.6                  | 109.4(5)           | 109.6(5)           |
| $\tau C_{\gamma} C_{\beta} C_{\beta} C_{\alpha}$ | $	au_1$        | 34.0          | 29.2      | 28.0         | 17.6    | 20                     | 37.4(5)            | 20.7(5)            |
| A (MHz)                                          |                | 10392.071     | 8463.98   | 10204.376    | 8762.20 | 10250.412(7)           | 10250.620          | 8628.79            |
| B(MHz)                                           |                | 4271.121      | 4848.58   | 4247.106     | 4619.90 | 4274.930(3)            | 4275.419           | 4726.22            |
| C (MHz)                                          |                | 3411.111      | 4109.91   | 3380.445     | 3815.67 | 3402.614(3)            | 3402.568           | 3939.20            |
| $ \mu_{a} $                                      |                | 1.968         | 1.819     | 2.066        | 1.802   | 1.870(5)               |                    | 1.61(5)            |
| $ \mu_{ m b} $                                   |                | 0.000         | 0.000     | 0.000        | 0.000   | 0.000                  |                    | 0.0000             |
| $ \mu_{\rm c} $                                  |                | 0.553         | 1.314     | 0.599        | 1.116   | 0.52(2)                |                    | 1.22(22)           |
| $ \mu_{ m t} $                                   |                | 2.044         | 2.244     | 2.151        | 2.120   | 1.94(1)                |                    | 2.02(17)           |

<sup>a</sup> Proposed structural parameters from Ref. [10], equatorial dipole moments from Ref. [2] and rotational constants [4].

<sup>b</sup> Adjusted parameters using the microwave data from Ref. [4] for the given ground states.

<sup>c</sup> Experimental rotational constants A = 8628.77(7) MHz, B = 4726.25(6) MHz, and C = 3939.16(8) MHz and dipole moments taken from Ref. [4].

The infrared spectra were predicted from the MP2(full)/6-31G(d) calculations. The predicted scaled frequencies were used together with a Lorentzian function to obtain the calculated spectra. Infrared intensities determined from MP2(full)/6-31G(d) calculations were obtained based on the dipole moment derivatives with respect to Cartesian coordinates. The derivatives were transformed with respect to normal coordinates by  $(\partial \mu_u / \partial Q_i) = \sum_j (\partial \mu_u / \partial X_j) L_{ij}$ , where  $Q_i$  is the *i*th normal coordinate,  $X_i$  is the *j*th Cartesian displacement coordinate, and L<sub>ij</sub> is the transformation matrix between the Cartesian displacement coordinates and the normal coordinates. The infrared intensities were then calculated by  $[(N\pi)/(3c^2)]$  $[(\partial \mu_x/\partial Q_i)^2 + (\partial \mu_y/\partial Q_i)^2 + (\partial \mu_z/\partial Q_i)^2]$ . In Fig. 1 a comparison of the experimental and simulated infrared spectra of fluorocyclobutane is shown for the spectral region from 900 to 1500 cm<sup>-1</sup>. The predicted spectrum is in relatively good agreement with the experimental spectrum which shows the utility of the scaled predicted frequencies and intensities for supporting the vibrational assignment.

#### 4. Vibrational assignment

In order to obtain the enthalpy difference between the two stable conformers of fluorocyclobutane it is necessary to confidently identify a vibrational mode for the axial conformer which is expected to be a very small percentage of the sample at ambient temperature. This requires confident assignments of all the fundamentals of the more stable equatorial conformer. There have been two extensive vibrational assignments [10,11] for fluorocyclobutane where in the earlier study [11] the assignment was made by using the infrared vapor phase band contours, Raman depolarization data, expected infrared and Raman intensities and "group frequencies". In the more recent study [10] ab initio calculations with the 3-21G(d) basis set with two scaling factors of 0.88 for stretches and 0.90 for the bends were used to predict frequencies for the fundamentals and potential energy distributions. These new data resulted in some significant changes in a few of the descriptions of the motions contributing to some of the bands. In particular, two ring deformations were reassigned to lower frequency bands. There was also a few major changes in the vibrational assignment where the C-H out-of-plane bend was reassigned as nearly accidently degenerate with the  $\beta$ -CH<sub>2</sub> wag at 1242 cm<sup>-1</sup>. The more accurately predicted fundamental frequencies along with the predicted infrared intensities and Raman activities as well as the relatively sharp bands in the spectrum from the xenon solution provides considerably more spectral information for making the vibrational assignment.

