DOI: 10.1002/ejoc.201100067

[2+2] Photocycloaddition of Symmetrically Disubstituted Alkenes to 2(5*H*)-Furanones: Diastereoselective Entry to 1,2,3,4-Tetrasubstituted Cyclobutanes

Sònia Parés,^[a] Pedro de March,^[a] Josep Font,^[a] Ramon Alibés,^{*[a]} and Marta Figueredo^{*[a]}

Keywords: Photochemistry / Cycloaddition / Natural products / Small ring systems / Enantioselectivity

A study on the [2+2] photochemical cycloaddition of 1,4-difunctionalized 2-butenes to 2(5H)-furanones is presented. These reactions deliver 1,2,3,4-tetrasubstituted cyclobutanes with suitable functionalization in the four side chains for further synthetic elaboration. The effects of the substituents in both the lactone and the 2-butene on the stereoselectivity

Introduction

Nature synthesizes a variety of cyclobutane compounds in which the four positions of the ring are substituted. The majority of these compounds display bilateral symmetry due to a dimerization process that takes place during their biosynthesis. The most studied among these natural products is the alkaloid (–)-sceptrin (1), which was isolated from the sea sponge *Agelas Sceptrum* in 1981^[1] and exhibits potent activity as an antiviral, antimuscarinic, antibacterial, and antihistaminic agent.^[2] Recently, other 1,2,3,4-tetrasubstituted cyclobutanes have also been isolated from natural sources,^[3] such as incarvilateine (2) from *Incarvillea sinensis*,^[4] and dipiperamide A (3) from *Piper nigrum* (Figure 1).^[5]

Despite the potent biological activity shown by sceptrin (1), only three synthetic approaches to this interesting compound have been described. In 2004, Birman and Jiang published the first synthesis of racemic 1, where the key cyclobutane was constructed through a [2+2] photocycloaddition of maleic anhydride (4), to (*E*)-1,4-dichloro-2-butene [(*E*)-5],^[6] (Scheme 1). The same year, Baran and co-workers disclosed another synthesis of racemic 1 using 2,5-dimethylfuran and dimethyl acetylenedicarboxylate as starting materials.^[7] A modification of the latter approach by adding a desymmetrization step led to the first enantioselective preparation of (–)-sceptrin.^[8]

 [a] Department de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain Fax: +34-935811265

E-mail: ramon.alibes@uab.cat

marta.figueredo@uab.es

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201100067.

of the photochemical reaction have been evaluated. Starting from (*Z*)-2-butenes, under photosensitized conditions, a competitive *cis/trans* isomerization of the olefin inhibits the cycloaddition process. It was found that the presence of a *cis* double bond confined within a medium-size ring does not prevent bond rotation in the intermediate 1,4-biradicals.

Figure 1. Tetrasubstituted natural cyclobutane compounds.

Scheme 1. [2+2] Photochemical reaction of maleic anhydride (4) and olefin (*E*)-5 for the synthesis of (\pm) -sceptrin.

As part of our research program directed towards the preparation of natural products and analogues containing a cyclobutane ring,^[9] we have studied in depth the [2+2] photochemical cycloaddition of 1,4-difunctionalized 2-butenes to 2(5H)-furanones as a means to prepare 1,2,3,4-tetrasubstituted cyclobutanes with suitable functionalization in the four side chains for further synthetic elaboration. We have evaluated the lactone and butene substituent effects on the stereoselectivity of the photochemical reaction, as well as the photoexcitation effect on the reactivity and its influence on the side processes. The use of a chiral lactone as the substrate gives access to enantiopure cyclobutane derivatives, which might be useful precursors of the bioactive compound (–)-sceptrin and other interesting natural products.

Results and Discussion

Chiral 2(5H)-furanone 11 was prepared from 1,2:5,6-di-O-isopropylidene-D-mannitol according to a previously reported methodology.^[10] Selection of the protecting group was guided by the excellent results obtained by our group in the [2+2] photocycloaddition of 11 to ethylene derivatives.^[11] Literature precedents for the use of symmetrical 2butenes in photocycloadditions to enones were limited to achiral substrates.^[12] Therefore, the inclusion of a stereogenic center as in 11 entailed overcoming a new challenge. Birman and Jiang described that, upon irradiation through a Pyrex filter of a solution of maleic anhydride (4) and benzophenone in (E)-1,4-dichloro-2-butene [(E)-5], the trans cycloadduct 6 was apparently formed as the only product; after methanolysis, this compound delivered diester 7 in 76% yield (Scheme 1). In our hands, this photoreaction, performed under exactly the same conditions, fur-

nished an 85:10:5 mixture of **6** and the *cis* cycloadducts **8** (*endo*) and **9** (*exo*), in overall 71% yield (Scheme 2). The photochemical reaction between **4** and (*E*)-**5** was also performed using our own photochemical methodology, which was systemically applied to the complete study. Thus, substrates **4**, **10**, or **11** and a ninefold excess of 2-butenes **5**, **12**, or **13** in either acetonitrile or acetone solutions, were irradiated through a Quartz or Pyrex filter using a 125 W high-pressure mercury lamp at 0 °C. The progress of the cycloaddition was monitored by either GC or ¹H NMR analysis, and the irradiation was prolonged until the conversion remained constant. The results are listed in Table 1.

To compare our results with the literature precedents, anhydride maleic (4), and (E)- and (Z)-1,4-dichloro-2-butene, (E)-5 and (Z)-5, were first investigated (Table 1, entries 1-4). When the irradiation was performed through a Quartz filter, in both cases, a mixture of the three possible cycloadducts 6, 8, and 9 was formed in similar yield and a comparable ratio, with the *trans* cycloadduct 6 being the predominant isomer. When the irradiation was performed through a Pyrex filter, similar results were found starting from (E)-5. but (Z)-5 did not furnish the expected cycloadducts and the only process observed in this case was isomerization to (E)-5. Chromatographic separation of cycloadducts 6/8/9was not possible due to their degradation upon contact with silica gel, therefore, for identification purposes, it was necessary to perform NMR analyses of samples containing a mixture of isomers. The C-6/C-7 trans configuration of the major cycloadduct 6 was assigned on the basis of a NOESY experiment, which showed cross-peaks between the protons at C-8 and the cyclobutane proton H-7, and between the protons at C-9 and the cyclobutane proton H-6. This assignment was corroborated by the higher field shift of C-9 in the ¹³C NMR spectra compared to that of

Scheme 2. [2+2] Photochemical reaction of lactones 4, 10, and 11 with 2-butenes 5, 12, and 13.

FULL PAPER

Entry	Enone	Butene	Filter	Solvent	<i>t</i> [h]	Yield [%][b]	Products ^[e]	Ratio ^[g]	anti/syn	trans/cis ^[i]
1	4	(E) -5	quartz	acetonitrile	1.5	75 ^[c]	6, 8, 9	88:9:3	_	7.3:1
2	4	(E) -5	pyrex	acetone	4	71 ^[c]	6, 8, 9	86:9:5	_	6.1:1
3	4	(Z)-5	quartz	acetonitrile	4	73 ^[c]	6, 8, 9	83:9:8	_	4.9:1
4	4	(Z)-5	pyrex	acetone	4	_	_	_	_	_
5	10	(E) -5	quartz	acetonitrile	9	58 (83) ^[d]	14a, 15a, 16a, 17a	34:30:23:13	_	1.8:1
6	10	(E)- 5	pyrex	acetone	11	44 (75) ^[d]	14a, 15a, 16a, 17a	37:28:23:12	_	1.9:1
7	10	(Z)- 5	quartz	acetonitrile	10	46 (87) ^[d]	14a, 15a, 16a, 17a	35:25:29:11	_	1.5:1
8	10	(Z)-5	pyrex	acetone	10	-	_	_	_	_
9	11	(E)- 5	quartz	acetonitrile	4	68 (91) ^[d]	18a, 19a, 23a	40:33:27	2.7:1	1:0
10	10	$(Z)-12^{[a]}$	quartz	acetonitrile	3.5	70 (84) ^[d]	16b, 14b, 15b	70:15:15	_	1:2.3
11	10	(Z)-12	pyrex	acetone	6	-	_	_	_	_
12	11	(Z)-12	quartz	acetonitrile	4	70 (77) ^[d]	20b, 25b, 19b, 18b	54:15:14:17	5.7:1	1:2.2
13	10	$(Z)-13^{[a]}$	quartz	acetonitrile	3	69 (81) ^[d]	16c, 14c, 15c	46:35:19 ^[h]	_	1.2:1
14	10	(Z)-13	pyrex	acetone	4	35 (78) ^[d]	16c, 14c, 15c	43:37:20 ^[h]	_	1.3:1
15	11	(Z)-13	quartz	acetonitrile	4	46 (69) ^[d]	18c, 19c, C ^[f]	46:38:16	-	_

Table 1. [2+2] Photocycloaddition reaction of lactones 4, 10, and 11 to 2-butenes 5, 12, and 13.

