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The reinvestigation of Erica cinerea fresh aerial parts led to the isolation of two new diarylnonanoid agly-
cones along with their glucosides. From spectroscopic data, their structures were elucidated as rel-
(3R,7R)-1,9-bis(p-hydroxyphenyl)-3,7-dihydroxynonan-5-one named ericanone, ericanone 3-b-D-gluco-
side, (3S)-3,7-anhydro-6,7-dehydroericanone and (3S)-3,7-anhydro-6,7-dehydroericanone 40-b-D-gluco-
side. Contrary to the numerous diarylheptanoids more frequently distributed in the plant kingdom, the
rare diarylnonanoids were previously restricted to the genus Myristica of the Myristicaceae plant family.

� 2011 Elsevier Ltd. All rights reserved.
Our last studies on the acetone extract of fresh Erica cinerea L.
aerial parts at the flowering stage, characterized flavonoid agly-
cones, glycosides, as well as an acylglycoside and a disulfate.1

The same material extract was reinvestigated to deepen the phyto-
chemical content of this species. Based on partitioning with petrol,
dichloromethane and ethyl acetate successively, and then a multi-
step chromatographic treatment of the ethyl acetate soluble por-
tion, this process resulted in the isolation of aglycones 1 and 3
and the corresponding glucosides 2 and 4.2 Moreover, the two for-
mer metabolites were also detected in the CH2Cl2 extract among
the major (E)- and (Z)-3-p-coumaroyltriterpenes. By spectroscopic
evidence including UV, MS as well as NMR, the basic structure of
the newly reported compounds was established as 1,9-diarylnona-
noid with either open or partly cyclized C9 chain, a higher homo-
logue of the well-known 1,7-diarylheptanoid backbone.

Compound 1 was isolated as a white amorphous powder, ½a�27
D

�14 (c 0.042, MeOH). It exhibited a UV spectrum consisting of
one band at kMeOH

max 280 nm, and the molecular formula C21H26O5

supplied by HRESMS (found: 381.1673; calcd: 381.16779 for
[M+Na]+). The 13C NMR spectrum (Table 1) made up by only nine
signals for C21, suggested well an apparent symmetrical structure.
ll rights reserved.

ae.
x: +33 5 55 43 59 10.
Five resonances (d 211.4, 68.1, 51.9, 40.5 and 32.0) corresponded to
a tetrasubstituted nonan-5-one chain (C-5: d 211.4) indicated by
one pair of equivalent oxymethines (d 68.1) and three pairs of
equivalent methylenes (d 51.9, 40.5 and 32.0). The remaining
four peaks in the C sp2 shift range supported two symmetrical
p-hydroxyphenyls (C-10,100: d 134.2; C-20,200,60,600: d 130.4; C-
30,300,50,500: d 116.2; C-40,400: d 156.5). To comply with the substitu-
tion pattern of the C9 chain, each aromatic ring must be attached to
one end as supported by the EIMS base peak at m/z 107 for p-
hydroxybenzylium fragment-ion. Furthermore, the multiplicity of
the oxymethine proton pair in the 1H NMR spectrum (d 4.02, br
quint, J = 6.3 Hz), clearly indicated for each one to have four cou-
pling partners. This was also reflected in the 1H–1H COSY spectrum
by the cross-peaks they displayed with two nuclei at d 2.61 and
2.56, respectively, and with two more at d 1.68. Thus, the oxygen
atoms must be linked to either C-2,8 or C-3,7. Parallely, although
unresolved, the complex H-1,9 multiplets (H-1a,9a: d 2.64 and H-
1b,9b: d 2.53) clearly excluded the presence of a tertiary carbon
in the immediate vicinity as depicted in the 2,8-dihydroxy alterna-
tive. Hence, the oxygen atoms of hydroxyl groups were attached to
C-3,7 and 1 was assigned the structure of 1,9-bis(p-hydroxy-
phenyl)-3,7-dihydroxynonan-5-one, a new natural product desig-
nated as ericanone. A detailed analysis of the 1H–13C HMBC
spectrum (Table 1) supported this 1,3,7,9-tetrasubstituted nonan-
5-one chain and corroborated assignments for all the 1H and 13C
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Table 1
13C NMR (125 MHz) and 1H NMR (500 MHz) data for diarylnonanoids 1 and 3 and their glucosides 2 and 4 in CD3OD (d ppm; J Hz)a

C/H 1 2 3 4

13C 1H HMBC 13C 1H HMBC 13C 1H HMBC 13C 1H HMBC

1 32.0 2.64 m C-3; C-20 ,60 31.8 2.59 m C-3; C-20 ,60 31.3 2.72 m C-3; C-20 ,60 31.3 2.72 m C-3; C-20 ,60