With the confident assignment for the fundamentals of the equatorial conformer a search was made for bands arising from the axial conformer. As expected the C–F stretch should be the most intense band in the spectral "fingerprint" region. Unfortunately there is mixing of this mode with both ring deformations along with the  $\beta$ -CH<sub>2</sub> rock. Nevertheless, the band at 832 cm<sup>-1</sup> is quite pronounced and it can be assigned as a fundamental of the axial conformer. There is also a band at 1348 cm<sup>-1</sup> which undoubtedly is due to the axial conformer. There is another band at 1037 cm<sup>-1</sup> which is probably due to the axial conformer but it is partly overlaid by the equatorial band at 1048 cm<sup>-1</sup>. Therefore, there are only two bands of the axial conformer which could be considered for the determination of the enthalpy difference for the two conformers.

# 5. Conformational stability

To determine the enthalpy difference between the two conformers, the mid-infrared spectra of fluorocyclobutane dissolved in liquefied xenon as a function of temperature from -55 to -100 °C were recorded. Only small interactions are expected to occur between the dissolved sample and the surrounding xenon atoms, and consequently, only small frequency shifts are anticipated when passing from the gas phase to the liquefied noble gas solutions. A significant advantage of this study is that the conformer bands are better resolved in comparison with those in the infrared spectrum of the gas. From *ab initio* calculations, the dipole moments of the two conformers are predicted to have similar values and the molecular sizes of the two conformers are nearly the same, so the  $\Delta H$  value obtained from the temperature dependent FT-IR study is expected to be close to that for the gas [16–22].

As indicated earlier only the two bands at 832 and 1348 cm<sup>-1</sup> were confidently assigned for the axial conformer. The fundamental at 1348 cm<sup>-1</sup> could not be resolved in the spectra of the xenon solution due to the close proximity of the  $v_8$  equatorial conformer fundamental. Therefore, only the band at 832 cm<sup>-1</sup> could be used for intensity measurements for the axial conformer. The choice of the bands to be used for the equatorial conformer was also a little difficult since they must be sufficiently separated from any interfering bands. Also, for best results they should have comparable intensity to the band being used for the axial conformer and preferably be in the lower frequency range to minimize interference of overtone and combination bands. From the inspection of the various possible bands the fundamentals at 954, 1090, 1136, and 1240 cm<sup>-1</sup> were selected for the equatorial conformer bands to be use in the determination of the enthalpy difference.

The intensities of the infrared bands were measured as a function of temperature and their ratios were determined. By application of the van't Hoff equation  $-\ln K = \Delta H/(RT) - \Delta S/R$ ,  $\Delta H$  was determined from a plot of  $-\ln K$  versus 1/T, where  $\Delta H/R$  is the slope of the line and K is substituted with the appropriate intensity ratios, *i.e.*  $I_{equatorial}/I_{axial}$ . It was assumed that  $\Delta H$ ,  $\Delta S$ , and  $\alpha$  are not a function of temperature in the temperature range studied.

By combining the axial band and the four equatorial conformer bands, four pairs were utilized for the determination of the enthalpy difference, and the resulting values with statistical uncertainties are listed in Table 5. As can be seen from the data in this table there is a fair spread of values but each one has a relatively small uncertainty. However, this spread is expected when measuring band intensities for bands with shoulders and considerable potential for underlying overtones and combination bands. Nevertheless, the statistical uncertainty is quite small and the statistical average obtained by using all eight pairs as a single set gives a value of  $496 \pm 9 \text{ cm}^{-1}$ . This error limit is derived from the statistical standard deviation of one sigma of the measured intensity data. This error limit does not take into account small associations with the liquid xenon or the interference of overtones and combination bands in near coincidence with the measured fundamentals. The variations in the individual values are undoubtedly due to these types of interferences, but by taking several pairs, the effect of such interferences should cancel. Nevertheless, we expect the error is probably significantly larger than the statistical uncertainty obtained so we believe the determined  $\Delta H$  value is  $496 \pm 40$  cm<sup>-1</sup>. Thus, the abundance of the less stable axial conformer present at ambient temperature is  $8 \pm 1\%$ .

#### 6. Structural parameters

We have [21] shown that *ab initio* MP2(full)/6-311+G(d,p) calculations predict the  $r_0$  structural parameters for more than 50 carbon–hydrogen distances better than 0.002 Å compared to the experimentally determined values from isolated CH stretching frequencies which are compared [22] to previously determined values from earlier microwave studies. Thus, all of the carbon–hydrogen  $r_0$  parameters can be taken from the MP2(full)/6-311+G(d,p) pre-

| Table | 5 |
|-------|---|
|-------|---|

Temperature and intensity ratios of the equatorial and axial bands of fluorocyclobutane.