[a] The *E* isomer is not commercially available. [b] Isolated yield of the mixture of stereoisomers after column chromatography except for entries 1–4. [c] Isolated yield of the mixture of stereoisomers after removal of the excess of olefin **5** by kugelrohr distillation. [d] Isolated yield considering the starting material recovered is given in parenthesis. [e] Products given in order of time retention on a GC column. [f] The third diastereoisomer **C** could not be fully characterized. [g] Isomer ratio from GC analysis of the crude reaction mixture. [h] Isomer ratio from 13 C NMR analysis of the crude reaction mixture. [i] C-6/C-7 relative configuration.

C-8, which was connected to the larger steric compression of the former.

The photoreaction of crotonolactone (10), with (E)- and (Z)-5 in acetonitrile using a Quartz filter (Table 1, entries 5 and 7) rendered, in moderate yields, the four possible cycloadducts 14a, 15a, 16a, and 17a with a poor C-6/C-7 trans/cis ratio of 1.8:1 and 1.5:1, respectively, which was determined by NOESY experiments and further corroborated by the value of the coupling constant between H-6 and H-7. The relative configuration between H-5 and H-6 was inferred from the chemical shift of C-4 in the ¹³C NMR spectra. Thus, the signal of C-4 is high-field shifted when this carbon atom is close to the bulky chloromethyl group, namely, when H-5 and H-6 are in a cis relationship. Crosspeaks on the NOESY experiments between H-4 and H-6 in the 5,6-cis cycloadducts, and between H-4 and H-8 in the 5,6-trans cycloadducts validated the diagnostic value of the above parameter. When the reaction with 10 was assayed through a Pyrex filter in acetone as solvent and sensitizing agent (Table 1, entries 6 and 8), olefin (E)-5 lead to the formation of four expected cycloadducts 14a-17a in a 1.9:1, 6,7-trans/cis ratio and 46% yield, while the (Z)-5 isomer did not react. Similar to the case of maleic anhydride, instead of the photocycloaddition, an isomerization from the (Z)olefin to (E)-5 was again observed as the only process.

In view of the above results, we wanted to examine the effect of acetone and crotonolactone (10) as potential sensitizing agents for the E/Z isomerization of 5 (Table 2). When (E)-5 was irradiated, the isomerization of the double bond was not observed in any of the four sets of conditions assayed (Table 2, entries 1–4). In contrast, when (Z)-5 was irradiated, isomerization was observed in the presence of either acetone (Table 2, entry 6), crotonolactone (10) (entry 7) or both (entry 8). These results may be explained by considering various mechanistic alternatives. Firstly, a photosensitized process may occur that transfers the energy from the triplet of acetone and/or the triplet of 10 to (Z)-5, hence inducing its excitation to an orthogonal triplet state that can undergo relaxation to either isomer of the olefin.^[13] It is also plausible that the triplet state of acetone (Table 2, entry 6) or crotonolactone (entry 8) reacted with olefin (*Z*)-**5**, but the intermediate biradical species did not evolve to the oxetane^[14] or cyclobutane adducts because reversion to the starting carbonyl compound and the olefin (*Z* or *E*) was more favored.^[15] Because the newly formed olefin (*E*)-**5** is unable to react with crotonolactone to furnish the cycloadducts, it must be concluded that these competitive pathways inhibit the photocycloaddition process.

Table 2. Study of the of E/Z photoisomerization of 5.

Entry	Olefin	Filter	Solvent	Substrate	$Z/E^{[c]}$
1	$(E)-5^{[a]}$	quartz	acetonitrile	_	1:32
3	(E)-5 (E)-5	quartz	acetonitrile	10	1:32
4	(<i>E</i>)-5 (<i>Z</i>)-5 ^[b]	pyrex quartz	acetone	10	1:32
6	(Z)-5	pyrex	acetone	_	1:2.3
7 8	(Z)-5 (Z)-5	quartz pyrex	acetonitrile acetone	10 10	4.9:1 2.1:1

[a] Commercial (*E*)-**5** is contaminated with 3% of the *Z* isomer (*Z*/*E* ratio 1:32). [b] Commercial (*Z*)-**5** is contaminated with 5% of the *E* isomer (*Z*/*E* ratio 19:1). [c] Isomer ratio determined by GC analysis of the crude reaction mixture after 2 h of irradiation.

Once the reaction of butene **5** with the achiral substrates **4** and **10** had been investigated, the best synthetic conditions were applied to the enantiopure 2(5H)-furanone **11** (Table 1, entry 9). Considering the mechanistic proposal for this kind of photocycloaddition that postulates free rotation of the C-6/C-7 bond on the 1,4-biradical intermediates,^[15] this reaction could lead to the formation of up to eight products, which can be classified into four different pairs: *antiltrans, antilcis, syntrans,* and *syntcis* (Scheme 2). Remarkably, irradiation of **11** in the presence of (*E*)-**5** in acetonitrile through a Quartz filter provided exclusively three cy-

cloadducts (18a, 19a, and 23a) in 68% overall yield. The C-6/C-7 trans/cis relative configuration was determined following the same method used for 14a/17a. The disposition between H-4 and H-5 was assigned on the basis of the value of their coupling constant, which was lower for the anti (0 Hz for 18a and 1.7 Hz for 19a) than for the syn cycloadducts (5.2 Hz for 23a); the results were corroborated by NOESY experiments. Because the three isolated isomers present C-6/C-7 trans relative configuration, all of them are attractive precursors for the synthesis of enantiopure 1,2,3,4-tetrasubstituted cyclobutanes with all the neighbor substituents in a *trans* disposition, as in sceptrin (1). Specifically, 18a could lead to the natural alkaloid (-)-1, and 19a and 23a to the non natural sceptrin (+)-1, following the route described by Birman and Jiang for the synthesis of the racemate.

To explore the possibility of achieving C-6/C-7 cis cycloadducts, we investigated the [2+2] photocycloaddition of 2(5H)-furanones 10 and 11 to (Z)-4,7-dihydro-1,3-dioxepin [(Z)-12], expecting that the occurrence of a more rigid cyclic moiety may prevent bond rotation in the intermediate 1,4biradical species. The photoreaction of 10 and (Z)-12 using a Quartz filter without a sensitizing agent, furnished a 15:15:70 mixture of 14b, 15b, and 16b in 70% total yield (Table 1, entry 10), showing that the cyclic nature of the olefin does not entirely preclude C-6/C-7 bond rotation, although the predominating isomer of the product displays cis relative configuration, as expected. In a parallel experiment, carried out in acetone using a Pyrex filter (Table 1, entry 11), most of the starting material was recovered unchanged. Consequently, only the first protocol was applied to lactone 11 (Table 1, entry 12), resulting in the formation of a mixture of four among the eight possible diastereomers in a 1:2.2 C-6/C-7 *trans/cis* ratio, from which the major cycloadduct could be isolated in 54% yield. The relative configuration of the new stereogenic centers was determined by the value of the coupling constants $J_{1,2}$ and $J_{8,2}$ (numbering shown in Scheme 3). Other useful data for the stereochemical assignment was the chemical shift of the diastereotopic protons at C-5, which are isochronous when the four- and seven-member rings are trans fused, and display an AB system with approximately 1 ppm separation when these two

Scheme 3. Methanolysis of the acetal to furnish the diol derivatives.

rings are *cis* fused. For **18b**, **19b**, **20b**, and **25b**, the *anti/syn* configuration was assigned through the coupling constant $J_{9,10}$. All the stereochemical assignments were confirmed by NOESY experiments. To extend their synthetic utility, the mixture of oxepanes derived from either lactone were converted into the corresponding diols by treatment with *p*TsOH in MeOH (Scheme 3).

To complete the photochemical study, lactones 10 and 11 were irradiated in the presence of (Z)-2-buten-1,4-diol [(Z)-13], which is more readily available than its E isomer (Table 1, entries 13–15). The photoreaction with achiral furanone 10 in acetonitrile using a Quartz filter delivered three isomeric cycloadducts 14c-16c in 69% isolated yield, with a slight predominance of the C-6/C-7 trans relative configuration. The same products in a similar proportion were also formed when the irradiation was carried out in acetone through a Pyrex filter, but, under these conditions, the yield decreased to 35%. We believe that this loss of effectiveness when the cycloaddition is performed under photosensitized conditions may be related to the existence of a competitive *cis/trans* isomerization process of the olefin, as was observed for (Z)-5, although in this case the corresponding trans isomer (E)-13 was not detected. Finally, direct irradiation conditions were applied to chiral furanone 11, providing a mixture of three cycloadducts, although only two could be identified (18c and 19c) due to severe difficulties encountered in the chromatographic purification of the crude material. The relative configuration of 14c-16c, 18c, and 19c was assigned as described above for the chlorinated cycloadducts and by correlation with the dioxepane derivatives through methanolysis.

Conclusions

It has been found that the [2+2] photocycloaddition of 2(5H)-furanones to 1,4-difunctionalized 2-butenes works well upon direct irradiation of an acetonitrile solution of the reactants through a Quartz filter. Starting from (Z)-2butenes, under photosensitized conditions, a competitive cisltrans isomerization of the olefin inhibits the cycloaddition process. From a synthetic point of view, the most useful of the studied reactions was the photocycloaddition of chiral furanone 11 to *trans* dichlorobutene (E)-5, leading exclusively to C-6/C-7 trans-cyclobutanes, which can be appropriate precursors for the enantioselective synthesis of natural 1,2,3,4-tetrasubstituted cylobutanes such as sceptrin (1), and others. Photocycloadditions performed with 1,3dioxepin (Z)-12 provided evidence that the presence of a cisdouble bond confined within a medium-size ring does not prevent bond rotation in the intermediate 1,4-biradicals, although the sense of stereoselectivity is inverted from C-6/ C-7 trans to cis. Work is in progress to develop synthetic applications of these photochemical reactions.

