Racemization of Homoallyl Alcohols via an Allyl-transfer Reaction

Iqbal Hussain, Tatsuhiko Komasaka, Masanori Ohga, Junzo Nokami*

Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan Fax +81(86)2526891; E-mail: nogami@dac.ous.ac.jp Received 18 January 2002

Abstract: Acid-catalyzed asymmetric allylation of 3-phenylpropanal **2a** via an allyl-transfer reaction from a chiral allyl donor, (1R,2S,5R)-1-allylmenthol, gave (*R*)-1-phenylhex-5-en-3-ol **3b** enantioselectively. The optical yield (ee) of (*R*)-**3b**, however, decreased with increasing chemical yield, and the chemical yield increased with increasing reaction time. The racemization takes place via an acid-catalyzed allyl-transfer reaction from (*R*)-**3b** to **2a**.

Key words: allyl-transfer reaction, homoallylic alcohol, asymmetric synthesis, racemization

The enantioselective allylation of aldehydes with an allyl(ic)-nucleophile is one of the most attractive reactions in asymmetric synthesis. Not only is the functionalization of the product (homoallylic alcohol) of such a reaction extremely versatile,¹ but also the allylmetallic reagents, which serve as allyl-nucleophiles, can be easily prepared.^{1,2}

On the other hand, we recently discovered an interesting reaction in which the homoallylic alcohol **1** serves as a crotyl-donor to the aldehyde **2** in the presence of an acidcatalyst to give the homoallylic alcohol **3**. In this reaction, the allylic unit in the donor homoallylic alcohol **1** is stereoselectively transfered to the aldehyde **2** via a six-membered chair-form cyclic transition state (oxonia [3,3]sigmatropic rearrangement) in the absence of an allylmetallic reagent, as shown in Scheme 1.^{3a,b}

Scheme 1

We successfully applied this reaction in an asymmetric crotylation of aldehydes using a chiral crotyl-donor (ho-moallylic alcohol **1a**), prepared from (–)-menthone with crotylmagnesium chloride, to give (5E,3R)-1-phenylhept-5-en-3-ol **3a** in 83% yield with >99% ee.² See Scheme 2.

To obtain further information on the allyl-transfer reaction, a chiral allyl-donor, (1R,2S,5R)-1-allylmenthol (**1b**, >95% ee: NMR spectroscopically pure), was reacted with 3-phenylpropanal **2a** in the presence of an acid catalyst, as shown in Scheme 3. The results are summarized in Table 1.

The treatments of **1b** with **2a** in the presence of *p*-toluenesulfonic acid monohydrate (TSA·H₂O, 10 mol%) in CH₂Cl₂ at 20 °C, for 1.5, 2, 5, 10, and 15 h afforded (*R*)-1-phenylhex-5-en-3-ol, (*R*)-**3b**, in 37% (83% ee), 50% (78% ee), 60% (71% ee), 68% (70% ee), and 72% (68% ee) yields, respectively (entries 1–5). These results clearly show that the optical yield (ee) of (*R*)-**3b** decreases with increasing chemical yield of **3b**, and the yield of **3b** increases with increasing reaction time. However, from the reaction mechanism proposed for the asymmetric crotylation,² we must assume that the mechanism for the allyltransfer from the chiral allyl-donor to the aldehyde is the same throughout the reaction.

Therefore, we considered that the ee of (R)-**3b**, derived by the allyl-transfer from the chiral allyl-donor **1b** to **2a**, decreases under the reaction conditions, especially in the presence of 3-phenylpropanal (**2a**, 10 mol%). The results derived by the reaction with various other acid catalysts are shown in Table 2.

Synlett 2002, No. 4, 29 03 2002. Article Identifier: 1437-2096,E;2002,0,04,0640,0642,ftx,en;Y01302ST.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214

Racemization of Homoallyl Alcohols 641

Table 1Allylation of Aldehyde via Allyl-transfer Reaction fromChiral Allyl-donor (R)-1 \mathbf{b}^{a}

Entry	Catalyst ^b (mol%)	Temp (°C)	Time (h)	Yield (%) ^c	Optical purity (% ee) ^d
1 ^e	$TSA \cdot H_2O(10)$	20	1.5	37	83
2	$TSA \cdot H_2O(10)$	20	2.0	50	78
3	TSA·H ₂ O (10)	20	5.0	60	71
4	$TSA \cdot H_2O(10)$	20	10.0	68	70
5	$TSA \cdot H_2O(10)$	20	15.0	72	68
6	HCl/Et ₂ O (100)	0	3.0	62	56
$7^{\rm f}$	Sn(OTf) ₂ (10)	0	2.0	37	49
8	HNTf ₂ (10)	0	2.0	22	64

^a All reactions were performed with 3-phenylpropanal (**2a**, 0.5 mmol) and (*R*)-**1b** (1 mmol) in CH₂Cl₂ (2 mL) unless otherwise noted. ^b TSA: *p*-toluenesulfonic acid; HCl: hydrogen chloride ether solution. ^c Isolated yield based on the aldehyde. ^d Determined by HPLC (Chiralcel OD). ^e The reaction was performed with **2a** (5 mmol) and (*R*)-**1b** (10 mmol) in CH₂Cl₂ (20 mL). ^f In the presence of molecular sieves (4 A, 25 mg).