|                                    | <i>T</i> (°C) | $1/T(\times 10^{-3} \mathrm{K}^{-1})$ | $I_{1240}/I_{832}$ | $I_{1136}/I_{832}$ | $I_{1090}/I_{832}$ | I <sub>954</sub> /I <sub>832</sub> |
|------------------------------------|---------------|---------------------------------------|--------------------|--------------------|--------------------|------------------------------------|
| Liquid xenon                       | -55.0         | 4.584                                 | 28.047             | 21.816             | 73.347             | 20.196                             |
| -                                  | -60.0         | 4.692                                 | 30.335             | 22.479             | 82.453             | 21.944                             |
|                                    | -65.0         | 4.804                                 | 34.427             | 25.001             | 91.191             | 24.540                             |
|                                    | -70.0         | 4.923                                 | 37.342             | 26.659             | 99.334             | 25.717                             |
|                                    | -75.0         | 5.047                                 | 42.126             | 30.737             | 107.541            | 29.125                             |
|                                    | -80.0         | 5.177                                 | 45.832             | 31.483             | 120.126            | 32.373                             |
|                                    | -85.0         | 5.315                                 | 51.851             | 36.427             | 132.261            | 35.535                             |
|                                    | -90.0         | 5.460                                 | 55.804             | 37.080             | 144.495            | 39.539                             |
|                                    | -95.0         | 5.613                                 | 64.312             | 42.029             | 156.716            | 43.091                             |
|                                    | -100.0        | 5.775                                 | 69.057             | 44.885             | 176.726            | 47.951                             |
| $\Delta H^{a}$ (cm <sup>-1</sup> ) |               |                                       | $536\pm14$         | $439\pm18$         | $499\pm14$         | $508\pm11$                         |

<sup>a</sup> Average value  $\Delta H = 496 \pm 9 \text{ cm}^{-1} (5.93 \pm 0.11 \text{ kJ mol}^{-1})$  with the equatorial conformer the more stable form and the statistical uncertainty (1 $\sigma$ ) obtained by utilizing all of the data as a single set.

dicted values for fluorocyclobutane. Also, we have found [23] that we can obtain good structural parameters by adjusting the structural parameters from the *ab initio* calculations to fit the rotational constants obtained from the microwave experimental data. In order to reduce the number of independent variables, the structural parameters are separated into sets according to their types. Bond lengths in the same set keep their relative ratio which results in only two heavy atoms distances, *i.e.* C–C and C–F, for fluorocyclobutane. Also, the bond angles and torsional angles in the same set keep their differences in degrees. This assumption is based on the fact that the errors from ab initio calculations are systematic. Thus, it is possible to reduce the number of heavy atom independent structural parameters to five with the CC and CF bond lengths, and the angles of FCC, CCC and the ring puckering angle. Therefore, if the CH parameters are taken from the MP2(full)/6-311+G(d,p) calculations, then it should be possible to obtain "adjusted  $r_0$ " structural parameters for the equatorial and axial conformers of fluorocyclobutane by utilizing the previously reported [4] six rotational constants from the microwave study.

These determined adjusted r<sub>0</sub> parameters are listed in Table 4 and the final fit of the rotational constants is shown in Table 6. The differences are quite small with those for the *B* and *C* rotational constants fit to better than 0.5 MHz. The largest adjustment for the angles is associated with the ring puckering angle which changes from  $34.0^{\circ}$  to  $37.4^{\circ}$  for the equatorial conformer and from  $29.2^{\circ}$ to 20.7° for the axial conformer and the largest distance change is the  $C_{\alpha}$  –  $C_{\beta}$  ( $C_{\beta'}$ ) bond which increased from 1.530 to 1.543 Å for the equatorial conformer and 1.534 to 1.546 Å for the axial conformer. The C-F bond distance in the axial conformer also exhibits a significant change from 1.398 to 1.407 Å. The remaining changes were relatively small. It is somewhat difficult to estimate the uncertainties in these structural parameters, but it is believed those for the CH distances should be no more than  $\pm 0.002$  Å and for the heavy atom distances  $\pm 0.003$  Å, whereas the uncertainties in the angles is estimated to be  $\pm 0.5^{\circ}$ . These parameters are expected to be more

#### Table 6

Comparison of rotational constants (MHz) obtained from modified *ab initio*, MP2(full)/6-311+G(d,p) structural parameters and the experimental values from the microwave spectra of *equatorial* and *axial* fluorocyclobutane.

| Isotopomers                        | Rotational constant | Experimental <sup>a</sup> | Calculated | $ \Delta $ |
|------------------------------------|---------------------|---------------------------|------------|------------|
| eq-C <sub>4</sub> H <sub>7</sub> F | A                   | 10250.412(7)              | 10250.620  | 0.208      |
|                                    | B                   | 4274.930(3)               | 4275.419   | 0.489      |
|                                    | C                   | 3402.614(3)               | 3402.568   | 0.046      |
| ax-C <sub>4</sub> H <sub>7</sub> F | A                   | 8628.77(7)                | 8628.79    | 0.02       |
|                                    | B                   | 4726.25(6)                | 4726.22    | 0.03       |
|                                    | C                   | 3939.16(8)                | 3939.20    | 0.04       |

<sup>a</sup> Ref. [4].