2.53 m C-3; C-20 ,60 C-3; C-20 ,60 2.65 m C-3; C-20 ,60 2.65 m C-3; C-20 ,60

2 40.5 1.68 dt (8.1; 6.7) C-4; C-10 38.9 1.86 br hext (7.1) C-4; C-10 37.4 2.06 br ddt C-4; C-10 37.2 2.06 br ddt C-4; C-10

(14.2; 8.1; 6.1) (14.2; 8.1; 6.1)
1.75 m C-4; C-10 1.91 m C-4; C-10 1.92 m C-4; C-10

3 68.1 4.02 br quint (6.3) C-1; C-5 76.7 4.17 br quint (6.3) C-1; C-5; C-100 0 80.0 4.30 ddt C-1; C-5; C-7 80.0 4.30 ddt C-1; C-5; C-7
(12.4; 8.1; 3.7) (13.5; 8.1; 3.6)

4 51.9 2.61 m 49.5 2.82 dd (16.7; 7.1) 41.5 2.43 dd (16.9; 12.4) C-2 41.5 2.43 dd (17.0; 13.5) C-2
2.56 m 2.56 m 2.32 dd (16.9; 3.7) C-6 2.32 dd (17.0; 3.6) C-6

5 211.4 211.4 196.2 196.0
6 51.9 2.61 m 52.3 2.59 m 105.0 5.23 br s C-3; C-4; C-8 105.0 5.23 br s C-3; C-4; C-8

2.56 m
7 68.1 4.02 br quint (6.3) C-5; C-9 68.4 4.00 br quint (6.3) C-5; C-9 180.0 179.9
8 40.5 1.68 dt (8.1; 6.7) C-6; C-100 40.8 1.66 dt (8.2; 6.6) C-100 38.0 2.56 br dt (11.4; 7.4) C-6; C-100 37.9 2.57 br dt (10.4; 7.3) C-6; C-100

2.54 br dt (11.4; 7.4) C-6; C-100 2.55 br dt (10.4; 7.3) C-6; C-100

9 32.0 2.64 m C-7; C-200 ,600 32.2 2.62 m C-7; C-200 ,600 32.9 2.80 br t (7.4) C-7; C-200 ,600 32.9 2.81 br t (7.3) C-7; C-200 ,600

2.53 m C-200 ,600 2.53 dt (14.0; 8.2) C-7; C-200 ,600

10 134.2 134.7 133.2 135.7
20 ,60 130.4 7.00 br d (8.5) C-1; C-40 130.7 6.97 d (8.4) C-1; C-40 130.4 7.03 d (8.4) C-1; C-40 130.4 7.03 d (8.6) C-1; C-40

30 ,50 116.2 6.68 d (8.5) C-10 116.5b 6.65 d (8.4) C-10 116.3 6.71 d (8.4) C-10 118.0 7.13 d (8.6) C-10

40 156.5 156.7c 156.7 157.7
100 134.2 134.5 132.4 132.4
200 ,600 130.4 7.00 br d (8.5) C-9; C-400 130.7 6.97 d (8.4) C-9; C-400 130.4 6.99 d (8.4) C-9; C-400 130.4 6.99 d (8.6) C-9; C-400

300 ,500 116.2 6.68 d (8.5) C-100 116.4b 6.64 d (8.4) C-100 116.2 6.69 d (8.4) C-100 116.3 6.69 d (8.6) C-100

400 156.5 156.6c 156.9 156.9
b-D-Glucosyl moiety
100 0 103.9 4.30 d (7.7) C-3 102.6 4.83 d (7.4) C-40

200 0 75.6 3.11 dd (9.0; 7.7) 75.0 3.39 br t (8.2)
300 0 78.4 3.31 dd (9.0; 7.5) 78.1 3.44 br t (8.9)
400 0 72.0 3.28 m 72.0 3.39 br t (9.3)
500 0 78.3 3.27 ddd (9.5; 5.4; 2.5) 78.2 3.43 m
600 0 63.1 3.83 dd (11.9; 2.5) 62.6 3.89 dd (11.9; 2.0)