Experimental Section

General: Commercially available reagents were used as received. Solutions were concentrated using an evaporator at 15–20 Torr.

FULL PAPER

Flash column chromatography separations were carried out on silica gel (230–400 mesh). Melting points were determined on a hot stage apparatus. ¹H and ¹³C NMR spectra were recorded at the Servei de Ressonància Magnètica Nuclear de la Universitat Autònoma de Barcelona at 250 and 62.5 MHz, 360 and 90 MHz, or 400 and 100 MHz. NMR signals were assigned with the help of DEPT, COSY, HMBC, and HMQC experiments. High resolution mass spectra (HRMS) and Microanalyses were performed at the Servei d'Anàlisi Química de la Universitat Autònoma de Barcelona. Optical rotations were measured at 22 ± 2 °C.

(1RS,5SR,6SR,7SR)-6,7-Bis(chloromethyl)-3-oxabicyclo[3.2.0]heptan-2,4-dione (6), (1RS,5SR,6SR,7RS)-6,7-Bis(chloromethyl)-3oxabicyclo[3.2.0]heptan-2,4-dione (8) and (1RS,5SR,6RS,7RS)-6,7-Bis(chloromethyl)-3-oxabicyclo[3.2.0]heptan-2,4-dione (9). Birman and Jiang Methodology: An oxygen-free solution of maleic anhydride (4; 105 mg, 1.07 mmol) and benzophenone (49 mg, 0.27 mmol) in (E)-1,4-dichloro-2-butene [(E)-5; 1.25 g, 10.0 mmol] was placed in an NMR tube. This solution was irradiated through a Pyrex filter for 60 h at room temperature under a nitrogen atmosphere. The progress of the reaction was monitored by GC analysis. Evaporation of the solvent and kugelrohr distillation of (E)-5 under reduced pressure afforded a mixture of 6, 8 and 9 (86:9:5 ratio; 169 mg, 0.76 mmol, 71% yield). The cycloadducts 6, 8, and 9 decomposed upon contact with silica gel.

Compound 6: ¹H NMR (250 MHz, CDCl₃, 25 °C): δ = 3.82 (m, 2 H, 8-H), 3.74 (m, 2 H, 9-H), 3.59 (m, 1 H, 1-H), 3.46 (m, 1 H, 5-H), 3.23 (m, 1 H, 7-H), 2.96 (m, 1 H, 6-H) ppm. ¹³C NMR (62.9 MHz, CDCl₃, 25 °C): δ = 171.0 (C=O), 170.0 (C=O), 46.1 (CH₂, 8-C), 43.8 (CH, 6-C), 43.5 (CH₂, 9-C), 39.5/39.2/38.9 (3×CH, 1-C/5-C/7-C) ppm. MS: *m*/*z* (%) = 180 (1.5), 178 (2.5), 152 (11), 150 (17), 117 (20), 115 (66), 103 (17), 101 (49), 79 (100).

Compound 8: MS: m/z (%) = 180 (2.0), 178 (3.1), 152 (7.5), 150 (12), 117 (16), 115 (50), 103 (18), 101 (50), 79 (100).

Compound 9: MS: *m*/*z* (%) = 180 (1.9), 178 (3.3), 152 (8), 150 (12), 117 (18), 115 (52), 103 (22), 101 (48), 79 (100).

General Procedure for Photochemical Reactions: The irradiation was performed in a small, conventional photochemical reactor (two-necked vessel fitted with a Quartz or Pyrex immersion-type cooling jacket) using a high pressure 125 W mercury lamp (Cathodeon HPK-125). Methanol at -15 °C was used to refrigerate the immersion well jacket. The vessel was externally cooled to 0 °C. The reaction mixture was initially degassed by passage of oxygen-free nitrogen through the solution for 10 min and then irradiated under an atmosphere of nitrogen. The progress of the reaction was monitored by GC or by ¹H or ¹³C NMR analyses of sample aliquots.

Compounds 6, 8, and 9: A solution of maleic anhydride (4; 150 mg, 1.53 mmol) and (E)-1,4-dichloro-2-butene [(E)-5; 1.721 g, 13.8 mmol] in acetonitrile (90 mL) was irradiated through a Quartz filter for 1.5 h. The progress of the reaction was monitored by GC analysis. Evaporation of the solvent and kugelrohr distillation of (E)-5 under reduced pressure afforded a mixture of 6, 8, and 9 (88:9:3 ratio; 255 mg, 1.14 mmol, 75% yield).

(1RS,5SR,6RS,7RS)-6,7-Bis(chloromethyl)-3-oxabicyclo[3.2.0]heptan-2-one (14a), (1RS,5SR,6SR,7SR)-6,7-Bis(chloromethyl)-3oxabicyclo[3.2.0]heptan-2-one (15a), (1RS,5SR,6RS,7SR)-6,7-Bis(chloromethyl)-3-oxabicyclo[3.2.0]heptan-2-one (16a), and (1RS,5SR,6SR,7RS)-6,7-Bis(chloromethyl)-3-oxabicyclo[3.2.0]heptan-2-one (17a): A solution of 2(5H)-furanone 10 (150 mg, 1.78 mmol) and (E)-5 (2.00 g, 16.0 mmol) in acetonitrile (90 mL) was irradiated through a Quartz filter for 9 h. The progress of the reaction was monitored by GC analysis. Evaporation of the solvent and column chromatography (hexane/EtOAc, 10:1) rendered a mixture of **14a**, **15a**, **16a**, and **17a** (34:30:23:13 ratio; 217 mg, 1.03 mmol, 58% yield) and unreacted lactone (37 mg, 0.44 mmol). Repeated column chromatography (hexane to hexane/EtOAc, 3:1) provided an oily residue, which was identified as pure **14a**, and enriched fractions of compounds **15a–17a**.

Compound 14a: ¹H NMR (360 MHz, CDCl₃, 25 °C): δ = 4.41 (ddd, ²J_{H,H} = 9.7, ³J_{H,H} = 5.9, J = 1.2 Hz, 1 H, 4-H), 4.32 (br. d, ²J_{H,H} = 9.7 Hz, 1 H, 4-H), 3.85 (dd, ²J_{H,H} = 11.2, ³J_{H,H} = 4.6 Hz, 1 H, 8-H), 3.75 (ddd, ²J_{H,H} = 11.4, ³J_{H,H} = 5.8, ⁴J_{H,H} = 0.9 Hz, 1 H, 9-H), 3.62 (ddd, ²J_{H,H} = 11.2, ³J_{H,H} = 8.3, ⁴J_{H,H} = 0.8 Hz, 1 H, 8-H), 3.50 (ddd, ²J_{H,H} = 11.4, ³J_{H,H} = 10.1, ⁴J_{H,H} = 0.8 Hz, 1 H, 9-H), 3.22 (dd, ³J_{H,H} = 9.4, 7.6 Hz, 1 H, 1-H), 2.96 (ddd, ³J_{H,H} = 7.6, 6.0, 5.9 Hz, 1 H, 5-H), 2.82 (m, 1 H, 7-H), 2.55 (m, 1 H, 6-H) ppm. ¹³C NMR (62.9 MHz, CDCl₃, 25 °C): δ = 176.2 (C=O), 73.0 (CH₂, 4-C), 46.7 (CH₂, 8-C), 46.6 (CH, 6-C), 44.2 (CH₂, 9-C), 39.6 (CH, 7-C), 38.0 (CH, 1-C), 36.1 (CH, 5-C) ppm. IR (ATR): \tilde{v} = 2960, 2907, 1757, 1477, 1261, 1161, 1042 cm⁻¹. MS *m*/*z* (%) = 208 (0.4) [M]⁺, 175 (14), 173 (40), 85 (94), 67 (100). HRMS (ESI⁺): calcd. for C₈H₁₀Cl₂O₂Na 230.9950; found 230.9950.

Compound 15a: ¹H NMR (360 MHz, CDCl₃, 25 °C): δ = 4.58 (dd, ²*J*_{H,H} = 10.7, ³*J*_{H,H} = 2.4 Hz, 1 H, 4-H), 4.43 (dd, ²*J*_{H,H} = 10.7, ³*J*_{H,H} = 8.2 Hz, 1 H, 4-H), 3.74 (m, 2 H, 9-H), 3.74–3.65 (m, 2 H, 8-H), 3.30 (dtd, ³*J*_{H,H} = 8.2, 8.0, 2.4 Hz, 1 H, 5-H), 3.03 (dd, ³*J*_{H,H} = 8.2, 4.7 Hz, 1 H, 1-H), 2.86 (m, 1 H, 6-H), 2.56 (m, 1 H, 7-H) ppm. ¹³C NMR (90.6 MHz, CDCl₃, 25 °C): δ = 178.1 (C=O), 67.9 (CH₂, 4-C), 46.9 (CH₂, 9-C), 43.8 (CH, 7-C), 42.9 (CH₂, 8-C), 39.7 (CH, 6-C), 37.9 (CH, 1-C), 32.3 (CH, 5-C) ppm. MS *m*/*z* (%) = 208 (0.1) [M]⁺, 175 (3.5), 173 (11), 85 (100).

