Tetrahedron 69 (2013) 10036-10044

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

One-pot synthesis of multisubstituted quaterphenyls and cyclopropanes

Meng-Yang Chang*, Chieh-Kai Chan, Shin-Ying Lin, Ming-Hao Wu

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan

A R T I C L E I N F O

Article history: Received 17 July 2013 Received in revised form 9 September 2013 Accepted 19 September 2013 Available online 25 September 2013

Keywords: Quaterphenyls Cyclopropanes Chalcones Cinnamyl sulfones Electrocyclization Intramolecular ring-closure

ABSTRACT

An efficient one-step synthetic route toward multifunctionalized quaterphenyls **3** or cyclopropanes **4** is developed from substituted chalcones **1** and sulfones **2** in good yields via a regioselective [3C+3C] or [1C+2C] annulation. The reaction features mild conditions, multisubstitution, and functional groups tolerance and is transition metal catalyst-free. The protocol provides a novel alternative to the conventional methodologies for the synthesis of quaterphenyls or cyclopropanes.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Polysubstituted phenyls and their analogues have occupied a key position for the aromatic chemistry in the past decades,¹ due to the presence of these diversified frameworks as useful motifs in biological pharmaceuticals and synthetic material sciences.^{2,3} Although a huge number of various approaches are known from the literature, new methods for the formation of this type of polyphenyl skeleton attract continuous interest in the organic field.⁴ However, transition metal-mediated reaction is the most popular approach among the existing methods, especially Suzuki-Miyaura cross-coupling⁵ or transition metal catalyzed Reppe alkynes [2+2+2] cyclotrimerization.⁶ It should be noted that the regioselective construction of polysubstituted arenes can still be challenging via previous works because it is difficult to control specific site-selectivity during the carbon-carbon bond formation. It usually results in the undesired generation of a mixture of regioisomers. Fewer methods have been utilized to solve the regioselective issues.^{7,8} Cyclopropanes and their derivatives are common core structures presented in a large number of biologically active pharmaceutical agents. They could serve as versatile and important building blocks in organic synthesis because of their unique structural properties.⁹ Therefore, enormous effort has been invested in synthesis of functionalized cyclopropanes. Simmons–Smith cyclopropanation is the most often used.⁹

In continuation of our investigation into the synthetic applications of substituted chalcones,¹⁰ a transition metal-free synthetic route employed to create the skeleton of functionalized quaterphenyls and cyclopropanes was investigated next.¹¹ The one-pot domino base-controlled formal [3+3] or [1+2] cycloaddition route for synthesizing a series of quaterphenyls **3** or cyclopropanes **4** includes two steps: (1) 1,2- or 1,4-addition of chalcones **1** with sulfones **2**¹² and (2) intramolecular 1,6-electrocyclization^{13,14} or S_N2 ring-closure (see Scheme 1). The expeditious ring-closure forms a six- or three-membered core structure.^{15,16}

1 3 (for NaH) 4 (for t-BuOK) 1) nucleophilic substitution 2) Julia olefination 3) 1,6-electrocyclization 4) oxidative dehydrogenation

THE

Scheme 1. One-pot route of quaterphenyls 3 and cyclopropanes 4.

Tetrahedror

^{*} Corresponding author. Tel.: +886 7 3121101x2220; e-mail addresses: mychang@kmu.edu.tw, mychang624@yahoo.com.tw (M.-Y. Chang).

^{0040-4020/\$ –} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.09.060

2. Results and discussion

To initiate the synthetic work, several chalcones **1** were prepared in nearly quantitative yields according to our recent literature methods from the NaOH-mediated Claisen-Schmidt condensation of substituted methylketones with benzaldehydes under the methanolic refluxing solution.¹⁰ Next, one-pot synthesis of sulfones **2** was achieved from the allylic chlorination of commercially available cinnamyl alcohols with TsCl and Et₃N in CH₂Cl₂ followed by nucleophilic substitution of the resulting cinnamyl chlorides with RSO₂Na (R=2a, 4-MePh; 2b, 4-MeOPh; 2c, 4-FPh; 2d, 3,4-CH₂O₂Ph) in good yields. In an attempt to develop a practical protocol of quaterphenyl with the structure of 1,2,4-triphenylbenzenes, a NaHmediated one-pot [3C+3C] tandem route of the starting chalcone 1a with cinnamyl sulfone 2a in refluxing THF provided a sole quaterphenyl **3a** in a 72% yield. With the result in hand, one-pot preparation of multisubstituted quaterphenyls was examined. Changing R₁ and R₂ substituents of compounds 1a-s or 2a-c, the diversified 1,2,4-triaryl-benzenes **3a-v** were isolated in 60-82% yields via the above mentioned protocol.

To change the reaction conditions, we found that different yield of guaterphenyl **3a** was obtained via one-pot tandem reaction of model chalcone 1a with sulfone 2a, as shown in Table 2. By adjusting

0

Table 1

Synthesis of multisubstituted quaterphenyls 3^{a,t}

the equivalents of NaH (2.5 equiv and 5.0 equiv), reaction concentration (10 mL and 20 mL), reaction temperature (25 °C and 67 °C), and reaction time (3 h and 20 h), different product yield was observed (entries 1–7). When the reaction temperature was elevated to reflux, the yield of quaterphenyl **3a** was increased and the starting materials **1a** and **b** was isolated in trace amounts. After screening base-mediated reaction conditions, we found that NaH provided higher vields than other bases (DBU, Et₃N, DMAP). According to the experimental results, we envision that NaH (2.5 equiv) is an optimal base for increasing the yields of quaterphenyl **3a** under the boiling THF (10 mL) conditions for 3 h (entry 5).

Based on the phenomenon, compounds **3a**–**v** were obtained by one-pot domino methodology; they were summarized in Table 1. The formation of skeleton **3** was confirmed through spectral analysis, including ¹H NMR and HRMS spectrum. The structures of compounds **3g** and **n** were determined by single-crystal X-ray crystallography, as shown in Figs. 1–2.¹⁷ Compared with the isolated yields of products **3a-v**, it was found that skeleton **3**, with different aryl substituents (2-thiophene group, electronwithdrawing oxygen-containing group or electron-donating fluoro-containing group), was distributed with moderate ranges. Qinquephenyl **3i** was also prepared from the one-pot domino reaction of chalcone 1i with sulfone 2a via a (C3+C3) route.

		R ₂	$R_1 + R_2 $	ol NaH (2.5 equiv) reflux, 3 h	R ₁	
		1a-s	R =, 2a , Ph; 2b , 4-MeOP	h; 2c , 4-FPh	3a-v		
Entry	Chalcones 1	Sulfones 2	Quaterphenyls 3 yield (%)	Entry	Chalcones 1	Sulfones 2	Quaterphenyls 3 yield (%)
1		2a	3a , 72	12	CS Here	2a	31, 74 Me
2	Meo lib	2a	MeO 3b, 68	13	S Im	2a	Sm, 80
3	MeO 1c	2a	Me0 3c, 78	14	Cr In	2a	3n , 74
4	or the second se	2a	o o 3d, 76	15	CS OMe 10	2a	OMe OMe 30, 68
5	or of the second	2a	ortorial Me	16	MeO UMe Ip	2a	Meo OMe 3p, 60
6	or the second se	2a	С с остать с 3f, 72	17	MeO OMe 1q	2a	Meo Me 3q, 68

(continued on next page)

 Table 1 (continued)

^a For the best one-pot reaction conditions: (i) substituted chalcones **1a–s** (0.5 mmol), sulfones **2a–c** (0.5 mmol), NaH (60%, 50 mg, 1.25 mmol), THF (10 mL), reflux, 3 h. ^b The isolated quaterphenyl products **3a–v** were >95% pure as determined by ¹H NMR analysis.

