ISSN 1070-3632, Russian Journal of General Chemistry, 2007, Vol. 77, No. 9, pp. 1610–1613. © Pleiades Publishing, Ltd., 2007. Original Russian Text © I.V. Kulakov, O.A. Nurkenov, A.A. Ainabaev, D.M. Turdybekov, K.M. Turdybekov, A.M. Gazaliev, 2007, published in Zhurnal Obshchei Khimii, 2007, Vol. 77, No. 9, pp. 1538–1541.

Steric Structure of N-(2-Hydrazono-2-hydroxyethyl)-d-Pseudoephedrine and Its Intramolecular Heterocyclization Under the Action of Orthoformic Ester

I. V. Kulakov^a, O. A. Nurkenov^a, A. A. Ainabaev^a, D. M. Turdybekov^b, K. M. Turdybekov^b, and A. M. Gazaliev^a

^a Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, ul. Alikhanova 1, Karaganda, 470061 Kazakhstan e-mail: ivanku1@mail.ru

^b Institute of Phytochemistry of the Republic of Kazakhstan, Karaganda, Kazakhstan

Received April 26, 2007

Abstract—An X-ray structural investigation of N-(2-hydrazono-2-hydroxyethyl)-d-pseudoephedrine is performed, and intramolecular heterocyclization of this compound with orthoformic ester is studied. The final reaction product is found to be a compound containing a morpholone ring rather than substituted 1,3,4-oxadiazole.

DOI: 10.1134/S1070363207090186

The interest in the chemistry of hydrazides owes to the fact that most hydrazide derivatives show a broad-spectrum physiological activity, including a pronounced antitubercular activity [1–5]. Earlier we synthesized hydrazides and acylhydrazides of N-substituted aminoacetic acids derived from physiologically active ephedrine alkaloids [6].

To assess the steric structure of hydrazide I, we performed an X-ray diffraction investigation. The

general view of the molecule is shown in the figure. The crystal lattice of the molecule is found consisting of a dimer.

The crystals of hydrazide I consist of two crystallographically independent molecules whose bond lengths (Table 1) and bond angles (Table 2) are close to each other and to standard values [7]. An exception are torsion angles (Table 3) which characterize the molecular conformation of 1-ephedrine and its deriva-

Molecular structure of N-(2-hydrazono-2-hydroxyethyl)-d-pseudoephedrine (I).

Table 1. Bond angles (o, deg) in structure I

Angle	0	Angle	0
$\begin{array}{c} & C^{24}N^5N^6\\ C^{23}N^4C^{22}\\ C^{23}N^4C^{20}\\ C^{22}N^4C^{20}\\ C^{12}N^2N^3\\ C^{11}N^1C^{10}\\ C^{11}N^1C^8\\ C^{10}N^1C^8\\ O^2C^{12}N^2\\ O^2C^{12}N^2\\ O^2C^{12}C^{11}\\ N^4C^{20}C^{21}\\ N^4C^{20}C^{21}\\ N^4C^{20}C^{19}\\ C^{21}C^{20}C^{19}\\ O^4C^{24}N^5\\ O^4C^{24}C^{23}\\ N^5C^{24}C^{23}\\ N^5C^{24}C^{23}\\ N^5C^{24}C^{23}\\ N^1C^8C^9\\ N^1C^8C^7\\ C^9C^8C^7\\ N^1C^{11}C^{12}\\ \end{array}$	$\begin{array}{c} 122.7(3) \\ 110.8(3) \\ 114.3(3) \\ 111.4(3) \\ 122.5(3) \\ 110.9(3) \\ 112.5(2) \\ 113.4(3) \\ 123.4(3) \\ 120.9(3) \\ 115.7(3) \\ 115.2(3) \\ 108.6(3) \\ 112.3(3) \\ 123.0(3) \\ 121.3(3) \\ 115.7(3) \\ 115.7(3) \\ 115.7(3) \\ 115.7(3) \\ 115.5(3) \\ 106.9(3) \\ 112.6(3) \\ 112.$	$\begin{array}{c} {} {\rm C}^{6}{\rm C}^{1}{\rm C}^{2} \\ {\rm C}^{6}{\rm C}^{1}{\rm C}^{7} \\ {\rm C}^{2}{\rm C}^{1}{\rm C}^{7} \\ {\rm C}^{17}{\rm C}^{18}{\rm C}^{13} \\ {\rm C}^{14}{\rm C}^{13}{\rm C}^{18} \\ {\rm C}^{14}{\rm C}^{13}{\rm C}^{19} \\ {\rm C}^{16}{\rm C}^{15}{\rm C}^{14} \\ {\rm C}^{13}{\rm C}^{14}{\rm C}^{15} \\ {\rm O}^{1}{\rm C}^{7}{\rm C}^{1} \\ {\rm O}^{1}{\rm C}^{7}{\rm C}^{8} \\ {\rm C}^{1}{\rm C}^{2}{\rm C}^{3} \\ {\rm O}^{3}{\rm C}^{19}{\rm C}^{20} \\ {\rm C}^{13}{\rm C}^{19}{\rm C}^{20} \\ {\rm C}^{13}{\rm C}^{19}{\rm C}^{20} \\ {\rm C}^{15}{\rm C}^{16}{\rm C}^{17} \\ {\rm C}^{4}{\rm C}^{3}{\rm C}^{2} \\ {\rm C}^{18}{\rm C}^{17}{\rm C}^{16} \\ {\rm C}^{4}{\rm C}^{5}{\rm C}^{5} \end{array}$	$\begin{array}{c} 118.6(4)\\ 121.5(3)\\ 119.9(3)\\ 121.4(4)\\ 117.5(4)\\ 120.6(4)\\ 121.7(3)\\ 119.9(4)\\ 121.9(4)\\ 107.9(3)\\ 109.0(3)\\ 113.8(3)\\ 120.7(4)\\ 107.9(3)\\ 109.4(3)\\ 113.6(3)\\ 120.1(4)\\ 119.5(4)\\ 119.5(4)\\ 118.9(4)\\ 120.3(4)\\$
NCC	114.2(3)		120.7(4)