3.66 dd (11.9; 5.4) 3.70 dd (11.9; 5.2)

a 1,9-Diarylnonanoid numbering is applied to all compounds.
b,c Values with the same superscript in one column may be interchanged.
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NMR resonances. With respect to the CO group, the outer non-
equivalent geminal protons H-1a,9a and H-1b,9b (d 2.64 and
2.53) indeed showed two 3J correlations with the neighbouring
b-carbons C-3 or C-7 (d 68.1) and C-20,60 or C-200,600 (d 130.4). In
the same way, the inner H-3,7 (d 4.02) exhibited two 3J cross-peaks
with C-5 (d 211.4) and with either C-1 or C-9 (d 32.0) when H-2,8
(d 1.68) were also implicated in two 3J correlations with either C-4
or C-6 (d 51.9) and with either C-10 or C-100 (d 134.2). Parallely, the
aromatic protons H-20,200,60,600 (d 7.00) gave two 3J cross-peaks with
either C-1 or C-9 (d 32.0) and with either C-40 or C-400 (d 156.5)
when H-30,300,50,500 (d 6.68) were characterized by a single 3J corre-
lation with either C-10 or C-100 (d 134.2). To conclude, since erica-
none is laevorotatory, it lacks symmetry between C-3 and C-7
which together must have the same configuration, that is, rel-
(3R,7R) in contrast with opposite configuration only found in the
optically inactive meso-form.
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With a chromatographic behaviour close to that of flavonol
monoglycosides within this species, compound 2, ½a�26

D �19.5 (c
0.015, MeOH), was also obtained as a white amorphous powder.
It was assigned the molecular formula C27H36O10 by HRESMS
(found: 543.2201; calcd: 543.22062 for [M+Na]+). The UV spec-
trum (kMeOH

max 280 nm) was similar to that of 1 as well as the NMR
features (Table 1) indicating a close relationship between 1 an 2.
Indeed, analysis of NMR shift values, multiplicities and coupling
constants rapidly revealed four distinct parts in 2: two quasi-
similar p-disubstituted aromatic rings, one unsymmetrical C9

ketone and one extra hexosyl unit, all these elements suggesting
that 2 was a glycoside of 1. Indeed, mild acid hydrolysis of com-
pound 2 afforded glucose and ericanone (1). The remarkable 1H
and 13C downfield shifts of one oxymethine in 2 (H-3: d 4.17, Dd
+0.15 and C-3: d 76.7 ppm, Dd +8.6) indicated an ether linkage
between C-3 of the ericanone moiety and the b-D-glucosyl unit
(H-100 0: d 4.30, d, J = 7.7 Hz). This attachment was confirmed by
the HMBC spectrum similar to that of 1 except for the additional
3J correlations observed between H-3 and the anomeric C (C-100 0:
d 103.9) and conversely between C-3 and the anomeric proton.
Accordingly, component 2 was identified to the newly reported
ericanone 3-b-D-glucopyranoside.

Less polar than ericanone (1), compound 3, ½a�27
D +9.5 (c 0.011,

MeOH), was also isolated as a white amorphous powder. The
molecular formula C21H22O4 was established by HRESMS (found:
339.1589; calcd: 339.15963 for [M+H]+) and once again, the UV
spectrum consisted of a single band at kMeOH

max 280 nm. With only
two isochrone phenolic functions at d 8.13 in the 1H NMR (ace-
tone-d6), compound 3 differed from ericanone by 20 amu less
(–H4O). Indeed, the comparative analysis of the 13C NMR of both
compounds (Table 1) pointed out in 3 an upfield shift for the keto
group (C-5: d 196.2, Dd �15.2). This function was deduced to be
a,b-conjugated with an electron-donating element similar to a
6,7-dehydroericanone-type structure. This change was supported
by the pronounced downfield shift of two previous C sp3 converted
into Csp2, a O-bonded quaternary C atom (C-7: d 180.0, Dd +111.9)
and a tertiary nucleus (C-6: d 105.0, Dd +53.1) whose proton was
shifted downfield to d 5.23. In addition, the significant downfield
shift in the aliphatic region for the permanent oxy C-3 (d 80.0,
Dd +11.9) suggested to include this carbon in an ether linkage with
enhanced attractive effect and conclusively to ensure ring closure
with C-7 to lead to a 3,7-anhydroericanone-type structure. Indeed,
the 1H NMR data relative to the remaining three aliphatic protons
(H-4a, H-4b and H-3) of the resulting disubstituted c-dihydropyr-
anone ascertained these findings: H-4a (d 2.43, dd, J = 16.9 and
12.4 Hz), H-4b (d 2.32, dd, J = 16.9 and 3.7 Hz) and H-3 (d 4.30,
ddt, J = 12.4, 8.1 and 3.7 Hz). Likely flavanones — a typical example
of 2-substituted 2,3-dihydropyran-4-one — the expressed coupling
value J3,4a = 12.4 Hz clearly suggested a trans-diaxial relationship
between the two related nuclei. Consequently, the absolute config-
uration at C-3 was established as S by comparing the optical rota-
tion with literature data of flavanones.3,4 Hence, the new structure
issued from the above results was (2S)-2,6-bis(p-hydroxypheneth-
yl)-2,3-dihydropyran-4-one or (3S)-3,7-anhydro-6,7-dehydroeri-
canone. The detailed analysis of the 1H–13C HMBC spectrum
supported this result and allowed unambiguous assignments for
all the 1H and 13C NMR resonances and especially the discrimina-
tion of the aromatic rings through their quaternary C atoms.
Indeed, C-10 (d 133.2) was involved in 3J correlations with H-2
(d 2.06 and 1.91) and H-30,50 (d 6.71) while C-100 (d 132.4) showed
3J interactions with H-8a (d 2.56) and H-300,500 (d 6.69). In parallel,
C-40 (d 156.7) correlated with H-20,60 (d 7.03) whereas C-400