Table 2NaH-mediated reaction of compounds 1a and 2a^a

Entry	Equiv, THF (mL), temp (°C), time (h)	3a , yield ^b
1	2.5, 10, 25, 3	30%
2	2.5, 10, 25, 20	50%
3	5.0, 10, 25, 20	48%
4	5.0, 20, 25, 20	44%
5	2.5, 10, 67, 3	72%
6	2.5, 10, 67, 20	67%
7	5.0, 10, 67, 20	66%

^a The reactions were run on a 0.5 mmol scale with chalcone **1a** and sulfone **2a**. ^b The starting materials **1a** and **2a** were recovery (for entry 1, 50%; entry 2, 32%; entry 3, 38%; entry 4, 35%; entries 5–7,<5%).

Fig. 1. X-ray structure of compound 3g.

Fig. 2. X-ray structure of compound 3n.

As shown in Scheme 2, a plausible explanation for the one-pot synthesis of compound 3a via the reaction of 1a and 2a should be that sodium α -carbanion A1 was first generated via NaH-mediated deprotonation of cinnamyl sulfone 2a in refluxing THF. Under thermodynamic conditions, four possible intermediates B1-B4 should be formed by the nucleophilic substitution of intermediate A1 with chalcone 1a. For intermediates B1 and B2, the orientation of the oxygen anion and the sulfonyl group on the equatorial position was gauche-configured. At the stages, the oxygen anion promoted the retro-aldol type reaction via an anti-periplanar conformation and the equilibrium process could be generated. To trigger Julia olefination, the orientation of the oxygen anion and the sulfonyl group was arranged to cis-configuration. Intermediate B3 exhibited a stronger repulsion with steric hindrance than did intermediate **B4**. The gauche-configuration between the phenyl group and the sulfonyl group (on the equatorial position) with less steric hindrance was preferred when choosing to provide a more stable intermediate **B4**. After the removal of toluenesulfonate, the preferred intermediate **C** with a fully (*E*,*E*,*E*)-conjugated configuration was formed. Next, quaterphenyl **3a** was generated by the 1,6- 6π -electrocyclic disrotatory ring closure followed by sequential oxidative dehydrogenation of the resulting intermediate **D**. From the above mentioned reaction mechanism, we believe that air (molecular oxygen) plays an important oxidant role to activate the aromatization step during the one-pot direct transformation.¹¹

Scheme 2. A possible mechanism to compound 3a.

With the successful results in hand, when the base was further changed from NaH to *t*-BuOK under boiling THF conditions, six substituted cycolpropanes **4a**–**h** with a three-membered ring skeleton were provided in 56%–80% yields via the one-pot domino reaction of chalcones **1a**, **b**, **f**, **j**, **l**, **t** or **u** with sulfone **2a**, **b** or **2d**, **e** (see Table 3). This is a high-yield and one-pot cascade route to the

Table 3

Synthesis of Cyclopropanes **4a**-**h**^{a,b}

4c, 73

Table 3 (continued)

^a For the best one-pot reaction conditions: (i) chalcones **1a**, **b**, **1f**, **1j**, **1l**, **1t**, **1u** (0.5 mmol), sulfones **2a**, **b** or **2d**, **e** (0.5 mmol), *t*-BuOK (140 mg, 1.25 mmol), THF (10 mL), reflux, 3 h.

^b The isolated quaterphenyls 4a-h were >95% pure as determined by ¹H NMR analysis.

framework of functionalized cyclopropanes. The structural skeleton of compound **4d** was determined by single-crystal X-ray crystal-lography (Fig. 3).¹⁷

Based on the results, a possible reaction mechanism for model substrate **4g** is shown in Scheme 3. Initially, intermediate **A2** was formed by deprotonation of sulfone **2d** with *t*-BuOK. Intermediate E1 or E2 should be afforded via the conjugated addition of chalcone **1a** with the resulting potassium α -carbanion **A2**. Generating the intermediate E1 should not be preferred since the relative orientation between the phenyl group and the sulfonyl group was *cis*configured with stronger repulsion. At another intermediate E2 stage, gauche-configuration between the phenyl group and the sulfonyl group easily triggered the occurrence of an intramolecular S_N2 ring-closure, and the three-membered ring could be cyclized for the formation of cyclopropane skeleton. After removal of toluenesulfinic potassium salt (TolSO₂K), compound **4g** was provided. During the tandem reaction procedure, the regio- and stereoselective formation of three contiguous chiral centers was welldeveloped. So far, there are a few of literature reports to describe the base-promoted straightforward synthesis of skeleton 4 via an interrupted Julia reaction.¹⁸ Under thermal conditions, skeleton **4**, with contiguous stereogenic centers advanced an intramolecular cascade stereospecific ring closure to three adjacent stereocenters with the *cis–trans* configuration. For possible differences between NaH-mediated 1,2-addition and t-BuOK-mediated 1,4-addition, it should be envisioned as the nature of sodium α -carbanion A1 or potassium α -carbanion A2 with specific electronic effects affecting the addition position of chalcone 1 in the formation of skeleton 3 or 4. To further investigate the origin of this regioselectivity, chalcone 1f and sulfone 2a were chosen as the model materials in the reaction of KH-mediated formal [3+3] benzannulation or t-BuONamediated formal [1+2] cyclopropanation. We found that the corresponding quaterphenyl **3f** (70%) or cyclopropanes **4a** (65%) was isolated as the major product, respectively. The results demonstrated sodium α -carbanion A1 or potassium α -carbanion A2 control the shift of regioselectivity. In the other way, LDA-mediated reaction of chalcone 1f and sulfone 2a was also examined. Quaterphenyl 3f(58%) along with the recovery starting materials 1f and **4a** (\sim 15%) was observed.

Scheme 3. A possible mechanism to compound 4g.

3. Conclusion

In summary, we have successfully presented a synthetic methodology for multi-functionalized quaterphenyls **3** and cyclopropanes **4**, which involves the tandem site-selective nucleophilic substitution of substituted chalcones **1** with the carbanion of sulfones **2** and intramolecular 1,6-electrocyclic disrotatory annulation or S_N2 ring closure. The one-pot synthesis of quaterphenyls and cyclopropanes via base-controlled reaction conditions was investigated thoroughly. The structures of key products were confirmed by X-ray crystal analysis. The one-pot transition metal-free synthetic approach begins with simple starting materials and reagents, and provides a potential methodology for the synthetic research and biological activities of quaterphenyls and cyclopropanes. Further investigation regarding one-pot cascade synthesis of multi-functionalized carbocycles will be conducted and published in due course.

4. Experimental section

4.1. General

All other reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under an atmosphere of dry air with magnetic stirring. Products in organic solvents were dried with anhydrous MgSO₄ before concentration in vacuo. Melting points were determined with a SMP3 melting apparatus. ¹H and ¹³C NMR spectra were recorded on a Varian INOVA-400 spectrometer operating at 200/400 and at 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (*J*) are given in Hertz. High resolution mass spectra (HRMS) were measured with a mass spectrometer Finnigan/Thermo Quest MAT 95XL. X-ray crystal structures were obtained with an Enraf-Nonius FR-590 diffractometer (CAD4, Kappa CCD). Elemental analyses were carried out with Heraeus Vario III-NCSH, Heraeus CHN-OS-Rapid Analyzer or Elementar Vario EL III.

A representative synthetic procedure of compounds 3a-v is as follows: Sodium hydride (NaH, 60%, 50 mg, 1.25 mmol) was added to a solution of sulfones 2a-c (0.5 mmol) in THF (8 mL). A solution of chalcones 1a-s (0.5 mmol) in the THF (2 mL) was added to the reaction mixture at rt. The reaction mixture was stirred at reflux for 3 h. The reaction mixture was cooled to rt. Water (1 mL) was added to the reduced pressure. The residue was diluted with water (10 mL) and the mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated to afford crude product. Purification on silica gel (hexanes/EtOAc=10/1-6/1) afforded compounds 3a-v.