**Fig. 3.** Low frequency spectra of gaseous fluorocyclobutane: (A) background; (B) far infrared and (C) Raman.

| 838 |  |
|-----|--|
|     |  |

| Tal | ble | 7 |
|-----|-----|---|
|     |     |   |

| Ob | oserved | and | cal | cu | ated | l frequencies | (cm <sup>-</sup> | 1) | for the r | ing-puc | kering vi | brat | ions o | of f | luorocycl | obutane. |
|----|---------|-----|-----|----|------|---------------|------------------|----|-----------|---------|-----------|------|--------|------|-----------|----------|
|----|---------|-----|-----|----|------|---------------|------------------|----|-----------|---------|-----------|------|--------|------|-----------|----------|

| Conformer  | Transition       | Observed <sup>a</sup> |       | Calculated <sup>b</sup> | Obs. – Calc. | Weight |
|------------|------------------|-----------------------|-------|-------------------------|--------------|--------|
|            |                  |                       |       |                         |              |        |
|            |                  | Infrared              | Raman |                         |              |        |
| Equatorial | 1 ← 0            | 166.44                | 167   | 166.92                  | -0.48        | 1.0    |
|            | 2 ← 1            | 157.25                | 157   | 157.29                  | -0.04        | 1.0    |
|            | 4 ← 2            | 146.50                | 147   | 145.51                  | 0.99         | 1.0    |
|            | $6 \leftarrow 4$ | 129.04                |       | 129.46                  | -0.42        | 1.0    |
| Axial      | 5 ← 3            | 130.94                |       | 132.03                  | -1.09        | 1.0    |

<sup>a</sup> The infrared were utilized preferentially over the Raman [10] in the calculations.

<sup>b</sup> Calculated by using a potential of the form  $V(cm^{-1}) = (8.46 \pm 0.12) \times 10^5 X^4 - (4.05 \pm 0.18) \times 10^4 X^2 + (6.01 \pm 0.11) \times 10^4 X^3$  with a reduced mass of 214 amu.

accurate than those that could be obtained from electron diffraction or microwave study alone or a microwave study with all atoms substituted to obtain  $r_s$  parameters.

# 7. Discussion

The determined enthalpy difference of  $496\pm40\,cm^{-1}$  is a reasonable value compared to the relative values obtained for bromocyclobutane ( $\Delta H = 291 \pm 22 \text{ cm}^{-1}$  [7]) and chlorocyclobutane  $(\Delta H = 361 \pm 17 \text{ cm}^{-1} \text{ [5]})$  as compared to the predicted values from the MP2(full) calculations with a relatively large number of basis sets. For the bromide the  $\Delta E$  value was  $560 \pm 46 \text{ cm}^{-1}$  and for the chloride the  $\Delta E$  value was  $646 \pm 73 \text{ cm}^{-1}$  where the calculations include basis sets up to aug-cc-pVTZ. Therefore, the ab initio calculations predicted considerably large energy differences than the experimentally determined enthalpy difference for both the chloride and bromide. For the fluoride the predicted energy difference is  $732 \pm 47$  cm<sup>-1</sup> which is about 230 cm<sup>-1</sup> larger than the experimental determined enthalpy difference. However, from the microwave study of fluorocyclobutane [4] the energy difference was determined to be  $620 \pm 30$  cm<sup>-1</sup> which is significantly larger than the  $\Delta H$ value obtained herein. Nevertheless it is clear that the enthalpy difference for the fluoride is much larger than the value for the other two halocyclobutanes.

In the present study the experimentally determined enthalpy difference was larger at 496 cm<sup>-1</sup> than the 413 cm<sup>-1</sup> enthalpy difference used in the previous study [10] for determining the ring-puckering potential function. With the higher and more reliable  $\Delta H$  value, we have again obtained the potential function governing the conformational interchange for fluorocyclobutane. By using

the far infrared and low frequency Raman (Fig. 3) data the "hot bands" series for the equatorial conformer as well as the first transition in the axial well were assigned (Table 7) and the assignment used matches the previous spectral study [10]. With this assignment the potential function (Fig. 4) was determined to have a  $\Delta H$  of 450 cm<sup>-1</sup> with a barrier of 774 cm<sup>-1</sup> as compared to the previous study where the potential function gave a barrier slightly smaller at 713 cm<sup>-1</sup>. This  $\Delta H$  value is on the low side of the experimentally determined value for this study. This potential function is not significantly different from the potential function from the previous study [10].