As shown in entry 1, the aldehyde rapidly accelerated the racemization (decrease of ee) of (R)-3b, although the ee only slightly decreased in the absence of the aldehyde (entry 2). The role of the aldehyde in the racemization is very reasonable, because the allyl-transfer reaction from (R)-3b to 2a gives (S)-3b via a six-membered chair-form cyclic transition state, as shown in Scheme 4. The very slight decrease of ee in the absence of the aldehyde would also be caused by the allyl-transfer from (*R*)-**3b** to a very small amount of the aldehyde that would be formed by an acidcatalyzed retro-ene reaction from (R)-**3b**.⁴ Sn(OTf)₂ and HNTf₂ served as effective catalysts, and BF₃·OEt₂ and hydrogen chloride (HCl·OEt₂) were reasonable catalysts in the racemization caused by an allyl-transfer at 0 °C (entries 3-7). Metal chlorides served as weak catalysts, but $Ti(i-PrO)_4$ and $Sc(OTf)_3$ did not catalyze the reaction (entries 8-12).

Scheme 4

 Table 2
 Acid-catalyzed Racemization of Homoallylic Alcohol via Allyl-transfer Reaction^a

OH A A A	Ph 2a (10 mol%)	ОН	
Ph > > > > (<i>R</i>)- 3b (0.5 mmol)	Acid-Catalyst	Ph 3b	

					Recover	Recovery of 3b	
Entry	Catalyst (mol%)	Solvent (mL)	Temp. (°C)	Time (h)	% ^b	Optical purity (% ee) ^c	
1	$TSA \cdot H_2O(10)$	CH ₂ Cl ₂ (2.0)	20	2	87	37.3 (59.)	
2^d	$TSA \cdot H_2O(10)$	CH ₂ Cl ₂ (2.0)	20	2	93	56.6 (59.3)	
3	$Sn(OTf)_2(10)$	$CH_{2}Cl_{2}(2.5)$	0	1	87	41.6 (82.7)	
4	$BF_{3} \cdot Et_{2}O$ (100)	$CH_{2}Cl_{2}(5.0)$	-78	3	84	81.1 (82.7)	
5	BF ₃ ·Et ₂ O (100)	$CH_{2}Cl_{2}(5.0)$	0	3	77	68.5 (79.7)	
6	HCl·Et ₂ O (100)	$CH_{2}Cl_{2}(5.0)$	0	3	70	32.6 (76.0)	
7	$HNTf_{2}(1)$	CH ₂ Cl ₂ (5.0)	0	2	85	19.6 (48.6)	
8	Me ₂ SiCl ₂ (20)–DMF (20)	C ₂ H ₅ CN (2.0)	20	24	52	64.3 (82.7)	
9 ^e	TiCl ₄ (20)–BINOL (20)	CH ₂ Cl ₂ (2.5)	20	20	62	57.8 (64.1)	
10	TiCl ₂ (<i>i</i> -PrO) ₂ (20)–BINOL (20)	CH ₂ Cl ₂ (2.5)	20	20	84	65.5 (69.5)	
11	Ti(<i>i</i> -PrO) ₄ (10)–BINOL (20)	CH ₂ Cl ₂ (1.25)	20	20	66	74.4 (74.8)	
12	Sc(OTf) ₂ (5)–H ₂ O (150)	CH ₂ Cl ₂ (2.5)	20	20	75	73.5 (74.8)	
13	$Sc(OTf)_{2}(5)$	CH ₂ Cl ₂ (2.5)	20	20	90	42.8 (78.8)	

^a All reactions were performed with (*R*)-**3b** (0.5 mmol) in the presence of 3-phenylpropanal (**2a**, 10 mol%) and an acid-catalyst unless otherwise noted. ^b After isolation by column chromatography on silica gel. ^c Determined by HPLC (Chiralcell OD). Optical purities of the starting (*R*)-**3b** are shown in parentheses. ^d In the absence of 3-phenylpropanal. ^e In the presence of molecular sieves (4 Å, 500 mg).

In conclusion, attention should be given to an acid-catalyzed asymmetric allylation, because it will compete with the racemization of the product via an allyl-transfer reaction from the product to aldehyde. Subsequently, asymmetric allylations by an allyl-transfer reaction from a chiral allyl-donor will not be as easy as the crotylation.⁵

Acknowledgement

This work was financially supported by the Japan Securities Scholarship Foundation, and a Grant in Aid for Scientific Research from the Ministry of Education, Science, Culture, and Sports, Japan (No. 12450357).

References

- (1) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.
- (2) Nokami, J.; Ohga, M.; Nakamoto, H.; Matsubara, T.; Hussain, I.; Kataoka, K. J. Am. Chem. Soc. 2001, 123, 9168; references cited therein.
- (3) (a) Nokami, J.; Yoshizane, K.; Matsuura, H.; Sumida, S. J. Am. Chem. Soc. 1998, 120, 6609. (b) Sumida, S.; Ohga, M.; Mitani, J.; Nokami, J. J. Am. Chem. Soc. 2000, 122, 1310.

(5) Homocrotyl alcohol 3a will be much more stable than homoallyl alcohol 4, because 3a has a thermodynamically more stable internal olefin and sterically less hindered structure. For example, we observed no racemization of 3a (Scheme 5) after treatment with 3-phenylpropanal (2a, 10 mol%) in the presence of TSA·H₂O (10 mol%) at 20 °C for 20 h (recovery: 92%).

Scheme 5