tives. In the first molecule of the crystal they are as follows: $\tau(C^6C^1C^7O^1) - 54.2^\circ$, $\omega(O^1C^7C^8N^1) - 54.3^\circ$, and $\chi(C^7C^8N^1C^{10}) - 79.6^\circ$. The torsion angles in the second molecule are as follows: $\tau(C^{18}C^{13}C^{19}O^3) - 70.4^\circ$, $\omega(O^3C^{19}C^{20}N^4) - 49.8^\circ$, and $\chi(C^{19}C^{20}N^4C^{22}) 149.2^\circ$. The difference in the χ angles is explained by the formation of the following intramolecular hydrogen bonds: $N^2-H\cdots H-N^6$ (x, y, z) [$r(N^2\cdots N^6)$ 2.99 Å), $N^3-H\cdots H-$ (x, y, z) [$r(N^3\cdots N^5)$ 2.97 Å)], $N^3-H\cdots O^3$ (x, y, z) [$r(N^3\cdots O^3)$ 2.99 Å, $r(HN^3A\cdots O^3)$ 2.8 Å), and $N^6-H\cdots O^1$ (x, y, z) [$r(N^6\cdots O^1)$ 3.04 Å, $r(HN^6A\cdots O^1)$ 2.8 Å). Hydrogen bonding stabilizes the molecular conformation and forms infinite tapes along the 2_1 [0, 0, y] axis.

Modification of hydrazides under the action of appropriate reagents is known to be a useful method for attenuating their toxicity and synthesizing new dinitrogenous heterocycles. To correlate the biologic activity of hydrazide I with its structure and synthesize 1,3,4-oxadiazoles on the basis of this compound, we performed its condensation with orthoformic ester.

Orthoformic ester is often used in heterocyclic synthesis [8]. The use of orthoformic ester in the synthesis of 1,3,4-oxadiazoles from carboxylic acid hydrazides has been described [9]. The condensation reaction was carried out by refluxing hydrazide I with