The three parameters which show significant differences from the previous study [10] of this molecule are the puckering angle, as well as the  $C_{\alpha}\text{-}C_{\beta}$   $(C_{\beta'})$  and  $C_{\gamma}\text{-}C_{\beta}$   $(C_{\beta'})$  bond distances. In the previous study these parameters were all assumed with values of 20°, 1.535 Å, and 1.548 Å, respectively; however for this study we obtained values of  $37.4(5)^\circ$  for the puckering angle along with 1.543(3) and 1.554(3)Å for the  $C_{\alpha}-C_{\beta}$  ( $C_{\beta'}$ ) and  $C_{\gamma}-C_{\beta}$  ( $C_{\beta'}$ ) bond distances in the equatorial conformer. We found that there are two parameters which were very sensitive to the A rotational constant, with those being the  $C_{\alpha}$ - $C_{\beta}$  ( $C_{\beta'}$ ) bond distance and the puckering angle for the equatorial and axial conformers. We also found that the C-F distance in the axial conformer was very sensitive to even small changes in the A rotational constant and to a lesser extent the B and C rotational constants so that even a relatively small change of 0.001 Å would change the fit of the rotational constants by one to two MHz for each rotational constant. This lead to the 1.407 Å C-F bond distance where even a small change would drastically alter the rotational constant fit. Therefore, the determined C-F distance has a very small uncertainty.



**Fig. 4.** Potential function governing the ring-puckering vibration of fluorocyclobutane.  $V(cm^{-1}) = (8.46 \pm 0.12) \times 10^5 X^4 - (4.05 \pm 0.18) \times 10^4 X^2 + (6.01 \pm 0.11) \times 10^4 X^3$  with a reduced mass of 214 amu.

#### Table 8

Structural parameters (Å and degrees) of cyclobutane<sup>a</sup> and some fluoroalkanes and fluoroalkenes.

| Parameters              | Fluoromethane Fluoro                |                   | ethane Fluoroethene |                                              | hene              | cis-3-Fluoropropene |                   | Isoprop           | Isopropyl fluoride       |                   | gauche-1-Fluoropropane     |                   |
|-------------------------|-------------------------------------|-------------------|---------------------|----------------------------------------------|-------------------|---------------------|-------------------|-------------------|--------------------------|-------------------|----------------------------|-------------------|
|                         | MP2 <sup>b</sup>                    | Exp. <sup>c</sup> | MP2 <sup>b</sup>    | Exp.d                                        | MP2 <sup>b</sup>  | Exp. <sup>e</sup>   | MP2 <sup>b</sup>  | Exp. <sup>f</sup> | MP2 <sup>b</sup>         | Exp. <sup>g</sup> | MP2 <sup>b</sup>           | Exp. <sup>h</sup> |
| $rC_{\alpha}-F$         | 1.387                               | 1.383(1)          | 1.396               | 1.387(3)                                     | 1.346             | 1.342(4)            | 1.399             | 1.388(4)          | 1.406                    | 1.398(13)         | 1.398                      | 1.390(5)          |
| $rC_{\alpha}-C_{\beta}$ |                                     |                   | 1.510               | 1.512(2)                                     |                   |                     | 1.492             | 1.495(4)          | 1.512                    | 1.522(7)          | 1.512                      | 1.506(2)          |
| $rC_{\gamma}-C_{\beta}$ |                                     |                   |                     |                                              |                   |                     |                   |                   |                          |                   | 1.526                      | 1.526(3)          |
| $rC_{\alpha}-H$         | 1.091                               | 1.087(1)          | 1.093               | 1.094(1)                                     | 1.084             | 1.080*              | 1.094             | 1.098(2)          | 1.095                    | 1.092*            | 1.093                      | 1.097(1)          |
| Parameters              | gauche-1-Fluoro-2-<br>methylpropane |                   |                     | <i>eq</i> -Fluorocyclobutane <i>ax</i> -Fluo |                   | ocyclobutane Ch     |                   | Chair eq-flu      | air eq-fluorocyclohexane |                   | Chair ax-fluorocyclohexane |                   |
|                         | MP2 <sup>b</sup>                    | Exp. <sup>i</sup> |                     | MP2 <sup>b</sup> I                           | Exp. <sup>j</sup> | MP2 <sup>b</sup>    | Exp. <sup>j</sup> | I                 | MP2 <sup>b</sup>         | Exp. <sup>k</sup> | MP2 <sup>b</sup>           | Exp. <sup>k</sup> |
| rC <sub>a</sub> -F      | 1.396                               | 1.398(13          | )                   | 1.386                                        | 1.383(3)          | 1.398               | 1.407(3           | 3) 1              | 1.403                    | 1.399(2)          | 1.408                      | 1.4021(14)        |
| $rC_{\alpha}-C_{\beta}$ | 1.515                               | 1.525(5)          |                     | 1.530                                        | 1.543(3)          | 1.534               | 1.546(3           | 3) 1              | 1.515                    | 1.5346(1)         | 1.518                      | 1.5348(1)         |
| $rC_{\gamma}-C_{\beta}$ | 1.528                               | 1.536*            |                     | 1.551 1                                      | 1.554(3)          | 1.552               | 1.554(3           | 3) 1              | 1.532                    | 1.5358(1)         | 1.530                      | 1.5359(1)         |
| $rC_{\alpha}-H$         |                                     |                   |                     | 1.094                                        | 1.094(2)          | 1.092               | 1.092(2           | 2)                |                          |                   |                            |                   |