4.1.1. Compound (**3a**). Yield=72% (110 mg); mp=103-105 °C, (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3054, 3032, 1475, 1255, 1078, 795 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{24}H_{19}$ 307.1487, found 307.1489; ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.65 (m, 4H), 7.52 (d, *J*=8.4 Hz, 1H), 7.49–7.44 (m, 2H), 7.39–7.36 (m, 1H), 7.25–7.17 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): δ 141.49, 141.11, 140.99, 140.59, 140.36, 139.55, 131.09, 129.90 (2×), 129.87 (2×), 129.41, 128.82 (2×), 127.92 (2×), 127.89 (2×), 127.42, 127.13 (2×), 126.58, 126.52, 126.11.

4.1.2. Compound (**3b**). Yield=68% (131 mg); mp=100-101 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 2962, 2922, 1615, 1483, 1176, 1020, 750 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₉H₂₃O 387.1749, found 387.1755; ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, *J*=1.2 Hz, 1H), 7.96-7.78 (m, 6H), 7.56 (d, *J*=7.6 Hz, 1H), 7.54-7.48 (m, 2H), 7.29-7.13 (m, 6H), 6.85 (dt, *J*=1.2, 7.6 Hz, 1H), 6.80 (dd, *J*=0.8, 2.8 Hz, 1H), 6.78-6.75 (m, 1H), 3.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.10, 142.81, 141.15, 140.93, 140.22, 139.66, 137.83, 133.69, 132.72, 131.15, 129.78 (2×), 129.45, 128.96, 128.51, 128.21, 127.96 (2×), 127.65, 126.58, 126.42, 126.35, 126.01, 125.81, 125.44, 122.39, 115.28, 112.76, 55.09.

4.1.3. Compound (**3c**). Yield=78% (137 mg); colorless gum; IR (CHCl₃): 2930, 2360, 1524, 1488, 1142, 1028, 807 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₆H₂₃O 351.1749, found 351.1758; ¹H NMR (400 MHz, CDCl₃): δ 7.69–7.63 (m, 2H), 7.59 (d, *J*=8.0 Hz, 2H), 7.50 (d, *J*=8.4 Hz, 1H), 7.28 (d, *J*=8.0 Hz, 2H), 7.25–7.14 (m, 6H), 6.82 (ddd, *J*=0.8, 1.6, 7.6 Hz, 1H), 6.77 (ddd, *J*=0.8, 2.4, 8.4 Hz, 1H), 6.72 (dd, *J*=1.6, 2.4 Hz, 1H), 3.62 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.06, 142.56, 141.23, 140.77, 140.30, 139.28, 137.66,

137.26, 131.02, 129.77 (2×), 129.55 (2×), 129.01, 128.90, 127.91 (2×), 126.96 (2×), 126.48, 125.99, 122.37, 115.22, 112.76, 55.06, 21.12.

4.1.4. Compound (**3d**). Yield=76% (140 mg); colorless gum; IR (CHCl₃): 2896, 1604, 1473, 1158, 836 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₅H₁₈FO₂S 369.1291, found 369.1298; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (dd, *J*=2.0, 6.8 Hz, 1H), 7.60 (s, 1H), 7.50–7.35 (m, 4H), 7.29–7.15 (m, 5H), 7.09–7.04 (m, 1H), 6.70 (d, *J*=8.4 Hz, 1H), 6.67–6.65 (m, 2H), 5.91 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 163.23 (d, *J*=244.1 Hz), 147.26, 146.44, 142.81 (d, *J*=7.6 Hz), 140.93, 140.74, 140.09, 139.01 (d, *J*=2.3 Hz), 135.26, 131.24, 130.28 (d, *J*=8.3 Hz), 129.70 (2×), 129.27, 128.03 (2×), 126.70, 125.89, 123.44, 122.71 (d, *J*=3.0 Hz), 114.22 (d, *J*=21.2 Hz), 113.96 (d, *J*=21.3 Hz), 110.36, 107.99, 100.93.

4.1.5. Compound (**3e**). Yield=80% (146 mg); colorless gum; IR (CHCl₃): 2882, 1477, 1225, 1040, 806, 734 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₆H₂₁O₂ 365.1542, found 365.1550; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (dd, *J*=2.0, 6.8 Hz, 1H), 7.60 (s, 1H), 7.57 (d, *J*=8.4 Hz, 2H), 7.47 (d, *J*=8.4 Hz, 1H), 7.28–7.18 (m, 7H), 6.70 (dd, *J*=0.8, 7.2 Hz, 1H), 6.67 (s, 1H), 6.66 (dd, *J*=2.0, 7.2 Hz, 1H), 5.93 (s, 2H), 2.41 (s, 3H).

4.1.6. *Compound* (**3f**). Yield=72% (137 mg); mp=130–131 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 2921, 1487, 1460, 1022, 912, 870, 841, 736 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₆H₂₁O₃ 381.1491, found 381.1502; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J*=8.8 Hz, 2H), 7.58 (d, *J*=8.0 Hz, 2H), 7.46 (dd, *J*=1.6, 6.8 Hz, 1H), 7.28–7.18 (m, 5H), 7.00 (d, *J*=8.0 Hz, 2H), 6.70 (dd, *J*=0.8, 7.2 Hz, 1H), 6.67 (s, 1H), 6.66 (dd, *J*=2.0, 7.2 Hz, 1H), 5.93 (s, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.30, 147.19, 146.31, 141.20, 140.52, 139.93, 138.89, 135.59, 133.06, 131.09, 129.74 (2×), 128.88, 128.12 (2×), 127.96 (2×), 126.49, 125.54, 123.45, 114.27 (2×), 110.41, 107.93, 100.89, 55.36.

4.1.7. Compound (**3g**). Yield=75% (150 mg); mp=110-111 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 2902, 1475, 1222, 1041, 812, 739 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₉H₂₁O₂ 401.1542, found 401.1552; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (br s, 1H), 7.96–7.76 (m, 6H), 7.55–7.48 (m, 3H), 7.34–7.19 (m, 6H), 6.72 (br s, 2H), 5.94 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 147.25, 146.40, 141.11, 140.70, 140.18, 139.60, 137.83, 135.51, 133.70, 132.72, 131.23, 129.75 (2×), 129.55, 128.50, 128.21, 128.02 (2×), 127.65, 126.61, 126.35, 126.21, 126.01, 125.79, 125.43, 123.49, 110.43, 107.98, 100.92. Single-crystal X-ray diagram: crystal of compound 3g was grown by slow diffusion of EtOAc into a solution of compound 3g in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 1 21 1, a=11.2874(12) Å, b=5.9914(6) Å, c=15.6427(16) Å, V=1001.67(18) Å³, Z=2, $d_{\text{calcd}}=1.328 \text{ g/cm}^3$, F(000)=420, 2θ range $1.37-26.37^\circ$, R indices (all data) R1=0.0470, wR2=0.1343.

4.1.8. Compound (**3h**). Yield=78% (154 mg); colorless gum; IR (CHCl₃): 2939, 1587, 1474, 1245, 1130, 993, 825, 731 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₇H₂₅O₃ 397.1804, found 397.1810; ¹H NMR (400 MHz, CDCl₃): δ 7.71–7.64 (m, 4H), 7.54–7.47 (m, 3H), 7.29–7.19 (m, 6H), 6.40 (s, 2H), 3.84 (s, 3H), 3.63 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 152.65 (2×), 141.31, 140.80, 140.60, 140.52, 139.63, 136.82, 136.62, 131.06, 129.67 (2×), 128.86 (2×), 128.82, 127.99 (2×), 127.49, 127.17 (2×), 126.55, 126.18, 107.34 (2×), 60.93, 55.90 (2×).