Compound 16a: ¹H NMR (360 MHz, CDCl₃, 25 °C): δ = 4.41 (dd, ²*J*_{H,H} = 9.7, ³*J*_{H,H} = 5.9 Hz, 4-H), 4.32 (dd, ²*J*_{H,H} = 9.7, ³*J*_{H,H} = 1.0 Hz, 4-H), 3.88–3.60 (m, 4 H, 2 × 8-H, 2 × 9-H), 3.12–2.76 (m, 4 H, 1-H, 5-H, 6-H, 7-H) ppm. ¹³C NMR (90.6 MHz, CDCl₃, 25 °C): δ = 178.1 (C=O), 72.8 (CH₂, 4-C), 43.6/43.2 (CH/CH₂, 6-C/8-C), 42.8 (CH₂, 9-C), 41.3 (CH), 38.9 (CH), 38.2 (CH) ppm. MS: *m*/*z* (%) = 208 (0.5) [M]⁺, 175 (13), 173 (41), 85 (100).

Compound 17a: ¹H NMR (250 MHz, CDCl₃, 25 °C): δ = 4.55–4.10 (m, 2 H, 2× 4-H), 3.84–3.58 (m, 4 H, 2× 8-H, 2× 9-H), 3.21–2.98 (m, 2 H, 1-H, 5-H), 2.50–2.20 (m, 2 H, 6-H, 7-H) ppm. ¹³C NMR (62.9 MHz, CDCl₃, 25 °C): δ = 178.6 (C=O), 63.5 (CH₂, 4-C), 45.6 (CH₂), 45.6 (CH₂), 40.5 (CH), 39.7 (CH), 31.1 (CH), 29.1 (CH) ppm. MS: *m/z* (%) = 175 (0.3), 173 (2.7), 85 (100). Mixture **15a–16a**: HRMS (ESI⁺): calcd. for C₈H₁₀Cl₂O₂Na 230.9950; found 230.9945.

Irradiation of a solution of lactone **10** (150 mg, 1.78 mmol) and (*E*)-**5** (2.00 g, 16.0 mmol) in acetone (90 mL) through a Pyrex filter for 11 h furnished a mixture of **14a**, **15a**, **16a**, and **17a** (37:28:23:12 ratio; 165 mg, 0.79 mmol, 44% yield) and unreacted lactone (46 mg, 0.55 mmol) after purification of the crude material by silica gel column chromatography.

Irradiation of a solution of lactone **10** (150 mg, 1.78 mmol) and (*Z*)-**5** (2.00 g, 16.0 mmol) in acetonitrile (90 mL) through a Quartz filter for 10 h furnished a mixture of **14a**, **15a**, **16a**, and **17a** (35:25:29:11 ratio; 171 mg, 0.82 mmol, 46% yield) and unreacted lactone (61 mg, 0.73 mmol) after purification of the crude material by silica gel column chromatography.

Irradiation of a solution of lactone 10 (150 mg, 1.78 mmol) and (*Z*)-5 (2.00 g, 16.0 mmol) in acetone (90 mL) through a Pyrex filter for 10 h delivered the unreacted lactone 10 (135 mg, 1.60 mmol)

(1S,4S,5R,6S,7S)-6,7-Bis(chloromethyl)-4-(pivaloyloxymethyl)-3oxabicyclo[3.2.0]heptan-2-one (18a), (1S,4S,5R,6R,7R)-6,7-Bis(chloromethyl)-4-(pivaloyloxymethyl)-3-oxabicyclo[3.2.0]heptan-2-one (19a), and (1R,4S,5S,6S,7S)-6,7-Bis(chloromethyl)-4-(pivaloyloxymethyl)-3-oxabicyclo[3.2.0]heptan-2-one (23a): A solution of (S)-5-(pivaloyloxymethyl)-2(5H)-furanone (11; 150 mg, 0.76 mmol) and (E)-5 (856 mg, 6.84 mmol) in acetonitrile (90 mL) was irradiated through a Quartz filter for 4 h. The progress of the reaction was monitored by GC analysis. Evaporation of the solvent and column chromatography of the residue (hexane/EtOAc, 10:1 to 6:1) rendered a mixture of 18a, 19a, and 23a (40:33:27 ratio; 166 mg, 0.51 mmol, 68% yield) and unreacted starting material 11 (34 mg, 0.17 mmol). Repeated column chromatography (hexane to hexane/ EtOAc, 6:1) furnished the following fractions: (i) an oil identified as pure 18a; (ii) an enriched fraction of 19a, and (iii) an enriched fraction of 23a.

Compound 18a: ¹H NMR (250 MHz, CDCl₃, 25 °C): δ = 4.65 (dd, ${}^{3}J_{H,H} = 3.4, 3.1 \text{ Hz}, 1 \text{ H}, 4\text{-H}), 4.25 \text{ (dd, } {}^{2}J_{H,H} = 12.2, {}^{3}J_{H,H} =$ 3.4 Hz, 1 H, CH_2OPiv), 4.12 (dd, ${}^2J_{H,H} = 12.2$, ${}^3J_{H,H} = 3.1$ Hz, 1 H, CH₂OPiv), 3.86 (dd, ${}^{2}J_{H,H} = 11.2$, ${}^{3}J_{H,H} = 4.6$ Hz, 1 H, 8-H), 3.75 (dd, ${}^{2}J_{H,H}$ = 11.3, ${}^{3}J_{H,H}$ = 5.6 Hz, 1 H, 9-H), 3.60 (dd, ${}^{2}J_{H,H}$ = 11.2, ${}^{3}J_{H,H}$ = 8.6 Hz, 1 H, 8-H), 3.49 (dd, ${}^{2}J_{H,H}$ = 11.3, ${}^{3}J_{H,H}$ = 10.2 Hz, 1 H, 9-H), 3.27 (dd, ${}^{3}J_{H,H}$ = 9.5, 7.3 Hz, 1 H, 1-H), 2.82 (m, 1 H, 7-H), 2.81 (dd, ${}^{3}J_{H,H}$ = 7.3, 6.4 Hz, 1 H, 5-H), 2.57 (m, 1 H, 6-H), 1.19 (s, 9 H, tBu) ppm. ¹³C NMR (62.9 MHz, CDCl₃, 25 °C): $\delta = 177.8$ (C=O, lactone), 175.2 (C=O, ester), 81.8 (CH, 4-C), 65.0 (CH₂, CH₂OPiv), 46.6/46.5 (CH/CH₂, 6-C/8-C), 44.2 (CH₂, 9-C), 40.1 (CH, 7-C), 39.0 (CH, 1-C), 38.8 [(CH₃)₃C], 38.5 (CH, 5-C), 27.1 [(CH₃)₃C] ppm. IR (ATR): \tilde{v} = 2962, 2872, 1770, 1724, 1479, 1283, 1145, 1086 cm⁻¹. MS m/z (%) = 289 (1.4), 287 (4.1), 222 (5), 220 (7), 57 (100). C₁₄H₂₀Cl₂O₄ (323.22): calcd. C 52.02, H 6.24; found C 52.19, H 6.49.

Compound 19a: ¹H NMR (360 MHz, CDCl₃, 25 °C): δ = 4.98 (ddd, ³J_{H,H} = 3.4, 3.1, 1.7 Hz, 1 H, 4-H), 4.31 (dd, ²J_{H,H} = 12.1, ³J_{H,H} = 3.1 Hz, 1 H, CH₂OPiv), 4.15 (dd, ²J_{H,H} = 12.1, ³J_{H,H} = 3.5 Hz, 1 H, CH₂OPiv), 3.77–3.64 (m, 4 H, 2×8-H, 2×9-H), 3.09 (m, 2 H, 1-H, 5-H), 2.93 (m, 1 H, 6-H/7-H), 2.58 (m, 1 H, 6-H/7-H), 1.19 (s, 9 H, *t*Bu) ppm. ¹³C NMR (62.9 MHz, CDCl₃, 25 °C): δ = 177.8 (C=O, lactone), 177.1 (C=O, ester), 76.7 (CH, 4-C), 65.8 (CH₂, CH₂OPiv), 46.8, 43.7, 42.9, 39.7, 39.0, 38.8 [(CH₃)₃C], 35.0, 27.1 [(CH₃)₃C] ppm. MS: *m*/*z* (%) = 289 (1.2), 287 (3.4), 222 (0.8), 220 (1.0), 57 (100).