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 77 No. 9 2007

Bond	d	Bond	d
$\begin{array}{c} N^5 C^{24} \\ N^5 N^6 \\ O^4 C^{24} \\ N^3 N^2 \\ N^4 C^{23} \\ N^4 C^{22} \\ N^4 C^{20} \\ N^2 C^{12} \\ O^2 C^{12} \\ O^2 C^{12} \\ N^1 C^{10} \\ N^1 C^{10} \\ N^1 C^8 \\ C^{12} C^{11} \\ C^{20} C^{21} \\ C^{20} C^{19} \\ C^{24} C^{23} \\ O^1 C^7 \end{array}$	$\begin{array}{c} 1.332(4)\\ 1.408(4)\\ 1.232(4)\\ 1.413(4)\\ 1.455(4)\\ 1.462(4)\\ 1.462(4)\\ 1.486(4)\\ 1.327(4)\\ 1.229(4)\\ 1.456(4)\\ 1.456(4)\\ 1.461(4)\\ 1.490(4)\\ 1.518(4)\\ 1.526(5)\\ 1.532(5)\\ 1.522(5)\\ 1.422(5)\end{array}$	$\begin{array}{c} O^{3}C^{19}\\ C^{8}C^{9}\\ C^{8}C^{7}\\ C^{1}C^{6}\\ C^{1}C^{2}\\ C^{1}C^{7}\\ C^{18}C^{17}\\ C^{18}C^{13}\\ C^{13}C^{14}\\ C^{13}C^{19}\\ C^{15}C^{16}\\ C^{15}C^{14}\\ C^{2}C^{3}\\ C^{6}C^{5}\\ C^{4}C^{5}\\ C^{4}C^{3}\\ C^{16}C^{17} \end{array}$	$\begin{array}{c} 1.404(5)\\ 1.525(5)\\ 1.537(4)\\ 1.384(6)\\ 1.384(5)\\ 1.510(5)\\ 1.373(6)\\ 1.373(6)\\ 1.376(6)\\ 1.365(5)\\ 1.516(5)\\ 1.360(7)\\ 1.388(6)\\ 1.385(6)\\ 1.385(6)\\ 1.394(6)\\ 1.366(8)\\ 1.374(8)\\ 1.384(7)\end{array}$
		1	

Table 2. Bond lengths (d, A) in structure I

Table 3. Torsion angles $(\phi,\ deg)$ in structure I

Angle	φ	Angle	φ
Angle $N^{3}N^{2}C^{12}O^{2}$ $N^{3}N^{2}C^{12}C^{11}$ $C^{23}N^{4}C^{20}C^{21}$ $C^{22}N^{4}C^{20}C^{19}$ $C^{22}N^{4}C^{20}C^{19}$ $N^{6}N^{5}C^{24}O^{4}$ $N^{6}N^{5}C^{24}C^{23}$ $C^{22}N^{4}C^{23}C^{24}$ $C^{20}N^{4}C^{23}C^{24}$ $O^{4}C^{24}C^{23}N^{4}$ $N^{5}C^{24}C^{23}N^{4}$ $C^{10}N^{1}C^{8}C^{9}$ $C^{10}N^{1}C^{8}C^{7}$ $C^{10}N^{1}C^{8}C^{7}$ $C^{10}N^{1}C^{11}C^{12}$ $O^{2}C^{12}C^{11}N^{1}$	ϕ 6.4(5) -176.2(3) 42.6(4) -83.8(4) -84.4(3) 149.1(3) -3.8(5) 177.2(3) -72.1(4) 161.2(3) 153.5(3) -27.4(4) -80.4(4) 46.5(4) 153.5(3) -79.6(3) 72.0(4) -159.7(3) -158.5(3)	Angle $C^{2}C^{1}C^{7}O^{1}$ $C^{6}C^{1}C^{7}C^{8}$ $C^{2}C^{1}C^{7}C^{8}$ $N^{1}C^{8}C^{7}O^{1}$ $C^{9}C^{8}C^{7}O^{1}$ $N^{1}C^{8}C^{7}C^{1}$ $C^{9}C^{8}C^{7}C^{1}$ $C^{6}C^{1}C^{2}C^{3}$ $C^{14}C^{13}C^{19}O^{3}$ $C^{14}C^{13}C^{19}O^{3}$ $C^{14}C^{13}C^{19}C^{20}$ $N^{4}C^{20}C^{19}O^{3}$ $C^{21}C^{20}C^{19}O^{3}$ $N^{4}C^{20}C^{19}C^{13}$ $C^{21}C^{20}C^{19}C^{13}$ $C^{21}C^{20}C^{19}C^{13}$ $C^{21}C^{20}C^{19}C^{13}$ $C^{21}C^{20}C^{19}C^{13}$ $C^{21}C^{20}C^{19}C^{13}$ $C^{21}C^{20}C^{19}C^{13}$ $C^{21}C^{20}C^{19}C^{13}$ $C^{21}C^{20}C^{19}C^{13}$ $C^{21}C^{20}C^{19}C^{13}$ $C^{21}C^{20}C^{19}C^{13}$ $C^{21}C^{20}C^{19}C^{13}$	ϕ 123.1(4) 66.9(4) -115.9(4) -54.3(3) 177.9(3) -174.7(3) 57.5(4) 1.6(6) -175.7(4) 104.6(5) -70.5(5) -133.9(4) 51.0(5) -49.8(4) -178.5(4) -170.5(3) 60.8(4) -0.8(6) 176.4(4)
$\begin{array}{c} N^2 C^{12} C^{11} N^1 \\ C^{17} C^{18} C^{13} C^{14} \\ C^{17} C^{18} C^{13} C^{19} \\ C^{18} C^{13} C^{14} C^{15} \\ C^{19} C^{13} C^{14} C^{15} \\ C^{19} C^{13} C^{14} C^{15} \\ C^{16} C^{15} C^{14} C^{13} \\ C^6 C^1 C^7 O^1 \end{array}$	$23.9(4) \\ 1.9(7) \\ 177.1(4) \\ -0.9(6) \\ -176.2(4) \\ -0.9(7) \\ -54.1(4)$	$\begin{array}{c} C^{14}C^{15}C^{16}C^{17}\\ C^{5}C^{4}C^{3}C^{2}\\ C^{1}C^{2}C^{3}C^{4}\\ C^{13}C^{18}C^{17}C^{16}\\ C^{15}C^{16}C^{17}C^{18}\\ C^{3}C^{4}C^{5}C^{6}\\ C^{1}C^{6}C^{5}C^{4} \end{array}$	$\begin{array}{c} 1.9(7) \\ -1.5(7) \\ -0.5(7) \\ -1.0(8) \\ -0.9(8) \\ 2.2(7) \\ -1.1(7) \end{array}$