4.1.9. *Compound* (**3i**). Yield=66% (156 mg); mp=169–170 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 2943, 1586, 1480, 1242, 1136, 1003, 830, 734 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{33}H_{29}O_3$ 473.2117, found 473.2120; ¹H NMR (400 MHz, CDCl₃): δ 7.67–7.59 (m, 4H), 7.54–7.49 (m, 3H), 7.45–7.41 (m, 2H),

7.36–7.20 (m, 8H), 6.87 (s, 2H), 3.95 (s, 6H), 3.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.55 (2×), 141.03, 140.61, 140.57, 140.52, 140.40, 139.65, 139.36, 137.79, 136.60, 131.15, 130.31 (2×), 129.86 (2×), 129.24, 128.75 (2×), 128.02 (2×), 127.29, 126.95 (2×), 126.64 (3×), 126.18, 104.45 (2×), 60.98, 56.26 (2×).

4.1.10. Compound (**3***j*). Yield=65% (125 mg); mp=137–138 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 2970, 2929, 1625, 1488, 1178, 1016, 753 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₉H₂₃O 387.1749, found 387.1752; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J*=1.6 Hz, 1H), 7.80–7.77 (m, 2H), 7.74 (d, *J*=2.0 Hz, 1H), 7.67–7.62 (m, 4H), 5.54 (d, *J*=7.6 Hz, 1H), 7.48–7.43 (m, 2H), 7.23–7.17 (m, 6H), 7.02 (d, *J*=8.8 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.32, 141.09, 140.76, 140.08, 139.36, 139.07, 133.39, 133.09, 132.09, 131.17, 129.89 (2×), 129.32, 128.41 (2×), 128.18 (2×), 127.98 (3×), 127.59, 127.09, 126.52, 125.95, 125.84, 125.79, 114.30 (2×), 55.37.

4.1.11. Compound (**3**k). Yield=72% (119 mg); colorless gum IR (CHCl₃): 2948, 1650, 1533, 1480, 1225, 1162, 847, 764 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₂H₁₆FS 331.0957, found 331.0963; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J*=2.0 Hz, 1H), 7.60 (dd, *J*=2.0, 8.0 Hz, 1H), 7.46 (d, *J*=8.0 Hz, 1H), 7.45–7.26 (m, 8H), 7.22 (dd, *J*=1.2, 5.2 Hz, 1H), 7.10–7.05 (m, 1H), 6.90 (dd, *J*=3.6, 5.2 Hz, 1H), 6.77 (dd, *J*=1.2, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.23 (d, *J*=244.1 Hz), 142.84, 142.59, 140.90, 140.46, 139.18 (d, *J*=2.3 Hz), 133.75, 131.37, 130.32 (d, *J*=8.4 Hz), 129.59 (2×), 129.27, 128.07 (2×), 127.15, 127.09, 126.95, 126.33, 125.73, 122.73 (d, *J*=3.0 Hz), 114.27 (d, *J*=33.4 Hz), 114.08 (d, *J*=39.4 Hz).

4.1.12. Compound (**3l**). Yield=74% (121 mg); mp=115–116 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3004, 2915, 2011, 1513, 1478, 1253, 1115, 820, 741 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₃H₁₉S 327.1208, found 327.1215; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J*=2.0 Hz, 1H), 7.60 (dd, *J*=2.0, 8.0 Hz, 1H), 7.57 (d, *J*=8.4 Hz, 2H), 7.44 (d, *J*=7.6 Hz, 1H), 7.32–7.27 (m, 7H), 7.21 (dd, *J*=0.8, 5.2 Hz, 1H), 6.89 (dd, *J*=4.0, 5.2 Hz, 1H), 6.76 (dd, *J*=0.8, 4.0 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.21, 141.16, 140.42, 139.59, 137.47, 137.37, 133.52, 131.21, 129.65 (2×), 129.57 (2×), 129.15, 128.02 (2×), 127.03, 126.96 (2×), 126.92, 126.89, 126.25, 125.54, 21.13.

4.1.13. Compound (**3m**). Yield=80% (137 mg); colorless gum; IR (CHCl₃): 2965, 2903, 1606, 1461, 1145, 996, 755 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₃H₁₉OS 343.1157, found 343.1166; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J*=2.0 Hz, 1H), 7.61 (d, *J*=8.8 Hz, 2H), 7.73 (dd, *J*=2.0, 8.0 Hz, 1H), 7.43 (d, *J*=8.0 Hz, 1H), 7.34–7.26 (m, 5H), 7.21 (dd, *J*=1.2, 5.2 Hz, 1H), 7.01 (d, *J*=8.8 Hz, 2H), 6.89 (dd, *J*=3.6, 5.2 Hz, 1H), 6.75 (dd, *J*=1.2, 3.6 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.37, 143.23, 141.18, 140.09, 139.27, 133.51, 132.86, 131.22, 129.65 (2×), 128.91, 128.15 (2×), 128.02, 127.02, 126.89 (2×), 126.01, 125.53, 114.30 (2×), 114.27, 55.37.

4.1.14. Compound (**3n**). Yield=74% (134 mg); mp=155–156 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 2920, 1481, 1446, 1026, 908, 868, 731 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₆H₁₉S 363.1208, found 363.1215; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (br s, 1H), 7.97–7.88 (m, 4H), 7.83 (dd, *J*=2.0, 8.4 Hz, 1H), 7.76 (dd, *J*=2.0, 8.4 Hz, 1H), 7.55–7.49 (m, 3H), 7.34–7.30 (m, 5H), 7.23 (dd, *J*=1.2, 5.2 Hz, 1H), 6.92 (dd, *J*=3.6, 5.2 Hz, 1H), 6.81 (dd, *J*=1.2, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143.12, 141.09, 140.37, 139.99, 137.65, 133.72, 133.69, 132.75, 131.36, 129.66 (2×), 129.59, 128.55, 128.24, 128.07 (2×), 127.67, 127.13, 127.02, 126.95, 126.68, 126.39, 126.08, 125.86, 125.67, 125.41. Single-crystal X-ray diagram: crystal of compound **3n** in CH₂Cl₂ to yield colorless prisms. The

compound crystallizes in the orthorhombic crystal system, space group P c a 21, a=25.3470(16) Å, b=6.0008(3) Å, c=12.0246(8) Å, V=1828.97(19) Å³, Z=4, $d_{calcd}=1.316$ g/cm³, F(000)=760, 2θ range 1.61–26.41°, R indices (all data) R1=0.0593, wR2=0.1488.

4.1.15. Compound (**30**). Yield=68% (137 mg); colorless oil; IR (CHCl₃): 2937, 1572, 1483, 1145, 1024, 841, 740 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₅H₂₃O₃S 403.1368, found 403.1378; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J*=2.0 Hz, 1H), 7.58 (dd, *J*=2.0, 8.0 Hz, 1H), 7.45 (d, *J*=8.0 Hz, 1H), 7.34–7.26 (m, 5H), 7.22 (dd, *J*=1.2, 5.2 Hz, 1H), 6.91 (dd, *J*=3.6, 5.2 Hz, 1H), 6.85 (s, 2H), 6.77 (dd, *J*=1.2, 3.6 Hz, 1H), 3.95 (s, 6H), 3.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.55 (2×), 143.04, 141.02, 140.68, 139.66, 136.38, 133.59, 131.20, 129.61 (2×), 129.27, 128.78, 128.05 (2×), 127.12, 127.02, 126.95, 126.44, 125.70, 104.49 (2×), 60.98, 56.27 (2×).