Compound 23a: ¹H NMR (360 MHz, CDCl₃, 25 °C): δ = 4.72 (td, ³*J*_{H,H} = 6.0, 5.2 Hz, 1 H, 4-H), 4.39–4.35 (m, 2 H, CH₂OPiv), 3.78 (m, 1 H, 8-H), 3.74 (m, 1 H, 9-H), 3.62 (dd, ²*J*_{H,H} = 11.3, ³*J*_{H,H} = 6.9 Hz, 1 H, 8-H), 3.51 (dd, ²*J*_{H,H} = 11.4, ³*J*_{H,H} = 9.5 Hz, 1 H, 9-H), 3.30 (dd, ³*J*_{H,H} = 8.1, 7.4 Hz, 1 H, 1-H), 3.04 (ddd, ³*J*_{H,H} = 7.4, 5.3, 5.2 Hz, 1 H, 5-H), 2.84 (m, 1 H, 7-H), 2.75 (m, 1 H, 6-H), 1.22 (s, 9 H, *t*Bu) ppm. ¹³C NMR (90.6 MHz, CDCl₃, 25 °C): δ = 178.0 (C=O, lactone), 174.9 (C=O, ester), 78.6 (CH, 4-C), 62.4 (CH₂, CH₂OPiv), 46.4 (CH₂, 8-C), 44.1 (CH₂, 9-C), 41.1 (CH, 6-C), 39.7 (CH, 1-C), 39.3 (CH, 7-C), 38.9 [(CH₃)₃ C], 38.0 (CH, 5-C), 27.1 [(CH₃)₃C] ppm. MS: *m*/*z* (%) = 289 (1.6), 287 (4.6), 222 (5), 220 (8), 57 (100).

Mixture of **18a**, **19a** and **23a**: HRMS (ESI⁺): calcd. for $C_{14}H_{20}Cl_2O_4Na$ 345.06309; found 345.06303.

(1*RS*,2*SR*,8*RS*,9*SR*)-4,6,11-Trioxatricyclo[7.3.0.0^{2,8}]dodecan-12one (16b), (1*RS*,2*RS*,8*RS*,9*SR*)-4,6,11-Trioxatricyclo[7.3.0.0^{2,8}]dodecan-12-one (14b), and (1*RS*,2*SR*,8*SR*,9*SR*)-4,6,11-Trioxatricyclo-

[7.3.0.0^{2.8}]dodecan-12-one (15b): A solution of 2(5H)-furanone 10 (150 mg, 1.78 mmol) and (Z)-12 (1.602 g, 16.0 mmol) in acetonitrile (90 mL) was irradiated through a Quartz filter for 3.5 h. The progress of the reaction was monitored by GC analysis, where the appearance of three new peaks was observed (70:15:15). Evaporation of the solvent and column chromatography over silica gel (hexane/EtOAc, 1:1) provided the following fractions: (i) a white solid identified as 16b (160 mg, 0.87 mmol, 49% yield), (ii) a white solid identified as a mixture of 14b and 15b (1:1 ratio; 68 mg, 0.37 mmol, 21% yield), and (iii) unreacted lactone (21 mg, 0.25 mmol).

Compound 16b: M.p. 93-95 °C (EtOAc/pentane). ¹H NMR (250 MHz, CDCl₃, 25 °C): $\delta = 5.19$ (d, ² $J_{\rm H,H} = 7.3$ Hz, 1 H, 5-H), 4.37 (d, ² $J_{\rm H,H} = 7.3$ Hz, 1 H, 5-H), 4.40 (dd, ² $J_{\rm H,H} = 9.7$, ³ $J_{\rm H,H} = 6.8$ Hz, 1 H, 10-H), 4.26 (dd, ² $J_{\rm H,H} = 9.7$, ³ $J_{\rm H,H} = 1.5$ Hz, 1 H, 10-H), 4.17 (dd, ² $J_{\rm H,H} = 13.3$, ³ $J_{\rm H,H} = 2.9$ Hz, 1 H, 3-H), 3.99 (dd, ² $J_{\rm H,H} = 13.5$, ³ $J_{\rm H,H} = 3.7$ Hz, 1 H, 7-H), 3.79 (dd, ² $J_{\rm H,H} = 13.3$, ³ $J_{\rm H,H} = 2.2$ Hz, 1 H, 3-H), 3.68 (dd, ² $J_{\rm H,H} = 13.5$, ³ $J_{\rm H,H} = 1.3$ Hz, 1 H, 7-H), 3.37 (ddd, ³ $J_{\rm H,H} = 8.2$, 6.8, 5.6 Hz, 1 H, 9-H), 3.10 (dd, ³ $J_{\rm H,H} = 8.2$, 3.5 Hz, 1 H, 1-H), 2.74 (m, 1 H, 8-H), 2.82 (m, 1 H, 2-H) ppm. ¹³C NMR (62.9 MHz, CDCl₃, 25 °C): $\delta = 180.1$ (2-C), 100.5 (CH₂, 5-C), 73.4 (CH₂, 3-C), 73.2 (CH₂, 10-C), 70.7 (CH₂, 7-C), 44.0 (CH, 8-C), 43.1 (CH, 2-C), 38.1 (CH, 1-C), 33.8 (CH, 9-C) ppm. IR (ATR): $\tilde{v} = 2908$, 2872, 1745, 1475, 1153, 1015 cm⁻¹. MS: *m*/*z* (%) = 184 (24) [M]⁺, 154 (10), 85 (100). C₉H₁₂O₄ (184.19): calcd. C 58.69, H 6.57; found C 58.72, H 6.47.

Compound 14b: ¹H NMR (250 MHz, CDCl₃, 25 °C): δ = 4.84 (s, 2 H, 2× 5-H), 4.31 (dd, ²*J*_{H,H} = 9.6, ³*J*_{H,H} = 4.9 Hz, 1 H, 10-H), 4.22 (d, ²*J*_{H,H} = 9.6 Hz, 1 H, 10-H), 4.15 (dd, ²*J*_{H,H} = 10.9, ³*J*_{H,H} = 4.7 Hz, 1 H), 4.06 (dd, ²*J*_{H,H} = 11.1, ³*J*_{H,H} = 5.5 Hz, 1 H), 3.56 (d, ²*J*_{H,H} = 11.1 Hz, 1 H), 3.51 (d, ²*J*_{H,H} = 10.9 Hz, 1 H), 3.20 (m, 1 H, 9-H), 3.08–2.55 (m, 3 H, 1 H, 2-H, 8-H) ppm. ¹³C NMR (62.9 MHz, CDCl₃, 25 °C): δ = 176.5 (2-C), 92.8 (CH₂, 5-C), 71.9 (CH₂, 3-C), 69.8 (CH₂, 10-C), 67.8 (CH₂, 7-C), 44.8 (CH, 8-C), 40.4 (CH, 2-C), 38.3 (CH, 1-C), 36.7 (CH, 9-C) ppm. MS *m*/*z* (%) = 184 (0.2) [M]⁺, 154 (0.3), 85 (100).

Compound 15b: ¹H NMR (250 MHz, CDCl₃, 25 °C): δ = 4.84 (s, 2 H, 2× 5-H), 4.61 (dd, ²*J*_{H,H} = 10.4, ³*J*_{H,H} = 6.5 Hz, 1 H, 10-H), 4.54 (d, ²*J*_{H,H} = 10.4 Hz, 1 H, 10-H), 4.06 (dd, ²*J*_{H,H} = 11.1, ³*J*_{H,H} = 5.5 Hz, 1 H), 3.94 (dd, ²*J*_{H,H} = 11.1, ³*J*_{H,H} = 5.6 Hz, 1 H), 3.65 (d, ²*J*_{H,H} = 11.2 Hz, 1 H), 3.60 (d, ²*J*_{H,H} = 11.1 Hz, 1 H), 3.20 (m, 1 H, 9-H), 3.08–2.55 (m, 3 H, 1-H, 2-H, 8-H) ppm. ¹³C NMR (62.9 MHz, CDCl₃, 25 °C): δ = 176.6 (2-C), 93.1 (CH₂, 5-C), 70.5 (CH₂, 3-C), 68.0 (CH₂, 10-C), 66.5 (CH₂, 7-C), 43.8 (CH, 8-C), 41.1 (CH, 2-C), 38.5 (CH, 1-C), 33.6 (CH, 9-C) ppm. MS *m*/*z* (%) = 184 (0.4) [M]⁺, 154 (28), 85 (100).

Mixture **14b**–**15b**: $C_9H_{12}O_4$ (184.19): calcd. C 58.69, H 6.57; found C 58.69, H 6.65.

Irradiation of a solution of lactone **10** (150 mg, 1.78 mmol) and (Z)-**12** (2.00 g, 16.0 mmol) in acetone (90 mL) through a Pyrex filter for 6 h delivered the unreacted lactone **10** (129 mg, 1.53 mmol) after purification of the crude material by silica gel column chromatography.