<sup>a</sup> Structural parameters [1]: rC-C 1.555(2), rC-H 1.0910(6), and puckering angle 29.55(3).

<sup>b</sup> From *ab initio* MP2(full)/6-311+G(d,p).

<sup>c</sup> Ref. [24]: *r*<sub>e</sub> structural parameters.

<sup>d</sup> Ref. [25]: *r*<sub>e</sub> structural parameters.

<sup>e</sup> Ref. [26]: *r*<sub>0</sub> structural parameters; value with asterisk is assumed.

<sup>f</sup> Ref. [27]: adjusted  $r_0$  structural parameters.

<sup>g</sup> Ref. [28]: r<sub>0</sub> structural parameters; value with asterisk is from isolated C-H stretch.

<sup>h</sup> Ref. [29]: *r*<sub>0</sub> structural parameters.

<sup>i</sup> Ref. [30]: *r*<sub>0</sub> structural parameters; value with asterisk is assumed.

<sup>j</sup> This study.

<sup>k</sup> Ref. [31] *r*<sub>0</sub> structural parameters.

#### Table 9

Structural parameters of the ring for a few four-membered ring molecules (Å and degree).

| Structural parameters     | Cyclobutane <sup>a</sup> | Chlorocyclobut   | Chlorocyclobutane <sup>b</sup> |            | ane <sup>c</sup> | Fluorocyclobutane <sup>d</sup> |          |  |
|---------------------------|--------------------------|------------------|--------------------------------|------------|------------------|--------------------------------|----------|--|
|                           |                          | Equatorial Axial |                                | Equatorial | Axial            | Equatorial                     | Axial    |  |
| $rC_{\alpha}-X$           |                          | 1.783(5)         | 1.803(5)                       | 1.942(3)   | 1.952            | 1.383(3)                       | 1.407(3) |  |
| $rC_{\alpha}-C_{\beta}$   | 1.5555(2)                | 1.539(3)         | 1.547(3)                       | 1.541(3)   | 1.548            | 1.543(3)                       | 1.546(3) |  |
| $rC_{\beta} - C_{\gamma}$ | 1.5555(2)                | 1.558(3)         | 1.557(3)                       | 1.552(3)   | 1.546            | 1.554(3)                       | 1.554(3) |  |
| Puckering angle           | 28.58(9)                 | 30.7(5)          | 22.3(5)                        | 29.8(5)    | 24.0             | 37.4(5)                        | 20.7(5)  |  |

<sup>&</sup>lt;sup>a</sup> Ref. [1].

We have compared the heavy atom and C–F distances of a number of fluoroalkanes and alkenes (Table 8) in order to demonstrate the effect of fluorine atom on the structural parameters of a molecule. The *ab initio* MP2(full)/6-311+G(d, p) predicted C–F distances for all the fluoroalkanes and alkenes is predicted to be larger than the experimentally determined values. Whereas the  $C_{\alpha}-C_{\beta}$  ( $C_{\beta'}$ ) bond distance is on average predicted 0.010 Å shorter than its corresponding experimental value. It is also of interest that the  $C_{\gamma}-C_{\beta}$  ( $C_{\beta'}$ ) distance for *gauche*-1-fluoropropene is predicted to be equal to the experimentally determined value.