4.1.16. *Compound* (**3***p*). Yield=60% (127 mg); mp=104–105 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3042, 2928, 1621, 1483, 1256, 1168, 937, 873, 755 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₉H₂₆FO₂ 425.1917, found 425.1923; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (dt, *J*=2.0, 8.4 Hz, 1H), 7.55–7.49 (m, 3H), 7.35–7.30 (m, 1H), 7.25–7.16 (m, 7H), 6.85 (d, *J*=8.4 Hz, 1H), 7.74 (d, *J*=8.4 Hz, 1H), 5.75–5.65 (m, 1H), 4.82 (dq, *J*=1.6, 10.0 Hz, 1H), 4.70 (dq, *J*=1.6, 17.2 Hz, 1H), 3.85 (s, 3H), 3.74 (s, 3H), 3.31 (ddt, *J*=1.6, 6.0, 14.4 Hz, 1H), 2.97 (ddt, *J*=1.2, 6.0, 14.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.89 (d, *J*=246.4 Hz), 151.77, 147.29, 140.93, 140.33, 139.61, 136.97, 134.35, 134.20, 132.15, 131.87 (d, *J*=3.0 Hz), 130.68 (d, *J*=3.0 Hz), 129.99, 129.48 (2×), 129.28, 129.01, 128.04 (d, *J*=3.8 Hz), 127.70 (2×), 126.43 (d, *J*=3.8 Hz), 124.36, 124.32, 116.13 (d, *J*=22.7 Hz), 114.76, 109.89, 60.60, 55.58, 32.05.

4.1.17. *Compound* (**3***q*). Yield=68% (148 mg); colorless gum; IR (CHCl₃): 3054, 2937, 1643, 1464, 1262, 1173, 869, 751 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{30}H_{29}O_3$ 437.2117, found 437.2122; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (dt, *J*=2.0, 8.0 Hz, 1H), 7.49 (d, *J*=2.0 Hz, 1H), 7.47 (d, *J*=8.0 Hz, 1H), 7.39 (dd, *J*=1.6, 7.6 Hz, 1H), 7.34 (dd, *J*=1.6, 7.6 Hz, 1H), 7.32 (dd, *J*=1.6, 7.6 Hz, 1H), 7.22–7.12 (m, 4H), 7.04 (dt, *J*=1.2, 7.6 Hz, 1H), 7.00 (d, *J*=8.4 Hz, 1H), 6.84 (d, *J*=8.4 Hz, 1H), 6.71 (d, *J*=8.4 Hz, 1H), 5.76–5.67 (m, 1H), 4.82 (dq, *J*=1.6, 10.0 Hz, 1H), 4.72 (dq, *J*=1.6, 6.0, 14.4 Hz, 1H), 3.01 (ddt, *J*=1.2, 6.0, 14.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 156.57, 151.65, 147.25, 141.27, 139.50, 139.02, 137.14, 136.97, 134.70, 132.45, 132.25, 130.85, 130.12, 129.56, 129.53 (2×), 128.64, 128.52, 127.63 (2×), 126.48, 126.23, 120.85, 114.69, 111.22, 109.82, 60.59, 55.57, 55.56, 32.01.

4.1.18. Compound (**3r**). Yield=73% (147 mg); colorless gum; IR (CHCl₃): 2920, 1617, 1325, 1168, 1126, 1095, 850, 835 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₆H₂₀F₃O 405.1466, found 405.1475; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J*=8.4 Hz, 2H), 7.72 (d, *J*=8.0 Hz, 2H), 7.62–7.62 (m, 2H), 7.52 (d, *J*=8.0 Hz, 1H), 7.29–7.23 (m, 3H), 7.21–7.18 (m, 2H), 7.11 (d, *J*=8.8 Hz, 2H), 6.79 (d, *J*=8.8 Hz, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.54, 144.19, 144.18, 141.01, 140.86, 140.42, 138.84, 133.49, 131.33, 130.90 (2×), 129.78 (2×), 129.45, 128.01 (2×), 127.36 (2×), 126.78 (2×), 126.65, 125.87, 125.76 (q, *J*=3.8 Hz), 113.50 (2×), 55.19.

4.1.19. Compound (**3s**). Yield=70% (148 mg); mp=115–116 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 1632, 1475, 1258, 1162, 945, 875, 750 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₉H₂₀F₃ 425.1517, found 425.1524; ¹H NMR (400 MHz, CDCl₃): δ 7.84–7.79 (m, 8H), 7.74 (d, *J*=8.0 Hz, 2H), 7.71 (dd, *J*=2.4, 8.0 Hz, 1H), 7.65 (d, *J*=8.4 Hz, 1H), 7.60 (d, *J*=8.0 Hz, 1H), 7.49–7.47 (m, 2H), 7.24–7.21 (m, 3H), 7.19 (dd, *J*=2.0, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 144.10, 141.10, 140.71, 140.64, 138.95, 138.90, 133.37, 132.16, 131.40, 130.19, 129.87, 129.83 (4×), 128.43, 128.21, 128.08

 $(2\times),\ 127.98,\ 127.62,\ 127.40$ $(2\times),\ 126.80,\ 126.36,\ 126.07,\ 125.95,\ 125.85,\ 125.80$ (q, $J{=}3.7$ Hz).

4.1.20. Compound (**3t**). Yield=82% (138 mg); mp=131–133 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 2927, 2354, 1531, 1138, 1022, 794 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{25}H_{21}O$ 337.1592, found 337.1597; ¹H NMR (400 MHz, CDCl₃): δ 7.69–7.63 (m, 4H), 7.51–7.43 (m, 3H), 7.39–7.34 (m, 1H), 7.29–7.20 (m, 5H), 7.10 (d, *J*=8.8 Hz, 2H), 6.78 (d, *J*=8.8 Hz, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.37, 141.70, 140.86, 140.64, 139.99, 139.14, 133.47, 131.00, 130.90 (2×), 129.88 (2×), 129.44, 128.80 (2×), 127.97 (2×), 127.36, 127.10 (2×), 126.52, 126.11, 113.39 (2×), 55.17.

4.1.21. Compound (**3u**). Yield=70% (146 mg); mp=108–110 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 2942, 1532, 1452, 1133, 1019, 812 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{30}H_{25}O_2$ 417.1855, found 417.1863; ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J*=1.6 Hz, 1H), 7.95–7.76 (m, 6H), 7.56–7.47 (m, 3H), 7.21–7.12 (m, 3H), 6.86–6.79 (m, 5H), 3.80 (s, 3H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.18, 158.44, 143.06, 140.83, 139.83, 139.27, 137.89, 133.71, 133.48, 132.69, 131.09, 130.83 (2×), 129.49, 128.99, 128.49, 128.43, 127.65, 126.77, 126.42, 125.98, 125.73, 125.45, 122.42, 115.30, 113.45 (2×), 112.58, 55.21, 55.12.

4.1.22. Compound (**3v**). Yield=78% (126 mg); colorless gum; IR (CHCl₃): 2926, 1612, 1512, 1486, 1235, 1145, 837 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₄H₁₈F 325.1393, found 325.1399; ¹H NMR (400 MHz, CDCl₃): δ 7.69–7.64 (m, 4H), 7.49–7.45 (m, 3H), 7.39–7.35 (m, 1H), 7.27–7.23 (m, 3H), 7.20–7.17 (m, 2H), 7.15–7.11 (m, 2H), 6.94–6.90 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.77 (d, *J*=244.1 Hz), 141.29, 141.00, 140.52, 140.45, 138.47, 137.06 (d, *J*=3.0 Hz), 131.35 (d, *J*=8.4 Hz, 2×), 130.96, 129.87 (2×), 129.45, 128.84 (2×), 128.04 (2×), 127.49, 127.12 (2×), 126.70, 126.17, 114.85 (d, *J*=21.3 Hz, 2×).

