Notes

Hospital) from the Medical Research Council (Grant No. 973/787/K).

References and Notes

- (1) S. K. Carter and M. A. Friedman, Eur. J. Cancer, 8, 85 (1972).
- (2) D. A. Clarke, R. K. Barclay, C. C. Stock, and C. S. Rondestvet, Jr., Proc. Soc. Exp. Biol. Med., 90, 484 (1955).
- (3)J. H. Burchenal, M. K. Dagg, M. Beyer, and C. C. Stock, Proc. Soc. Exp. Biol. Med., 91, 398 (1956).
- (4) R. C. S. Audette, T. A. Connors, H. G. Mandel, K. Merai, and W. C. J. Ross, Biochem. Pharmacol., 22, 1855 (1973).
- (5)T. A. Connors, P. M. Goddard, K. Merai, W. C. J. Ross, and D. E. V. Wilman, Biochem. Pharmacol., 25, 241 (1976).

- (6) Y. T. Lin, T. L. Loo, S. Vadlamudi, and A. Goldin, J. Med. Chem., 15, 201 (1972).
- Y. F. Shealy, C. A. O'Dell, J. D. Clayton, and C. A. Krauth, J. Pharm. Sci., 60, 1426 (1971).
- (8) R. L. Hinman and M. C. Flores, J. Org. Chem., 24, 660 (1959).
- (9) P. A. S. Smith, "Open Chain Nitrogen Compounds", Vol. II, W. A. Benjamin, New York, N.Y., 1966, p 255
- (10) G. W. Anderson, H. E. Faith, H. W. Marson, P. S. Winnek, and R. O. Roblin, Jr., J. Am. Chem. Soc., 64, 2902 (1942).
- (11) I. Lalezari and F. Afghahi, J. Pharm. Sci., 64, 698 (1975).
- (12) G. W. Snedecor and W. G. Cochran, "Statistical Methods", 6th ed, Iowa State University Press, Ames, Iowa, 1967, pp 258-298.

Antiinflammatory Activity of 17-Esters of 6α , 9α -Difluoro-21-deoxyprednisolone

Romano Vitali, Serafino Gladiali,^{1a} Giovanni Falconi,^{1b} Giuseppe Celasco, and Rinaldo Gardi^{*}

Vister Research Laboratories, Casatenovo (Como), Italy. Received November 30, 1976

Several 17-monoesters of $6\alpha.9\alpha$ -difluoro-21-deoxyprednisolone were prepared and tested for their antiinflammatory activity. Propionate 11 and butyrate 12 displayed a high topical activity.

The availability of corticosteroid 17-monoesters, via 17,21-orthoesters,² allowed us to develop a general route to their 21-deoxy analogues by reductive elimination of the 21-hydroxyl group.³ In spite of the lack of a function considered essential for the corticoid activity, some 21deoxycorticosteroids have been reported to display topical antiinflammatory activity.⁴ which is markedly increased by the presence of protective groups at C-16 and C-17 like acetonides⁵ and esters at C-17.⁶

In a previous paper we described the high antiinflammatory activity of 17,21-alkyl orthoesters, 17-monoesters, and 17,21-diesters of 6α , 9α -difluoroprednisolone.⁷ Here we wish to report the synthesis and some biological properties of 17-esters of 6α , 9α -difluoro-21-deoxyprednisolone.

The compounds were obtained from $6\alpha.9\alpha$ -difluoroprednisolone 17-monoesters according to the already published procedure³ involving the preparation of the 21-tosylates and the subsequent reduction in situ through the corresponding 21-iodo derivatives.

Yields, melting points, specific optical rotations, and

analytical data of the compounds are given in Table I. **Biology and Evaluation.** The 17-esters of 6α , 9α -difluoro-21-deoxyprednisolone 10-13 have been assayed for their antiexudative activity by the granuloma pouch test according to Selye.⁸ The compound was injected into the pouch of rats on day 5 or injected subcutaneously daily from day 2 to day 10. Autopsy was performed on day 11.

The compounds have been assayed also in the vasoconstriction test on volunteers according to the modification described by Falconi and Rossi.⁹ In all cases reference compounds have also been tested. The results are shown in Tables II and III.

With the exception of acetate 10, the 21-deoxy-17-esters displayed a high local antiexudative activity, greater than that of free deoxydifluoroprednisolone 1410 and of the corresponding 21-hydroxy esters investigated, propionate 2 and benzoate 4. Evaluation of 13 vs. 4 in the same test after daily subcutaneous treatment revealed that the 21-deoxy derivative displayed a lower systemic antiexudative activity.