(1R,2S,8R,9S,10S)-10-(Pivaloyloxymethyl)-4,6,11-trioxatricyclo-[7.3.0.0^{2,8}]dodecan-12-one (20b), (1S,2R,8S,9R,10S)-10-(Pivaloyloxymethyl)-4,6,11-trioxatricyclo[7.3.0.0^{2,8}]dodecan-12-one (25b), (1R,2S,8S,9S,10S)-10-(Pivaloyloxymethyl)-4,6,11-trioxatricyclo-[7.3.0.0^{2,8}]dodecan-12-one (19b), and (1R,2R,8R,9S,10S)-10-(Pivaloyloxymethyl)-4,6,11-trioxatricyclo[7.3.0.0^{2,8}]dodecan-12-one (18b): A solution of 11 (150 mg, 0.76 mmol) and (Z)-12 (894 mg, 6.84 mmol) in acetonitrile (90 mL) was irradiated through a Quartz filter for 4 h. The progress of the reaction was monitored by GC, where the appearance of four new peaks was observed (54:15:14:17 ratio). Evaporation of the solvent and column chromatography over silica gel (hexane/EtOAc, 10:1 to 1:1) provided the following fractions: (i) a colorless oil identified as **25b** (24 mg, 0.08 mmol, 11% yield), (ii) a white solid identified as **20b** (86 mg, 0.29 mmol, 38% yield), (iii) a 45:55 mixture of **19b** and **18b** (48 mg, 0.16 mmol, 21% yield), and (iv) unreacted starting lactone **11** (10 mg, 0.05 mmol). All the attempts to separate the cycloadducts **19b** and **18b** were unsuccessful and enriched fractions were analyzed.

Compound 20b: M.p. 56–58 °C (EtOAc/pentane). ¹H NMR (250 MHz, CDCl₃, 25 °C): δ = 5.19 (d, ²J_{H,H} = 7.4 Hz, 1 H, 5-H), 4.61 (dd, ${}^{3}J_{H,H} = 3.7, 3.2$ Hz, 1 H, 10-H), 4.36 (d, ${}^{2}J_{H,H} = 7.4$ Hz, 1 H, 5-H), 4.24 (dd, ${}^{2}J_{H,H}$ = 12.0, ${}^{3}J_{H,H}$ = 3.2 Hz, 1 H, CH₂OPiv), 4.17 (dd, ${}^{2}J_{H,H}$ = 13.5, ${}^{3}J_{H,H}$ = 2.6 Hz, 1 H, 3-H), 4.03 (dd, ${}^{2}J_{H,H}$ = 12.0, ${}^{3}J_{H,H}$ = 3.7 Hz, 1 H, CH₂OPiv), 3.99 (dd, ${}^{2}J_{H,H}$ = 13.4, ${}^{3}J_{H,H} = 3.2$ Hz, 1 H, 7-H), 3.78 (dd, ${}^{2}J_{H,H} = 13.5$, ${}^{3}J_{H,H} = 2.2$ Hz, 1 H, 3-H), 3.67 (dd, ${}^{2}J_{H,H}$ = 13.4, ${}^{3}J_{H,H}$ = 1.0 Hz, 1 H, 7-H), 3.21 $(dd, {}^{3}J_{H,H} = 8.1, 4.9 \text{ Hz}, 1 \text{ H}, 9-\text{H}), 3.14 (dd, {}^{3}J_{H,H} = 8.1, 2.8 \text{ Hz},$ 1 H, 1-H), 2.84 (m, 1 H, 2-H), 2.78 (m, 1 H, 8-H), 1.18 (s, 9 H, *t*Bu) ppm. ¹³C NMR (90.6 MHz, CDCl₃, 25 °C): δ = 179.4 (12-C), 178.0 (C=O, ester), 100.6 (CH₂, 5-C), 82.0 (CH, 10-C), 73.3 (CH₂, 3-C), 70.6 (CH₂, 7-C), 65.6 (CH₂, CH₂OPiv), 43.6/43.4 (2× CH, 2-C/8-C), 39.1 (CH, 1-C), 38.8 [(CH₃)₃C], 36.1 (CH, 9-C), 27.1 [(*C*H₃)₃C] ppm. IR (ATR): \tilde{v} = 2970, 2934, 2868, 1762, 1724, 1479, 1279, 1145, 1085 cm⁻¹. $C_{15}H_{22}O_6$ (298.34): calcd. C 60.39, H 7.43; found C 60.30, H 7.72.

Compound 25b: ¹H NMR (250 MHz, CDCl₃, 25 °C): δ = 5.20 (d, ${}^{2}J_{H,H}$ = 7.2 Hz, 1 H, 5-H), 4.64 (ddd, ${}^{3}J_{H,H}$ = 7.3, 6.0, 5.8 Hz, 1 H, 10-H), 4.38 (dd, ${}^{2}J_{H,H} = 11.8$, ${}^{3}J_{H,H} = 7.3$ Hz, 1 H, CH₂OPiv), 4.35 (d, ${}^{2}J_{H,H}$ = 7.2 Hz, 1 H, 5-H), 4.21 (dd, ${}^{2}J_{H,H}$ = 11.8, ${}^{3}J_{H,H}$ = 5.8 Hz, 1 H, CH₂OPiv), 4.18 (dd, ${}^{2}J_{H,H}$ = 13.3, ${}^{3}J_{H,H}$ = 2.9 Hz, 1 H, 3-H), 3.88 (dd, ${}^{2}J_{H,H}$ = 13.4, ${}^{3}J_{H,H}$ = 3.9 Hz, 1 H, 7-H), 3.79 (dd, ${}^{2}J_{H,H}$ = 13.3, ${}^{3}J_{H,H}$ = 2.8 Hz, 1 H, 3-H), 3.68 (dd, ${}^{2}J_{H,H}$ = 13.4, ${}^{3}J_{H,H}$ = 1.2 Hz, 1 H, 7-H), 3.52 (dt, ${}^{3}J_{H,H}$ = 8.0, 6.0 Hz, 1 H, 9-H), 3.12 (dd, ${}^{3}J_{H,H}$ = 8.0, 3.3 Hz, 1 H, 1-H), 2.95 (m, 1 H, 8-H), 2.72 (m, 1 H, 2-H), 1.20 (s, 9 H, tBu) ppm. ¹³C NMR (62.9 MHz, $CDCl_3$, 25 °C): $\delta = 179.1$ (12-C), 178.0 (C=O, ester), 100.6 (CH₂, 5-C), 78.1 (CH, 10-C), 73.4 (CH₂, 3-C), 70.6 (CH₂, 7-C), 62.3 (CH₂, CH2OPiv), 43.1 (CH, 2-C), 39.7 (CH, 1-C), 38.8 [(CH3)3C], 37.4 (CH, 8-C), 35.9 (CH, 9-C), 27.1 [(CH₃)₃C] ppm. IR (ATR): \tilde{v} = 2958, 2941, 2871, 1771, 1729, 1480, 1281, 1147, 1080 $\rm cm^{-1}.~HRMS$ (ESI⁺): calcd. for C₁₅H₂₂O₆Na 321.1309; found 321.1301.

Compound 19b: ¹H NMR (360 MHz, CDCl₃, 25 °C): δ = 5.01 (ddd, ³J_{H,H} = 5.0, 4.3, 4.2 Hz, 1 H, 10-H), 4.89 (d, ²J_{H,H} = 8.8 Hz, 1 H, 5-H), 4.83 (d, ²J_{H,H} = 8.8 Hz, 1 H, 5-H), 4.16 (m, 1 H, CH₂OPiv), 4.25 (m, 1 H, CH₂OPiv), 4.08 (m, 1 H, 3-H), 3.95 (m, 1 H, 7-H), 3.66 (m, 1 H, 7-H), 3.58 (m, 1 H, 3-H), 3.03 (m, 1 H, 8-H), 2.95 (m, 1 H, 2-H), 2.89 (m, 1 H, 9-H), 2.80 (m, 1 H, 1-H), 1.20 (s, 9 H, *t*Bu) ppm. ¹³C NMR (90.6 MHz, CDCl₃, 25 °C): δ = 178.0 (C=O), 177.9 (C=O), 93.3 (CH₂, 5-C), 76.9 (CH, 10-C), 70.6 (CH₂, 3-C), 66.6 (CH₂, 7-C), 65.1 (CH₂, CH₂OPiv), 44.2 (CH, 1-C), 41.2 (CH, 2-C), 39.9 (CH, 8-C), 38.9 [(CH₃)₃C], 36.7 (CH, 9-C), 27.1 [(CH₃)₃C] ppm. MS *m*/*z* (%) = 298 (0.2) [M]⁺, 268 (1.2), 197 (0.2), 183 (0.8), 57 (100).

Compound 18b: ¹H NMR (360 MHz, CDCl₃, 25 °C): δ = 4.83 (s, 2 H, 5-H), 4.57 (dd, ³J_{H,H} = 3.4, 3.0 Hz, 1 H, 10-H), 4.24 (m, 1 H, CH₂OPiv), 4.14 (m, 1 H, 3-H), 4.10 (m, 1 H, CH₂OPiv), 4.06 (m, 1 H, 7-H), 3.54–3.49 (m, 2 H, 3-H, 7-H), 3.26 (m, 1 H, 9-H), 3.00 (m, 1 H, 2-H), 2.83–2.97 (m, 1 H, 1-H), 2.78 (m, 1 H, 8-H), 1.18 (s, 9 H, *t*Bu) ppm. ¹³C NMR (90.6 MHz, CDCl₃, 25 °C): δ = 175.7 (C=O), 175.4 (C=O), 93.0 (CH₂, 5-C), 80.8 (CH, 10-C), 69.8 (CH₂, 3-C), 68.1 (CH₂, 7-C), 65.0 (CH₂, CH₂OPiv), 45.0 (CH, 2-C), 41.2

(CH, 1-C), 39.4 (CH, 9-C), 38.9 (CH, 8-C), 38.8 [(CH₃)₃C], 27.2 [(CH₃)₃C] ppm. MS m/z (%) = 298 (0.2) [M]⁺, 268 (0.2), 197 (1.1), 183 (16), 57 (100).