(d 156.9) exhibited 3J cross-peaks with H-200,600 (d 6.99). Finally,
further 3J correlations displayed by the latter aromatic protons,
H-200,600 with C-9 (d 32.9) and H-20,60 with C-1 (d 31.3), allowed
to locate each ring on the appropriate end of the partly cyclized
C9 chain. Biogenetically, the close relationship between this metab-
olite and ericanone (1) seems to suggest a mutual 3-hydroxy-5,7-
diketo-type precursor involved in two distinct pathways to lead
to each one: a one-step simple reductive process of the 7-carbonyl
generating ericanone in contrast with a more extended route based
on 6,7-enolisation followed by cylization consecutive to 3,7-dehy-
dration resulting in 3,7-anhydro-6,7-dehydroericanone. In spite of
a detailed phytochemical investigation of E. cinerea, attempts at
isolating the appropriate intermediate still stay unsuccessful.

Compound 4 was also detected towards flavonol monoglyco-
sides on silica gel TLC but with a higher mobility than 2. Also iso-
lated as a white amorphous powder, it exhibited a UV spectrum
consistent with one band at kMeOH

max 280 nm, and the molecular for-
mula C27H32O9 given by HRESMS (found: 523.1937; calcd:
523.19441 for [M+Na]+). Examination of the 1H and 13C NMR data
(Table 1) rapidly revealed that 4 was likely 2, a glucoside but de-
rived from aglycone 3. Owing to the downfield shift caused by
the ether linkage on the aglycone substituted position, attachment
of the b-D-glucopyranosyl moiety (H-100 0: d 4.83, d, J = 7.4 Hz; C-1000:
d 102.6) was deduced to be at C-40 (d 157.7, Dd +1.0). This result
was simultaneously confirmed by the downfield shifts assumed
by the ortho positions for both, protons (H-30,50: d 7.13, Dd +0.42)
and C nuclei (C-30,50: d 118.0, Dd +1.7) and by the 3J correlation dis-
played by H-100 0 (d 4.83) with C-40 (d 157.7) in the HMBC spectrum
virtually identical to that of 3. Consequently, the newly reported
compound 4 was established as (3S)-3,7-anhydro-3,4-dehydroeri-
canone 40-b-D-glucopyranoside.

Only nine 1,9-diarylnonanoids — mainly as open nonan-1-one
chain ,5–7 rarely as cyclized chain,8,9 but never as glycosides — were
previously restricted to the genus Myristica (M. ceylanica, M. dac-
tyloides, M. fragrans and M. malabarica) belonging to the Myristica-
ceae, an archaic plant family when compared to the recent
Ericaceae. Conversely, with a C2 unit less the homologues 1,7-
diarylheptanoids are considerably more numerous. In 2002, the last
available review devoted to this group listed a total of 192 natural
products.10 This number grew to 267 during the past decade.11–43

Occuring as aglycones and/or glycosides of either 3-O-, 3,5-di-O-
or 1,3,5-tri-O-substituted linear, cyclic biphenyl or diphenyl
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ether-type structure, 1,7-diarylheptanoids are mainly reported
from rhizome and stem bark when compared to other structural tis-
sues like heartwood, aerial parts, seeds and fruits. They are wide-
spread over thirteen plant families, namely Aceraceae, Betulaceae,
Burceraceae, Cassuarinaceae, Dioscoreacea, Fabaceae, Juglanda-
ceae, Musaceae, Myricaceae, Pinaceae, Rhoipteleaceae, Viscaceae
and Zingiberaceae. Despite a very large separating interval on the
plant evolution scale, both families Zingiberaceae (Monocotyledon)
and Betulaceae (Dicotyledon) produce the highest numbers of these
products. Similarly to their lower homologues, 1,9-diarylnonanoids
are also elaborated by the most distant Myristicaceae (Paleoplants)
and Ericaceae (Dicotyledon). Is that reflecting the translation of per-
haps a primitive and dominant character of the former, involved in
the biosynthesis of such secondary metabolites in the latter?
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