In the vasoconstriction test, compounds 10-12 proved

Tab	le	I

					сн ₂ х со		
				но	OCOR		
			Ĺ	F			
			0=- <				
No.	R	х	Yield,ª %	۶ Mp, °C	$[\alpha]_{\mathbf{D}}, \operatorname{deg}$	Formula	Analyses
			, ,	L / -	L. 1D,	. ormana	1111a19505
	C ₆ H ₅	ОН	70	228-231	+14.2	C., H., F.O.	С, Н
	C ₆ H ₅ C,H,	OH OTs	70 89	228-231 205-207	$+14.2 \\ +14$	C., H., F.O.	C, H C, H, S
	$\begin{array}{c} C_{6}H_{5}\\ C_{2}H_{5}\\ C_{3}H_{2} \end{array}$	OH OTs OTs	70 89 98	228-231 205-207 125 ^b	+14.2 + 14 - 12.2	$C_{28}H_{30}F_{2}O_{6}$ $C_{31}H_{36}F_{2}O_{8}S$ $C_{32}H_{38}F_{2}O_{8}S$	C, H C, H, S C, H, S
	$\begin{array}{c} C_{6}H_{5}\\ C_{2}H_{5}\\ C_{3}H_{2} \end{array}$	OH OTs OTs OTs	70 89 98 85	228-231 205-207	$+14.2 \\ +14$	$\begin{array}{c} C_{28}H_{30}F_{2}O_{6}\\ C_{31}H_{36}F_{2}O_{8}S\\ C_{32}H_{38}F_{2}O_{8}S\\ C_{33}H_{36}F_{3}O_{8}S\\ \end{array}$	C, H C, H, S C, H, S
	$C_{6}H_{5}$ $C_{2}H_{5}$ $C_{3}H_{7}$ $C_{6}H_{5}$ CH_{3}	OH OTs OTs OTs H	70 89 98 85	228-231 205-207 125 ^b	+14.2 + 14 - 12.2	$\begin{array}{c} C_{28}H_{30}F_{2}O_{6}\\ C_{31}H_{36}F_{2}O_{8}S\\ C_{32}H_{38}F_{2}O_{8}S\\ C_{33}H_{36}F_{3}O_{8}S\\ \end{array}$	C, H C, H, S C, H, S C, H, S C, H, S
	$C_{6}H_{5}$ $C_{2}H_{5}$ $C_{3}H_{7}$ $C_{6}H_{5}$ CH_{3}	OH OTs OTs OTs H	70 89 98 85 45 ^c	228-231 205-207 125 ^b 204-206	+14.2 +14 -12.2 -21 +24	$\begin{array}{c} C_{28}H_{30}F_{2}O_{6}\\ C_{31}H_{36}F_{2}O_{8}S\\ C_{32}H_{36}F_{2}O_{8}S\\ C_{35}H_{36}F_{2}O_{8}S\\ C_{35}H_{36}F_{2}O_{8}S\\ C_{35}H_{36}F_{2}O_{8}S\\ \end{array}$	C, H C, H, S C, H, S C, H, S C, H
4 7 8 9 10 11 12	$\begin{array}{c} C_{6}H_{5}\\ C_{2}H_{5}\\ C_{3}H_{2} \end{array}$	OH OTs OTs OTs	70 89 98 85	$\begin{array}{r} 228-231\\ 205-207\\ 125^{b}\\ 204-206\\ 258-260\\ \end{array}$	+14.2 +14 -12.2 -21	$\begin{array}{c} C_{28}H_{30}F_{2}O_{6}\\ C_{31}H_{36}F_{2}O_{8}S\\ C_{32}H_{38}F_{2}O_{8}S\\ C_{33}H_{36}F_{3}O_{8}S\\ \end{array}$	C, H C, H, S C, H, S C, H, S C, H, S

^a Yield is of analytically pure material. ^b With decomposition. ^c Overall yield. Intermediate 21-tosylate 6 was not isolated. d C: calcd, 66.65; found, 66.20.

Table II.	Antiexudative	Activity ^a
-----------	---------------	-----------------------

	% inhibn of exu	date formation
Compd	0.002 µmol	0.02 µmol
10 ^b	18	13
11^{b}	47	67
12^b	60	81
13^{b}	71	90
14^{b}	< 5	35
2^b	< 5	41
4^{b}	46	70
13 ^c	< 5	35
4^{c}	20	62

^a Data obtained from three different assays, each dose group including ten rats. All compounds dissolved in sesame oil. ^b Single treatment into pouch with the doses indicated. ^c Subcutaneous treatment for 9 days with the daily doses indicated.

to be markedly more active than betamethasone 17-valerate. On the basis of already published data, they are more active than the corresponding 21-hydroxy derivatives but less active than many 6,9-difluoroprednisolone 17,21-diesters.⁷

Our results confirm that the 21-hydroxy group is not essential for the antiinflammatory activity, if substituents are present which are able to increase the energy of binding with the receptors and/or the metabolic stability. In particular, compounds 11 and 12 displayed a topical antiinflammatory activity comparable with that of the most active known compounds.