Mixture **18b–19b**: HRMS (ESI⁺): calcd. for $C_{15}H_{22}O_6Na$ 321.1309; found 321.1302.

(1RS,5SR,6RS,7SR)-6,7-Bis(hydroxymethyl)-3-oxabicyclo[3.2.0]heptan-2-one (16c), (1RS,5SR,6RS,7RS)-6,7-Bis(hydroxymethyl)-3oxabicyclo[3.2.0]heptan-2-one (14c), and (1RS,5SR,6SR,7SR)-6,7-Bis(hydroxymethyl)-3-oxabicyclo[3.2.0]heptan-2-one (15c): A solution of 2(5H)-furanone 10 (150 mg, 1.78 mmol) and (Z)-13 (1.3 mL, 16.0 mmol) in acetonitrile (90 mL) was irradiated through a Quartz filter for 3 h. The progress of the reaction was monitored by TLC (hexane/EtOAc, 1:3). Evaporation of the solvent, followed by kugelrohr distillation of (Z)-13 under reduced pressure and silica gel column chromatography (hexane/EtOAc, 1:1 to EtOAc) rendered a mixture of 16c, 14c, and 15c (46:35:19 ratio; 210 mg, 1.22 mmol, 69% yield) and unreacted lactone 10 (18 mg, 0.21 mmol). Repeated column chromatography (hexane/EtOAc, 2:1 to EtOAc) provided the following fractions: (i) an oil identified as 16c, and (ii) a mixture of 14c and 15c. All attempts to separate the cycloadducts 14c and 15c were unsuccessful and enriched fractions were analyzed.

Compound 16c: ¹H NMR (250 MHz, [D₆]acetone, 25 °C): δ = 4.37 (dd, ²*J*_{H,H} = 9.3, ³*J*_{H,H} = 6.3 Hz, 1 H, 4-H), 4.25 (d, ²*J*_{H,H} = 9.3 Hz, 1 H, 4-H), 3.97–3.63 (m, 4 H, 2× 8-H, 2× 9-H), 2.96 (m, 1 H, 5-H), 2.82 (dd, ³*J*_{H,H} = 7.8, 2.6 Hz, 1 H, 1-H), 2.66 (m, 1 H, 6-H), 2.63 (m, 1 H, 7-H) ppm. ¹³C NMR (62.9 MHz, [D₆]acetone, 25 °C): δ = 179.4 (2-C), 72.8 (CH₂, 4-C), 60.6, 61.2 (2× CH₂, 8-C, 9-C), 42.7/41.4 (2× CH, 6-C/7-C), 37.7 (CH, 1-C), 36.0 (CH, 5-C) ppm. IR (ATR): \tilde{v} = 3600–3000, 2922, 2852, 1752, 1464, 1260, 1167, 1024 cm⁻¹. HRMS (ESI⁺): calcd. for C₈H₁₂O₄Na 195.0628; found 195.0631.

Compound 14c: ¹H NMR (250 MHz, [D₆]acetone, 25 °C): δ = 4.36 (dd, ²*J*_{H,H} = 9.3, ³*J*_{H,H} = 6.0 Hz, 1 H, 4-H), 4.24 (dd, ²*J*_{H,H} = 9.3, ³*J*_{H,H} = 1.3 Hz, 1 H, 4-H), 3.70–3.40 (m, 4 H, 2× 8-H, 2× 9-H), 3.13 (ddd, ³*J*_{H,H} = 9.3, 7.6, ⁴*J*_{H,H} = 1.1 Hz, 1 H, 1-H), 2.90 (m, 1 H, 5-H), 2.59 (m, 1 H, 6-H), 2.27 (m, 1 H, 7-H) ppm. ¹³C NMR (62.9 MHz, [D₆]acetone, 25 °C): δ = 177.9 (2-C), 73.6 (CH₂, 4-C), 64.1/62.7 (2× CH₂, 8-C/9-C), 46.5/39.9 (2× CH, 6-C/7-C), 37.7 (CH, 1-C), 35.0 (CH, 5-C) ppm.

Compound 15c: ¹H NMR (250 MHz, [D₆]acetone, 25 °C): δ = 4.63 (dd, ²*J*_{H,H} = 10.0, ³*J*_{H,H} = 2.3 Hz, 1 H, 4-H), 4.34 (dd, ²*J*_{H,H} = 10.0, ³*J*_{H,H} = 8.0 Hz, 1 H, 4-H), 3.70–3.40 (m, 4 H, 2× 8-H, 2× 9-H), 3.20 (ddd, ³*J*_{H,H} = 10.4, 8.1, 2.3, 1.0 Hz, 1 H, 5-H), 2.90 (m, 1 H, 1-H), 2.59 (m, 1 H, 7-H), 2.59 (m, 1 H, 6-H) ppm. ¹³C NMR (62.9 MHz, [D₆]acetone, 25 °C): δ = 178.6 (2-C), 68.7 (CH₂, 4-C), 64.3/61.7 (2× CH₂, 8-C/9-C), 43.3/38.9 (2× CH, 6-C/7-C), 37.8 (CH, 1-C), 33.0 (CH, 5-C) ppm.

Mixture **14c–15c**: IR (ATR): $\tilde{v} = 3600-3000$, 2912, 2873, 1737, 1473, 1373, 1167, 1082 cm⁻¹.

Irradiation of a solution of lactone **10** (150 mg, 1.78 mmol) and (*Z*)-**13** (1.3 mL, 16.0 mmol) in acetone (90 mL) through a Pyrex filter for 4 h delivered a mixture of **16c**, **14c**, and **15c** (43:37:20 ratio; 106 mg, 0.62 mmol, 35% yield) and unreacted lactone **10** (64 mg, 0.76 mmol) after purification of the crude material by silica gel column chromatography.

(1*R*,4*S*,5*S*,6*R*,7*R*)-6,7-Bis(hydroxymethyl)-4-(pivaloyloxymethyl)-3-oxabicyclo[3.2.0]heptan-2-one (18c) and (1*R*,4*S*,5*S*,6*S*,7*S*)-6,7-Bis(hydroxymethyl)-4-(pivaloyloxymethyl)-3-oxabicyclo[3.2.0]heptan-2-one (19c): A solution of 11 (150 mg, 0.76 mmol) and (*Z*)- 13 (0.56 mL, 6.84 mmol) in acetonitrile (90 mL) was irradiated through a Quartz filter for 4 h. The progress of the reaction was monitored by GC analysis. Evaporation of the solvent, followed by kugelrohr distillation of (Z)-13 under reduced pressure and silica gel column chromatography (hexane/EtOAc, 1:1 to EtOAc), afforded a mixture of 18c, 19c, and another unidentified cycloadduct (46:38:16 ratio; 101 mg, 0.35 mmol, 46% yield). By successive column chromatography purifications, fractions enriched in 18c and 19c were obtained.

Compound 18c: ¹H NMR (360 MHz, CDCl₃, 25 °C): δ = 4.64 (dd, ³J_{H,H} = 3.1, 2.5 Hz, 1 H, 4-H), 4.24 (dd, ²J_{H,H} = 12.2, ³J_{H,H} = 2.5 Hz, 1 H, CH₂OPiv), 4.08 (dd, ²J_{H,H} = 12.2, ³J_{H,H} = 3.1 Hz, 1 H, CH₂OPiv), 3.80–3.60 (m, 4 H, 2× 8-H, 2× 9-H), 3.25 (ddd, ³J_{H,H} = 9.2, 7.3, ⁴J_{H,H} = 1.1 Hz, 1 H, 1-H), 2.64 (m, 1 H, 7-H), 2.70 (dd, ³J_{H,H} = 7.3, 6.4 Hz, 1 H, 5-H), 2.38 (m, 1 H, 6-H), 1.17 (s, 9 H, *t*Bu) ppm. ¹³C NMR (90.6 MHz, CDCl₃, 25 °C): δ = 179.0 (2-C), 178.1 (C=O, ester), 82.4 (CH, 4-C), 65.4 (CH₂, CH₂OPiv), 64.0/62.6 (2× CH₂, 8-C/9-C), 44.8 (CH, 6-C), 38.8 (CH₃)₃C, 38.7 (2× CH, 1-C, 7-C), 36.7 (CH, 5-C), 27.1 [(CH₃)₃C] ppm.