A representative synthetic procedure of compounds **4a**–**h** is as follows: Potassium *t*-butoxide (*t*-BuOK, 140 mg, 1.25 mmol) was added to a solution of cinnamy sulfone **2a**, **b**, **d** or crotyl sulfone **2e** (0.5 mmol) in THF (8 mL). A solution of chalcone **1a**, **b**, **f**, **j**, **l**, **t** or **u** (0.5 mmol) in the THF (2 mL) was added to the reaction mixture at rt. The reaction mixture was stirred at reflux for 3 h. The reaction mixture was cooled to rt. Water (1 mL) was added to the reaction mixture at 0 °C. The solvent was concentrated under reduced pressure. The residue was diluted with water (10 mL) and the mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated to afford crude product. Purification on silica gel (hexanes/ EtOAc=10/1–6/1) afforded compounds **4a–h**.

4.1.23. *Compound* (**4a**). Yield=70% (139 mg); colorless gum; IR (CHCl₃): 3152, 2989, 1731, 1592, 1485, 1223, 1183, 1148, 1091, 1016, 957, 822; HRMS (ESI, M⁺+1) calcd for C₂₆H₂₃O₄ 399.1596, found 399.1592; ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, *J*=8.8 Hz, 2H), 7.28–7.16 (m, 5H), 6.99 (d, *J*=8.8 Hz, 2H), 6.81–6.76 (m, 3H), 6.63 (d, *J*=15.6 Hz, 1H), 5.96 (d, *J*=1.6 Hz, 1H), 5.95 (d, *J*=1.6 Hz, 1H), 5.72 (dd, *J*=10.0, 15.6 Hz, 1H), 3.89 (s, 3H), 3.24 (dd, *J*=5.2, 9.2 Hz, 1H), 3.16 (dd, *J*=4.4, 5.2 Hz, 1H), 2.73 (dt, *J*=4.4, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 196.10, 163.54, 147.66, 146.46 (2×), 137.04, 132.02, 130.72, 130.37 (2×), 128.49 (2×), 127.20, 126.89, 125.91 (2×), 122.25, 113.83 (2×), 109.69, 108.16, 101.01, 55.48, 35.51, 34.32, 32.44.

4.1.24. Compound (**4b**). Yield=65% (131 mg); colorless gum; IR (CHCl₃): 3158, 3004, 1738, 1604, 1457, 1232, 1189, 1123, 1112, 960, 856; HRMS (ESI, M^++1) calcd for C₂₉H₂₅O₂ 405.1855, found 405.1862; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, *J*=8.8 Hz, 2H), 7.86–7.81 (m, 3H), 7.79 (s, 1H), 7.52–7.45 (m, 3H), 7.23–7.12 (m, 5H), 7.02 (d, *J*=8.8 Hz, 2H), 6.68 (d, *J*=16.0 Hz, 1H), 5.74 (dd, *J*=9.6, 16.0 Hz, 1H), 3.90 (s, 3H),

3.50 (dd, *J*=5.6, 9.2 Hz, 1H), 3.39 (t, *J*=4.4 Hz, 1H), 2.86 (dt, *J*=4.4, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 196.16, 163.58, 136.95, 134.32, 133.32, 132.43, 132.22, 130.78, 130.44 (2×), 128.45 (2×), 128.09, 127.68 (2×), 127.60, 127.49, 127.19, 126.77, 126.19, 125.88 (2×), 125.73, 113.86 (2×), 55.50, 35.69, 34.64, 32.31.

4.1.25. *Compound* (**4***c*). Yield=73% (126 mg); colorless gum; IR (CHCl₃): 3147, 2984, 1757, 1450, 1221, 1176, 1115, 943, 823; HRMS (ESI, M⁺+1) calcd for C₂₃H₂₁SO 345.1313, found 345.1320; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J*=8.4 Hz, 2H), 7.32 (d, *J*=8.0 Hz, 2H), 7.28–7.18 (m, 6H), 7.00–6.98 (m, 2H), 6.68 (d, *J*=16.0 Hz, 1H), 5.94 (dd, *J*=8.8, 16.0 Hz, 1H), 3.36 (dd, *J*=5.2, 8.8 Hz, 1H), 3.26 (dd, *J*=4.8, 5.2 Hz, 1H), 2.82 (dt, *J*=4.8, 8.8 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.63, 144.00, 140.23, 136.97, 135.03, 132.66, 129.36 (2×), 128.51 (2×), 128.28 (2×), 127.33, 126.89, 126.32, 126.14, 125.99 (2×), 124.31, 35.75, 34.64, 29.47, 21.64.

4.1.26. Compound (4d). Yield=80% (134 mg); mp=135-136 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3134, 2965, 1742, 1468, 1245, 943; HRMS (ESI, M⁺+1) calcd for C₂₃H₂₇O₂ 335.2011, found 335.2016; ¹H NMR (400 MHz, CDCl₃): δ 7.27–7.15 (m, 7H), 6.87 (d, J=8.8 Hz, 2H), 6.59 (d, J=15.6 Hz, 1H), 5.62 (dd, J=10.0, 15.6 Hz, 1H), 3.82 (s, 3H), 3.00 (dd, J=4.8, 9.2 Hz, 1H), 2.71 (dd, *J*=4.4, 4.8 Hz, 1H), 2.52 (dt, *J*=4.4, 9.2 Hz, 1H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 212.70, 158.41, 137.09, 131.55, 130.15 (2×), 128.61, 128.45 (2×), 127.11, 127.12, 125.83 (2×), 113.81 (2×), 55.22, 44.09, 35.03, 33.76, 31.50, 26.22 (3×). Single-crystal X-ray diagram: crystal of compound 4d was grown by slow diffusion of EtOAc into a solution of compound **4d** in CH₂Cl₂ to vield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 1 21/c 1, *a*=10.1827(10) Å, *b*=55.170(4) Å, *c*=33.557(3) Å, V=1882.8(3) Å³, Z=4, $d_{calcd}=1.180$ g/cm³, F(000)=720, 2 θ range 1.22–26.40°, *R* indices (all data) *R*1=0.0754, *wR*2=0.1749.

4.1.27. Compound (**4e**). Yield=62% (110 mg); colorless gum; IR (CHCl₃): 2945, 1753, 1632, 1527, 1469, 1212, 1133, 865 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₅H₂₃O₂ 355.1698, found 355.1708; ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, *J*=8.8 Hz, 2H), 7.63–7.58 (m, 1H), 7.54–7.50 (m, 2H), 7.38–7.34 (m, 4H), 7.31–7.26 (m, 1H), 7.15 (d, *J*=8.8 Hz, 2H), 6.79 (d, *J*=8.4 Hz, 2H), 6.60 (d, *J*=16.0 Hz, 1H), 5.60 (dd, *J*=9.6, 16.0 Hz, 1H), 3.78 (s, 3H), 3.36 (dd, *J*=5.2, 9.2 Hz, 1H), 3.30 (dd, *J*=4.4, 5.2 Hz, 1H), 2.82 (dt, *J*=4.4, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.95, 158.96, 137.79, 136.57, 132.97, 131.72, 129.85, 129.14 (2×), 128.63 (2×), 128.40 (2×), 128.09 (2×), 127.06 (2×), 126.83, 124.23, 113.90 (2×), 55.21, 36.14, 34.93, 32.67.