a 3-fold molar excess of orthoformic acid for 8-10 h. Were the hydroxy group in the hydrazide molecule

inert, the reaction would afford a substituted 1,3,4oxadiazole by the following scheme:

However, we isolated from the reaction mixture (5S,6S)-4,5-dimethyl-6-phenylmorpholin-2-one (II) which we used as the parent compound in the synthesis of hydrazide I.

The formation of morpholone II was proved by comparing its physicochemical constants, chemical transformations, and ¹H NMR spectrum with those of the same compound synthesized earlier. The steric

configuration of the resulting morpholone is the same as that of the parent alkaloid.

Morpholone \mathbf{II} is formed through intermediate formation of hydrazones and transesterified substituted esters, followed by intramolecular nucleophilic attack of the alkoxyl oxygen on the electron-deficient carbonyl carbon, resulting in ring closure.

The ¹H NMR spectrum of compound **II** contains a doublet signal of CH–*CH*₃ methyl protons at 0.23 ppm (*J* 5.0 Hz). The singlet at δ 1.65 ppm belongs to the *N*-methyl group. The *CH*–*CH*₃ methine proton appears as a multiplet in the region of 2.32–2.50 ppm, and the *CH*–O proton, as a doublet at δ 5.17 ppm. Aromatic protons resonate in the region of 7.03 ppm. Note that the NCH₂C(O) methylene protons are non-equivalent (δ_{H^a} 2.72 and δ_{H^c} 3.37 ppm) and appear as two doublets with a coupling constant of 14.2 Hz.

EXPERIMENTAL

The ¹H NMR spectra are recorded on a Tesla BS-597 instrument at 80 MHz, solvent C_6D_6 , internal reference HMDS. The melting point was measured on a Boetius hot stage.

X-Ray diffraction experiment. The unit cell parameters and intensities of 2783 unique reflections of compound **I** were measured at 200C on a Brucker-

P4 automatic four-circle difractometer (Mo K_{α} radiation, graphite monochromator, $\theta/2\theta$ scanning, $2\theta < 52^{\circ}$). The crystals are monoclinic, *a* 5.6892(5), *b* 35.363(2), *c* 6.8257(5) Å, β 112.426(5)°, *V* 1269.37(17) Å³, d_{calc} 1.289 g cm⁻³, *Z* 4 (C₂₄H₃₈N₆O₄). Space group *P*2₁.

The calculations involved 2535 reflections with $I > 2\sigma(I)$. The structure was decoded by the direct method using the SHELXS-97 program and refined by full-matrix least squares anisotropically for nonhydrogen atoms. Hydrogen atoms were located geometrically and fixed by the rider model. Final divergence factors: *R* 0.0477 and *WR*₂ 0.1356. Geometry refinement was performed using the SHELXL-97 program. The coordinates of nonhydrogen atoms are listed in Table 4.