Compound 19c: ¹H NMR (360 MHz, CDCl₃, 25 °C): δ = 5.00 (dd, ³J_{H,H} = 3.6, 3.1 Hz, 1 H, 4-H), 4.25 (dd, ²J_{H,H} = 12.0, ³J_{H,H} = 3.1 Hz, 1 H, CH₂OPiv), 4.08 (dd, ²J_{H,H} = 12.0, ³J_{H,H} = 3.6 Hz, 1 H, CH₂OPiv), 3.80–3.60 (m, 4 H, 2 × 8-H, 2 × 9-H), 3.00 (m, 1 H, 5-H), 3.00 (m, 1 H, 1-H), 2.65 (m, 1 H, 6-H), 2.38 (m, 1 H, 7-H), 1.17 [s, 9 H, (*t*Bu)] ppm. ¹³C NMR (90.6 MHz, CDCl₃, 25 °C): δ = 178.0 (C=O, ester), 177.9 (2-C), 77.8 (CH, 4-C), 66.0 (CH₂, CH₂OPiv), 64.5/61.8 (2 × CH₂, 8-C/9-C), 42.9 (CH, 7-C), 40.2 (CH, 6-C), 38.8 [(CH₃)₃C], 38.7 (CH, 1-C), 35.1 (CH, 5-C), 27.1 [(CH₃)₃C] ppm.

General Procedure for Photoisomerization of (*E*)- and (*Z*)-1,4-Dichloro-2-butene (5): A solution of (*E*)-5 or (*Z*)-5 (2.00 g, 16.0 mmol) in acetonitrile (90 mL) was irradiated through a Quartz or Pyrex filter for 2 h with or without the presence of 2(5H)-furanone 10 (150 mg, 1.78 mmol). The *E*/*Z* ratio was monitored by GC analysis.

Methanolysis of a Mixture of 16b, 43b, and 15b: To a solution of a mixture of 16b, 43b, and 15b (30 mg, 0.15 mmol) in MeOH (5 mL), pTsOH (15 mg, 0.07 mmol) was added and the mixture was stirred at room temperature for 48 h. The reaction progress was monitored by TLC (EtOAc). After evaporation of the solvent, the residue was purified by silica gel column chromatography, affording a mixture of 16c, 14c, and 15c (70:15:15 ratio; 20 mg, 0.11 mmol, 76% yield).

Methanolysis of a Mixture of 20b, 25b, 19b, and 18b: To a solution of a mixture of **20b, 25b, 19b**, and **18** (38 mg, 0.12 mmol) in MeOH (4 mL), *p*TsOH (12 mg, 0.06 mmol) was added and the mixture was stirred at room temperature for 4 h. The reaction progress was monitored by GC. After evaporation of the solvent, the residue was purified by silica gel column chromatography, affording a mixture of **20c, 25c, 19c**, and **18c** (54:15:14:17 ratio; 26 mg, 0.08 mmol, 74% yield).

Supporting Information (see footnote on the first page of this article): Copies of NMR spectra of selected compounds.

Acknowledgments

We acknowledge financial support from the Dirección General de Investigación (project CTQ2007-60613) and a grant from the Ministerio de Educación y Ciencia (MEC) (to S. P.).

- [1] R. P. Walker, D. J. Faulkner, D. Van Engen, J. Clardy, J. Am. Chem. Soc. 1981, 103, 6772–6773.
- [2] a) P. A. Keifer, R. E. Schwartz, M. E. S. Koker, R. G. Hughes, D. Rittschof, K. L. Rinehart, J. Org. Chem. 1991, 56, 2965– 2975; b) R. Rosa, W. Silva, E. de Motta, A. D. Rodríguez, J. J. Morales, M. Ortiz, Experientia 1992, 48, 885–887; c) V. S. Bernan, D. M. Roll, C. M. Ireland, M. Greenstein, W. M. Maiese, D. A. Steinberg, J. Antimicrob. Chemother. 1993, 32, 539–550; d) F. Cafieri, R. Carnuccio, E. Fattorusso, O. Taglialatela-Scafati, T. Vallefuoco, Bioorg. Med. Chem. Lett. 1997, 7, 2283–2288; e) A. Cipres, D. P. O'Malley, K. Li, D. Finlay, P. S. Baran, K. Vuori, ACS Chem. Biol. 2010, 5, 195–202.
- [3] V. M. Dembitsky, J. Nat. Med. 2008, 62, 1–33.
- [4] Y. Chi, W. Yan, J. Li, Phytochemistry 1990, 29, 2376–2378.
- [5] a) Y. Fujiwara, K. Naithou, T. Miyazaki, K. Hashimoto, K. Mori, Y. Yamamoto, *Tetrahedron Lett.* 2001, *42*, 2497–2499; b)
 S. Tsukamoto, B.-C. Cha, T. Ohta, *Tetrahedron* 2002, *58*, 1667–1671; c) K. Wei, W. Li, K. Koike, Y. Chen, T. Nikaido, *J. Org. Chem.* 2005, *70*, 1164–1176.
- [6] V. B. Birman, X.-T. Jiang, Org. Lett. 2004, 6, 2369–2371.
- [7] P. S. Baran, A. L. Zografos, D. P. O'Malley, J. Am. Chem. Soc. 2004, 126, 3726–3727.
- [8] P. S. Baran, K. Li, D. P. O'Malley, C. Mitsos, Angew. Chem. Int. Ed. 2006, 45, 249–252.
- [9] a) R. Alibés, J. L. Bourdelande, J. Font, T. Parella, *Tetrahedron* 1996, 52, 1279–1292; b) P. de March, M. Figueredo, J. Font, J. Raya, Org. Lett. 2000, 2, 163–165; c) R. Alibés, P. de March, M. Figueredo, J. Font, M. Racamonde, T. Parella, Org. Lett. 2004, 6, 1449–1452; d) A. Rustullet, R. Alibés, P. de March, M. Figueredo, J. Font, Org. Lett. 2007, 9, 2827–2830; e) M. Racamonde, R. Alibés, M. Figueredo, J. Font, P. de March, J. Org. Chem. 2008, 73, 5944–5952.
- [10] a) J. Mann, N. K. Parlett, A. Thomas, J. Chem. Res., Synop. 1987, 369; b) R. Alibés, J. L. Bourdelande, J. Font, Tetrahedron: Asymmetry 1991, 2, 1391–1402.
- [11] a) R. Alibés, J. L. Bourdelande, J. Font, *Tetrahedron Lett.* 1993, 34, 7455–7458; b) R. Alibés, J. L. Bourdelande, J. Font, *Tetrahedron Lett.* 1994, 35, 2587–2588; c) R. Alibés, J. L. Bourdelande, J. Font, A. Gregori, J. Braz. Chem. Soc. 1995, 6, 119–121; d) R. Alibes, J. L. Bourdelande, J. Font, A. Gregori, T. Parella, *Tetrahedron* 1996, 52, 1267–1278; e) A. Gregori, R. Alibes, J. L. Bourdelande, J. Font, M. Gregori, R. Alibes, J. L. Bourdelande, J. Font, M. Gregori, R. Alibes, P. de March, M. Figueredo, J. Font, M. Racamonde, A. Rustullet, A. Álvarez-Larena, J. F. Piniella, T. Parella, *Tetrahedron Lett.* 2003, 44, 69–71; g) R. Alibes, P. de March, M. Figueredo, J. Font, X. L. Fu, M. Racamonde, A. Alvarez-Larena, J. F. Piniella, J. Org. Chem. 2003, 68, 1283–1289; h) A. Rustullet, M. Racamonde, R. Alibés, P. de March, M. Figueredo, J. Font, M. Figueredo, J. Font, M. Figueredo, J. Font, X. L. Fu, M. Racamonde, A. Alvarez-Larena, J. F. Piniella, J. Org. Chem. 2003, 68, 1283–1289; h) A. Rustullet, M. Racamonde, R. Alibés, P. de March, M. Figueredo, J. Font, Tetrahedron 2008, 64, 9442–9447.
- [12] a) E. J. Corey, J. D. Bass, R. LeMathieu, R. B. Mitra, J. Am. Chem. Soc. 1964, 86, 5570–5583; b) L. Duc, R. A. Mateer, L. Brassier, G. W. Griffin, Tetrahedron Lett. 1968, 9, 6173–6178; c) A. Wissner, J. Meinwald, J. Org. Chem. 1973, 38, 1697–1702; d) M. Ohkita, K. Sano, T. Suzuki, T. Tsuji, Tetrahedron Lett. 2001, 42, 7295–7297; e) I. Shinohara, H. Nagaoka, Tetrahedron Lett. 2004, 45, 1495–1498.
- [13] a) J. F. D. Kelly, J. M. Kelly, T. B. H. McMurry, J. Chem. Soc. Perkin Trans. 2 1999, 1933–1941; b) E. García-Expósito, R. González, M. Martín, E. Muray, J. Rifé, J. L. Bourdelande, V. Branchadell, R. M. Ortuño, J. Org. Chem. 2000, 65, 6958–6965; c) W. M. Horspool, Photochemistry 2001, 32, 117–148.
- [14] a) T. Bach, Synthesis 1998, 683–708; b) W. Adam, V. R. Stegmann, J. Am. Chem. Soc. 2002, 124, 3600–3607.
- [15] a) D. I. Schuster, G. Lem, N. A. Kaprinidis, *Chem. Rev.* 1993, 93, 3–22; b) D. Andrew, A. C. Weedon, *J. Am. Chem. Soc.* 1995, 117, 5647–5663.

Received: January 17, 2011 Published Online: May 6, 2011