4.1.28. Compound (**4f**). Yield=76% (165 mg); colorless gum; IR (CHCl₃): 3034, 2923, 1749, 1638, 1434, 1221, 1132, 848 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₃₀H₂₇O₃ 435.1960, found 435.1972; ¹H NMR (400 MHz, CDCl₃): δ 8.62 (s, 1H), 8.13 (d, *J*=8.8 Hz, 1H), 8.01 (d, *J*=7.6 Hz, 1H), 7.94 (d, *J*=8.8 Hz, 1H), 7.90 (d, *J*=8.0 Hz, 1H), 7.64–7.55 (m, 2H), 7.30 (t, *J*=8.0 Hz, 1H), 7.18 (d, *J*=8.8 Hz, 2H), 6.99 (d, *J*=7.6 Hz, 1H), 6.63 (d, *J*=15.6 Hz, 1H), 5.70 (ddd, *J*=0.8, 9.6, 15.6 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.45 (dd, *J*=5.2, 9.2 Hz, 1H), 3.41 (dd, *J*=4.4, 5.2 Hz, 1H), 2.87 (dt, *J*=4.4, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.72, 159.60, 158.95, 138.23, 135.52, 135.07, 132.53, 131.78, 129.87, 129.68, 129.58, 129.39, 128.50, 128.40, 127.75, 127.08 (2×), 126.77, 124.27, 123.93, 121.42, 115.08, 113.90 (2×), 112.15, 55.20 (2×), 36.33, 34.98, 32.76.

4.1.29. Compound (**4g**). Yield=71% (131 mg); colorless gum; IR (CHCl₃): 3253, 2945, 1755, 1439, 1236, 1154, 850 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₅H₂₁O₃ 369.1491, found 369.1498; ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J*=8.4 Hz, 2H), 7.62–7.58 (m, 1H), 7.52 (d, *J*=7.6 Hz, 2H), 7.37–7.25 (m, 5H), 6.70–6.64 (m, 3H), 6.55 (d,

J=15.6 Hz, 1H), 5.91 (d, *J*=1.2 Hz, 1H), 5.89 (d, *J*=1.2 Hz, 1H), 5.54 (dd, *J*=9.6, 15.6 Hz, 1H), 3.33 (dd, *J*=5.2, 9.2 Hz, 1H), 3.27 (dd, *J*=4.4, 5.2 Hz, 1H), 2.78 (dt, *J*=4.4, 9.2 Hz, 1H); 13 C NMR (100 MHz, CDCl₃): δ 197.91, 147.91, 146.95, 137.79, 136.49, 133.02, 131.88, 131.56, 129.13 (2×), 128.67 (2×), 128.46 (2×), 128.12 (2×), 126.92, 124.76, 120.57, 108.24, 105.23, 100.98, 35.95, 34.98, 32.64.

4.1.30. Compound (**4h**). Yield=56% (73 mg); colorless oil; IR (CHCl₃): 2943, 1754, 1655, 1428, 1236, 1135, 873 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₉H₁₉O 263.1436, found 263.1442; ¹H NMR (400 MHz, CDCl₃): δ 8.09–8.07 (m, 2H), 7.54–7.52 (m, 3H), 7.35–7.31 (m, 5H), 5.79–5.70 (m, 2/3H), 5.62–5.54 (m, 1/3H), 5.06–4.96 (m, 1H), 3.29–2.17 (m, 2H), 2.86 (dt, *J*=4.4, 9.6 Hz, 1/3H), 2.66 (dt, *J*=4.8, 9.6 Hz, 2/3H), 1.76 (dd, *J*=2.0, 6.8 Hz, 1H), 1.63 (dd, *J*=2.0, 6.8 Hz, 2H).

Acknowledgements

The authors would like to thank the National Science Council of the Republic of China for its financial support (NSC 102-2113-M-037-005-MY2).

Supplementary data

Scanned photocopies of ¹H and ¹³C NMR spectral data were supported. Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.tet.2013.09.060.

References and notes

- 1. (a) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901; (b) Maitlis, P. M. Acc. Chem. Res. 1976, 9, 93.
- (a) Liu, J.-K. Chem. Rev. 2006, 106, 2209, (b) Mullen, K.; Wegner, G. Electronic Materials: the Oligomer Approach; Wiley-VCH: Weinhein, Germany, 1988; (c) Chen, B.; Baumeister, U.; Pelzl, G.; Das, M. K.; Zeng, X.; Ungar, G.; Tschierske, C. J. Am. Chem. Soc. 2005, 127, 16578; (d) Wright, R. S. Tetrahedron Lett. 2003, 44, 7129; (e) Udayakumar, B. S.; Schuster, G. B. J. Org. Chem. 1992, 57, 348.
- (a) Ohkanda, J.; Lockman, J. W.; Kothare, M. A.; Qian, Y.; Blaskovich, M. A.; Sebti, S. M.; Hamilton, A. D. J. Med. Chem. 2002, 45, 177; (b) Roberti, M.; Pizzirani, D.; Recanatini, M.; Simoni, D.; Grimaudo, S.; Di Cristina, A.; Abbadessa, V.; Gebbia, N.; Tolomeo, M. J. Med. Chem. 2006, 49, 3012; (c) Lin, J. M.; Gowda, A. S. P.; Sharma, A. K.; Amin, S. Bioorg. Med. Chem. 2012, 20, 3202; (d) Guo, H.; Hu, H.; Liu, S.; Liu, X.; Zhou, Y.; Che, Y. J. Nat. Prod. 2007, 70, 1519; (e) Zhang, C.; Ondeyka, J. G.; Herath, K. B.; Guan, Z.; Collado, J.; Pelaez, F.; Leavitt, P. S.; Gurnett, A.; Nare, B.; Liberator, P.; Singh, S. B. J. Nat. Prod. 2006, 69, 710.
- (a) Perato, S.; Voisin-Chiret, A. S.; Santos, J. S. O.; Legay, R.; Oulyadi, H.; Rault, S. *Tetrahedron* 2012, *68*, 1910; (b) Guillen, E.; Hierrezuelo, J.; Martínez-Mallorquin, R.; Lopez-Romero, J. M.; Rico, R. *Tetrahedron* 2011, *67*, 2555; (c) De Giorgi, M.; Voisin-Chiret, A. S.; Santos, J. S. O.; Corbo, F.; Franchini, C.; Rault, S. *Tetrahedron* 2011, *67*, 6145; (d) Zhang, X.; Xie, W.; Chen, W. *Tetrahedron* 2010, *66*, 1188; (e) Voisin-Chiret, A. S.; Muraglia, M.; Burzicki, G.; Perato, S.; Corbo, F.; Santos, J. S. O.; Franchini, C.; Rault, S. *Tetrahedron* 2010, *66*, 8000; (f) King, B. T.; Kroulik, J.; Robertson, C. R.; Rempala, P.; Hilton, C. L.; Korinek, J. D.; Gortari, L. M. *J. Org. Chem.* 2007, *72*, 2279; (g) Goto, H.; Furusho, Y.; Miwa, K.; Yashima, E. *J. Am. Chem. Soc.* 2009, *131*, 4710; (h) Ormsby, J. L.; Black, T. D.; Hilton, C. L.; Barat; King, B. T. *Tetrahedron* 2008, *64*, 11370; (i) Mitchell, P. S. R.; Sengul, I. F.; Kandemir, H.; Nugent, S. J.; Chen, R.; Bowyer, P. K.; Kumar, N.; Black, D. S. *Tetrahedron* 2012, *68*, 8884; (k) Dohi, T.; Kamitanaka, T.; Watanabe, S.; Hu, Y.; Washimi, N.; Kita, Y. Chem.–Eur, J. 2012, *18*, 13614.
- (a) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. *Chem. Rev.* 2002, 102, 1359; (b) Schroter, S.; Stock, C.; Bach, T. *Tetrahedron* 2005, 61, 2245; (c) Schnurch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P. *Eur. J. Org. Chem.* 2006, 3283; (d) Wang, R.; Manabe, K. *Synthesis* 2009, 1405.
 (a) Varela, J. A.; Saa, C. *Chem. Rev.* 2003, *103*, 3787; (b) Grotjahn, D. B. Transition
- 6. (a) Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787; (b) Grotjahn, D. B. Transition Metal Alkyne Complexes: Transition Metal-catalyzed Cyclotrimerization. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Hegedus, L. S., Vol. Ed.; Pergamon: Oxford, UK, 1995; Vol. 12, p 741. (c) Hilt, G.; Vogler, T.; Hess, W.; Galbiati, F. Chem. Commun. 2005, 1474; (d) Xu, L; Yu, R.; Wang, Y.; Chen, J.; Yang, Z. J. Org. Chem. 2013, 78, 5744; (e) Ozelov, O. V.; Patrick, B. O.; Ladipo, F. T. J. Am. Chem. Soc. 2000, 122, 6423; (f) Ciecro, D.; Lembo, A.; Leoni, A.; Tagliatesta, P. New J. Chem. 2009, 33, 2162; (g) Cadierno, V.; Garcia-Garrido, S. E.; Gimeno, J. J. Am. Chem. Soc. 2006, 128, 15094; (h) Sugihara, T.; Wakabayashi, A.; Nagai, Y.; Takao, H.; Imagawa, H.; Nishizawa, M. Chem. Commun. 2002, 576; (i) Bu, X.; Zhang, Z.; Zhou, X. Organometallics 2010, 29, 3530; (j) Liu, Y; Yun, X.; Yun, D.-G.; Wei, J.-B.; Xi, Z.; Shi, Z.-J. Org. Lett. 2013, 15,