(5S,6S)-4,5-Dimethyl-6-phenylmorpholin-2-one (II). Orthoformic ester, 2.22 g (0.015 mol), was added to 1.18 g (0.005 mol) of hydrazide I. The mixture was **Table 4.** Atomic coordinates ($\times 10^4$, for $H \times 10^3$) in structure I in cell fractions

Atom	X	у	Z
N ⁵	5495(5)	2436(1)	5532(4)
O^4	3668(5)	2566(1)	2042(4)
N^3	7648(6)	2394(1)	10246(4)
N^4	3265(5)	3058(1)	6508(4)
N^2	8332(5)	2018(1)	10015(4)
O^2	10307(5)	1905(1)	13511(4)
N^1	10432(5)	1387(1)	8995(4)
N^6	6170(6)	2062(1)	5270(4)
C ¹²	9703(6)	1805(1)	11656(5)
C^{20}	3434(6)	3443(1)	7433(5)
C ²⁴	4231(5)	2661(1)	3902(5)
O^1	6686(6)	1206(1)	5169(5)
O^3	7443(7)	3241(1)	10011(6)
C ²³	3547(6)	3050(1)	4477(5)
C ⁸	10221(6)	989(1)	8236(5)
C ¹¹	10413(6)	1416(1)	11117(5)
C^1	8436(6)	616(1)	4776(5)
C ¹⁸	5471(9)	3954(1)	11358(7)
C ¹³	6656(7)	3897(1)	9961(6)
C ¹⁵	8898(10)	4482(1)	11191(8)
C^{14}	8374(8)	4163(1)	9913(7)
C ²²	932(8)	2866(1)	6367(8)
C^{10}	12605(7)	1589(1)	8858(6)
C^7	9010(7)	1002(1)	5803(5)
C^2	9679(8)	496(1)	3495(6)
C ¹⁹	6244(7)	3540(1)	8644(6)
C ⁹	12684(8)	761(1)	9060(7)
C^6	6605(8)	383(1)	5011(7)
C^4	7206(10)	-72(1)	2639(7)
C ²¹	2020(9)	3752(1)	5868(7)
C ¹⁶	7657(9)	4540(1)	12519(7)
C^3	9058(11)	154(1)	2428(8)
C ¹⁷	5938(10)	4271(1)	12612(7)
C^5	6019(9)	38(1)	3948(8)
			. /

refluxed for 8 h, after which it was diluted with chloroform, filtered to remove a little precipitate, and evaporated in a vacuum. The residue was subjected to column chromatography on SiO_2 , eluent benzene, and recrystallized from petroleum ether to isolate compound **II**, mp 55–56°C.

REFERENCES

- 1. Medne, K.K., *Materialy soveshchaniya po probleme izyskaniya i izucheniya novykh lekarstvennykh prepa ratov* (Proc. Meeting on the Problem of Search for and Study of New Drugs), Riga, 1959, p. 53.
- 2. Berdinskii, I.S., Sennitskaya, L.V., and Chereshneva, L.F., *Khim.-Fiz. Zh.*, 1973, no. 1, p. 10.
- 3. Marcu, C., Bratu, V., and Manuckian, M., *Farmacia* (*RPR*), 1963, vol. 11, no. 10, p. 617.
- 4. Chernykh, V.P., Valyashko, N.N., and Dzhan-Temirova, T.S., *Khim.-Fiz. Zh.*, 1972, no. 7, p. 8.
- Mashkovskii, M.D., *Lekarstvennye sredstva* (Drugs), Moscow: Novaya Volna, 2001, 14th ed., vol. 2, p. 306.
- Nurkenov, O.A, Kulakov, I.V. and Gazaliev, A.M., *Zh. Obshch. Khim.*, 1999, vol. 69, no. 10, p. 1743.
- Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G. and Taylor, R., J. Chem. Soc., Perkin Trans. 2, 1987, p. S1.
- Mezheritskii, V.V., Olekhnovich, E.P., Luk''yanov, S.M., and Dorofeenko, G.N., *Ortoefiry v organicheskom sinteze* (Ortho Esters in Organic Synthesis), Rostov-on-Don: Rostov. Gos. Univ., 1976.
- 9. Nesynov, E.P. and Grekov, A.P., Usp. Khim., 1964, vol. 33, no. 10, p. 35.