The heavy atom structural parameters for the halogen substituted four member rings also shows some interesting trends (Table 9). The  $C_{\gamma}-C_{\beta}$  ( $C_{\beta'}$ ) distances for the conformers of chlorocyclobutane differ by only 0.001 Å and for the  $C_{\gamma}-C_{\beta}$  ( $C_{\beta'}$ ) distance in fluorocyclobutane they are equal but 0.004 Å shorter than those for the chloride. The most pronounced effect of a substituent on four membered rings can be visualized by comparing the puckering angle between the conformers. The largest difference of ~16° is obtained for the case of fluorocyclobutane for the halogens. The  $C_{\alpha}$ - $C_{\beta}$  ( $C_{\beta'}$ ) bond also exhibits interesting behavior in the presence of a halogen substituent as the bond is significantly shorter for the halogen substituted molecules than the corresponding bond for the cyclobutane without substitution. This bond also is significantly longer in the axial conformers of chlorocyclobutane and fluorocyclobutane than in their equatorial conformers.

The centrifugal distortion constants obtained for the asymmetric reduced Hamiltonian for both conformers are listed in Table 10

Table 10

Quadratic centrifugal distortion constants (kHz) for equatorial and axial conformers of fluorocyclobutane.

|                   | Equatorial             |                            |                    |                        |                   | Axial                  |                            |                    |                        |                   |  |
|-------------------|------------------------|----------------------------|--------------------|------------------------|-------------------|------------------------|----------------------------|--------------------|------------------------|-------------------|--|
|                   | MP2(full)/<br>6-31G(d) | MP2(full)/<br>6-311+G(d,p) | B3LYP/6-<br>31G(d) | B3LYP/6-<br>311+G(d,p) | Exp. <sup>a</sup> | MP2(full)/<br>6-31G(d) | MP2(full)/<br>6-311+G(d,p) | B3LYP/6-<br>31G(d) | B3LYP/6-<br>311+G(d,p) | Exp. <sup>a</sup> |  |
| $\Delta_{\rm J}$  | 0.68                   | 0.68                       | 0.73               | 0.76                   | 0.72(2)           | 2.6                    | 2.6                        | 3.7                | 5.4                    | -2.(2)            |  |
| $\Delta_{\rm JK}$ | 1.93                   | 1.967                      | 1.59               | 1.388                  | 1.74(7)           | -6.0                   | -5.9                       | -12.2              | -23.3                  | 10.(1)            |  |
| $\Delta_{\rm K}$  | 3.4                    | 3.4                        | 4.8                | 5.4                    | 4.4(2)            | 8.9                    | 8.9                        | 18.5               | 37.3                   | -27.(1)           |  |
| $\delta_{I}$      | 0.122                  | 0.124                      | 0.131              | 0.135                  | 0.138(4)          | -0.02                  | -0.02                      | -0.2               | -0.5                   | 0.7(1)            |  |
| $\delta_{\rm K}$  | 1.8                    | 1.8                        | 1.8                | 1.8                    | 1.7(1)            | 1.3                    | 1.3                        | 1.9                | 3.5                    | -7.(3)            |  |

<sup>a</sup> Values taken from Ref. [4].

<sup>&</sup>lt;sup>b</sup> Ref. [5], X = Cl.

<sup>&</sup>lt;sup>c</sup> Ref. [7], X=Br.

<sup>&</sup>lt;sup>d</sup> This study, X = F.

along with the values obtained from the force constants that were predicted from the *ab initio* MP2(full)/6-31G(d) and 6-311+G(d, p) calculations and from the density functional theory calculations by the B3LYP method with both the 6-31G(d) and the 6-311+G(d,p) basis sets. In general the fit is much better with the larger basis set from the B3LYP calculations where the differences between the predicted and experimental values is quite small for all the constants for the equatorial conformer. However for the axial conformer the difference from the predicted values from the MP2(full) and B3LYP calculations are significantly different from the values reported from the microwave study [4]. The magnitude of the constants is in fair agreement but the signs of the constants are all different for the experimentally determined values compared to the predicted values.

We recently obtained the enthalpy difference for the equatorial and axial conformers of cyanocyclobutane [8] and the determined experimental value was  $254 \pm 12$  cm<sup>-1</sup> ( $3.03 \pm 12$  kJ/mol) with the equatorial conformer more stable, which indicates that there is  $23 \pm 1\%$  of the axial form present at ambient temperature. This value is smaller than the corresponding values for the halocyclobutanes and the question arises what are the factors of the substitute species that control the relative amounts of the two forms. The ab initio MP2(full) calculations predicted an enthalpy difference for the cyanide of  $238 \pm 23$  cm<sup>-1</sup> which is consistent with the experimentally determined value. Thus it would be of interest to investigate the conformational stability of ethynylcyclobutane, as it is isoelectronic with cyanide, to determine the enthalpy difference for the two conformers for this molecule. Another molecule of interest is silvlcyclobutane where the axial form is predicted more stable by *ab initio* MP2(full) calculations using relatively large basis sets, whereas, by using the smaller basis sets the equatorial form is predicted more stable. Also of interest would be the isocyanocyclobutane which is expected to have trans and cis forms in addition to the equatorial and axial conformers. Therefore, the conformational study of these and similar molecules might be used to determine the factors which control the relative stability of these types of molecules.