Experimental Section

Melting points were taken in a capillary apparatus and are uncorrected. Optical rotations were determined in dioxane at 24 °C ($c \sim 1$). UV were determined in 95% EtOH and IR in Nujol mull. Absorption bands of these spectra were as expected. TLC were done using 250- μ thin layers (Fluorosil G) and 8:2 C₆H₆-Me₂CO. All analytical samples appeared as single spots on TLC. Where analyses are indicated only by symbols of the elements, analytical results obtained for these elements were within ±0.4% of the theoretical values.

6α,9α-Difluoroprednisolone 17-Monoesters (1–4). Acetate 1, propionate 2, and butyrate 3 were known from the previous work of Gardi et al.⁷ The benzoate 4 was prepared by a modified procedure¹¹ utilizing 6α ,9α-difluoroprednisolone 17,21-methyl orthobenzoate (5) as starting material: mp 204–206 °C; [α] +57°. Anal. (C₂₉H₃₀F₂O₆) C, H.

21-Tosylates (6–9). To a solution, cooled at 0 °C, of the proper 17-monoester (10 g) in 1:1 Py-CH₂Cl₂ (100 mL), TsCl (15 g)

Table III. Vasoconstrictive Activity in Man^a

Compd	Rel potency
Betamethasone 17-valerate	1
10	1.5
11	2.5 - 3
12	2.5-3
13	≤1

^a Each compound was tested on 24 subjects at three dose levels $(0.02, 0.06, \text{ and } 0.18 \,\mu\text{g})$.

dissolved in 1:1 Py-CH₂Cl₂ (100 mL) was added. After keeping overnight at 0-5 °C, the mixture was poured into ice-water. Products were isolated as usual and recrystallized from CH₂Cl₂-Et₂O. Acetate 6, which failed to crystallize, was not fully isolated and characterized.

21-Deoxy-17-esters (10–13). To a solution of the proper 21-tosylate (5 g) in Me₂CO (500 mL), NaI (25 g) was added. The reaction mixture was refluxed for 50 h, then treated with AcOH (30 mL), and further refluxed for 1 h. After addition of a 10% aqueous solution of NaHSO₃ (250 mL) and concentration under reduced pressure, the product was recovered by filtration and crystallized from Me₂CO–Et₂O.

Acknowledgment. The authors are indebted to Dr. C. Pedrali for the spectral determinations.

References and Notes

- (a) Istituto di Chimica Organica, Università di Sassari, Italy.
 (b) Farmitalia, Farmacologia Sperimentale, Nerviano (Milano), Italy.
- (2) R. Gardi, R. Vitali, and A. Ercoli, *Tetrahedron Lett.*, 448 (1961); R. Gardi, R. Vitali, and A. Ercoli, *Gazz. Chim. Ital.*, 93, 431 (1962).
- (3) R. Vitali, R. Gardi, and A. Ercoli, *Gazz. Chim. Ital.*, **96**, 1115 (1966).
- (4) C. A. Schlagel, J. Pharm. Sci., 54, 335 (1965).
- (5) R. Deghenghi, M. Boulerice, J. G. Rochefort, S. H. Sehgal, and D. J. Marshall, J. Med. Chem., 9, 513 (1966).
- (6) M. J. Busse, P. Hunt, K. A. Lees, P. N. D. Maggs, and T. G. McCorthy, Br. J. Dermatol., 81 (Suppl. 4), 103 (1969).
- (7) R. Gardi, R. Vitali, G. Falconi, and A. Ercoli, J. Med. Chem., 15, 556 (1972).
- (8) H. Selye, Proc. Soc. Exp. Biol. Med., 82, 328 (1953).
- (9) G. Falconi and G. Rossi, Arch. Dermatol., 105, 856 (1972).
- (10) J. A. Hogg, G. B. Spero, J. L. Thompson, B. J. Magerlein, A. P. Schneider, D. H. Peterson, O. K. Sebek, H. C. Murray, J. C. Babcock, R. L. Pederson, and J. A. Campbell, *Chem. Ind.* (London), 1002 (1958).
- (11) A. Ercoli, G. Falconi, R. Gardi, and R. Vitali, J. Med. Chem., 15, 783 (1972).