3230; (I) Yu, D.-G.; Yu, M.; Guan, B.-T.; Li, B.-J.; Zheng, Y.; Wu, Z.-H.; Shi, Z.-J. Org. Lett. **2009**, *11*, 3374.

- (a) Sharif, M.; Zeeshan, M.; Reimann, S.; Villinger, A.; Langer, P. *Tetrahedron Lett.* 2010, *51*, 2810; (b) Hassan, Z.; Hussain, M.; Villinger, A.; Langer, P. *Tetrahedron* 2012, 68, 6305.
- (a) Berris, B. C.; Hovakeemian, G. H.; Lai, Y.; Mestdagh, H.; Vollhardt, K. P. C. J. Am. Chem. Soc. **1985**, 107, 5670; (b) Lecker, S. H.; Nguen, N. H.; Vollhardt, K. P. C. J. Am. Chem. Soc. **1986**, 108, 856; (c) Nicolaou, K. C.; Tang, Y.; Wang, J. Angew. Chem., Int. Ed. **2009**, 48, 3449; (d) Kalogerakis, A.; Groth, U. Org. Lett. **2003**, 5, 843; (e) Kesenheimer, C.; Groth, U. Org. Lett. **2006**, 8, 2507.
- (a) Taber, D. F. In *Comprehensive Organic Sythesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: New York, NY, 1991; Vol. 3, p 1045; (b) Donaldson, W. A. *Tetrahedron* 2001, 57, 8589; (c) Pietruszka, J. *Chem. Rev.* 2003, *103*, 1051; (d) Reissig, H. U.; Zimmer, R. *Chem. Rev.* 2003, *103*, 1151; (e) Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette, A. B. *Chem. Rev.* 2003, *103*, 977.
- (a) Chang, M.-Y.; Wu, M.-H. *Tetrahedron* **2012**, *68*, 9616; (b) Chang, M.-Y.; Tai, H.-Y.; Chen, Y.-L.; Hsu, R.-T. *Tetrahedron* **2012**, *68*, 7941; (c) Chang, M.-Y.; Wu, M.-H.; Tai, H.-Y. Org. *Lett.* **2012**, *14*, 3936; (d) Chang, M.-Y.; Tsai, C.-Y.; Wu, M.-H. *Tetrahedron* **2013**, *69*, 6364; (e) Chang, M.-Y.; Chan, C.-K.; Wu, M.-H. *Tetrahedron* **2013**, *69*, 7916; (f) Chang, M.-Y.; Wu, M.-H.; Chen, Y.-L. Org. *Lett.* **2013**, *15*, 2822.
- (a) Shu, Z.-C.; Zhu, J.-B.; Liao, S.; Sun, X.-L.; Tang, Y. *Tetrahedron* **2013**, 69, 284;
 (b) Song, Y. Y.; He, H. G.; Li, Y.; Deng, Y. *Tetrahedron Lett.* **2013**, 54, 2658.
- (a) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563; (b) Kumar, A.; Sharma, S.; Tripathi, V. D.; Srivastava, S. Tetrahedron 2010, 66, 9445; (c) Zhu, L; Ni, C.; Ahao, Y.; Hu, J. Tetrahedron 2010, 66, 5089; (d) Larnad, F.; Malassia, J.; Pfund, E.; Linclau, B.; Lequeux, T. Org. Lett. 2013, 15, 2450; (e) Zhao, Y.; Huang, W.; Zhu, L.; Hu, J. Org. Lett. 2010, 12, 1444; (f) Alonso, D. A.; Fuensanta, M.; Najera, C.; Varea, M. J. Org. Chem. 2005, 70, 6404; (g) Billard, F.; Robiette, R.; Pospisil, J. J. Org. Chem. 2012, 77, 6358.

- (a) Brandange, S.; Leijonmarck, H. Chem. Commun. 2004, 292; (b) Yu, T.-Q.; Fu, Y.; Liu, L.; Guo, Q.-X. J. Org. Chem. 2006, 71, 6157; (c) Magomedov, N. A.; Ruggiero, P. L.; Tang, Y. Org. Lett. 2004, 6, 3373; (d) Vincze, Z.; Nemes, P. Tetrahedron 2013, 69, 6269.
- (a) Beaudry, C. M.; Trauner, D. Org. Lett. 2002, 4, 2221; (b) Parker, K. A.; Wang, Z. Org. Lett. 2006, 8, 3553; (c) Webster, R.; Gaspar, B.; Mayer, P.; Trauner, D. Org. Lett. 2013, 15, 1866; (d) Garcia-Rubin, S.; Varela, J. A.; Castedo, L.; Saa, C. O. Org. Lett. 2009, 11, 983; (e) Kim, K.; Lauher, J. W.; Parker, K. A. Org. Lett. 2012, 14, 138; (f) Lim, C. H.; Kim, S. H.; Kim, K. H.; Kim, J. N. Tetrahedron Lett. 2013, 54, 2476; (g) Ng, S. M.; Beaudry, C. M.; Trauner, D. Org. Lett. 2003, 5, 1701; (h) Diallo, A.; Zhao, Y.-L.; Wang, H.; Li, S.-S.; Ren, C.-Q.; Liu, Q. Org. Lett. 2012, 14, 5776.
 For reviews, see: (a) Tietze, L. F. Chem. Rev. 1996, 96, 115; (b) Parsons, P. J.;
- For reviews, see: (a) Tietze, L. F. Chem. Rev. 1996, 96, 115; (b) Parsons, P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev. 1996, 96, 195; (c) Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001; (d) Posner, G. H. Chem. Rev. 1986, 86, 831; (e) Bunce, R. A. Tetrahedron 1995, 51, 13103; (f) Ho, T.-L. Tandem Organic Reactions; Wiely-VCH: New York, NY, 1992.
- For leading references, see: (a) Zhang, L; Liang, F; Cheng, X.; Liu, Q. J. Org. Chem. 2009, 74, 899; (b) Hartikka, A.; Arvidsson, P. I. J. Org. Chem. 2007, 72, 5874; (c) Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D. G.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 19198.
- CCDC 947878 (3g), 948282 (3n), and 947225 (4d) contains the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: 44-1223-336033; e-mail: deposit@ccdc.cam.ac. uk).
- (a) Martel, J.; Huynh, C. Bull. Soc. Chem. Fr. 1967, 2, 985; (b) Campbell, R. V. M.; Crombie, L.; Findley, D. A. R.; King, R. W.; Pattenden, G.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1 1975, 897; (c) Krief, A.; De Vosa, M. J. Tetrahedron Lett. 1985, 26, 6115.