# Acknowledgment

JRD acknowledges the University of Missouri–Kansas City, for a Faculty Research Grant for partial financial support of this research.

#### References

- W. Caminati, B. Vogelsanger, R. Meyer, G. Grassi, A. Bauder, J. Mol. Spectrosc. 131 (1988) 172.
- [2] H. Kim, W.D. Gwinn, J. Chem. Phys. 44 (1966) 865.
- [3] J.R. Durig, M.J. Lee, T.S. Little, Struct. Chem. 2 (1991) 195.
- [4] B. Velino, L.B. Favero, W. Caminati, J. Mol. Spectrosc. 179 (1996) 168.
- [5] J.R. Durig, J.J. Klaassen, A. Ganguly, T.K. Gounev, G.A. Guirgis, W. Lin, Struct. Chem. 19 (2008) 935.
- [6] J.R. Durig, A. Ganguly, A.M. El Defrawy, G.A. Guirgis, T.K. Gounev, W.A. Herrebout, B.J. van der Veken, J. Mol. Struct. 918 (2009) 64.
- [7] J.R. Durig, J.J. Klaassen, A. Ganguly, T.K. Gounev, P. Groner, J. Mol. Struct. 934 (2009) 66.
- [8] J.R. Durig, A. Ganguly, J.J. Klaassen, G.A. Guirgis, J. Mol. Struct. 923 (2009) 28.
  [9] I.R. Durig, A. Ganguly, A.M. El Defrawy, T.K. Gouney, G.A. Guirgis, Spectrochim
- [9] J.R. Durig, A. Ganguly, A.M. El Defrawy, T.K. Gounev, G.A. Guirgis, Spectrochim. Acta 71A (2008) 1379.
- [10] J.R. Durig, M.J. Lee, W. Zhao, T.S. Little, Struct. Chem. 3 (1992) 329.
- [11] J.R. Durig, J.N. Willis Jr., W.H. Green, J. Chem. Phys. 54 (1971) 1547.
- [12] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, revision E.01, Gaussian, Inc., Wallingford, CT, 2004.
- [13] P. Pulay, Mol. Phys. 17 (1969) 197.
- [14] C. Møller, M.S. Plesset, Phys. Rev. 46 (1934) 618.
- [15] G.A. Guirgis, X. Zhu, Z. Yu, J.R. Durig, J. Phys. Chem. A 104 (2000) 4383.
- [16] M.O. Bulanin, J. Mol. Struct. 19 (1973) 59.
- [17] B.J. van der Veken, F.R. DeMunck, J. Chem. Phys. 97 (1992) 3060.
- [18] W.A. Herrebout, B.J. van der Veken, A. Wang, J.R. Durig, J. Phys. Chem. 97 (1995) 578.
- [19] M.O. Bulanin, J. Mol. Struct. 73 (1995) 347.
- [20] W.A. Herrebout, B.J. van der, Veken, J. Phys. Chem. 100 (1996) 9671.
- [21] J.R. Durig, K.W. Ng, C. Zheng, S. Shen, Struct. Chem. 15 (2004) 149.
- [22] D.C. McKean, J. Mol. Struct. 113 (1984) 251.
- [23] B.J. van der Veken, W.A. Herrebout, D.T. Durig, W. Zhao, J.R. Durig, J. Phys. Chem. A 103 (1999) 1976.
- [24] J. Demaison, J. Breidung, W. Thiel, D. Papousek, Struct. Chem. 10 (1999) 129.
- [25] M. Hayashi, M. Fujitake, T. Inagusa, S. Miyazaki, J. Mol. Struct. 216 (1990) 9.
- [26] M. Hayashi, T. Inagusa, J. Mol. Spectrosc. 138 (1989) 135.
- [27] D.T. Durig, T.S. Little, T.G. Costner, J.R. Durig, J. Mol. Struct. 266 (1992) 277.
- [28] G.A. Guirgis, H. Nanaie, J.R. Durig, J. Chem. Phys. 93 (1990) 3837.
- [29] M. Hayashi, M. Fujitake, J. Mol. Struct. 146 (1986) 9.
- [30] J.F. Sullivan, A. Wang, J.R. Durig, S.E. Godbey, Spectrochim. Acta 49A (1993) 1889.
- [31] E. Bialkowska-Jaworska, M. Jaworski, Z. Kisiel, J. Mol. Struct. 350 (1995) 247.