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ABSTRACT: The reactivity of a boron complex with a redox-
active formazanate ligand, LBPh2 [L = PhNNC(p-tol)NNPh],
was studied. Two-electron reduction of this main-group
complex generates the stable, nucleophilic dianion
[LBPh2]

2−, which reacts with the electrophiles BnBr and
H2O to form products that derive from ligand benzylation and
protonation, respectively. The resulting complexes are anionic
boron analogues of leucoverdazyls. N−C and N−H bond homolysis of these compounds was studied by exchange NMR
spectroscopy and kinetic experiments. The weak N−C and N−H bonds in these systems derive from the stability of the resulting
borataverdazyl radical, in which the unpaired electron is delocalized over the four N atoms in the ligand backbone. We thus
demonstrate the ability of this system to take up two electrons and an electrophile (E+ = Bn+, H+) in a process that takes place on
the organic ligand. In addition, we show that the [2e−/E+] stored on the ligand can be converted to E• radicals, reactivity that has
implications in energy storage applications such as hydrogen evolution.

■ INTRODUCTION
A key feature in the reactivity of molecular complexes with
transition-metal centers is their ability to change oxidation
states via electron-transfer reactions. This has allowed the
development of a large variety of redox-based catalytic
transformations that are of importance in the synthesis of
organic molecules, polymers, and materials. Often these
reactions rely on two-electron steps (e.g., oxidative addition/
reductive elimination). Also, in energy applications, intercon-
version between redox states in simple small molecules is
relevant, and catalysis is imperative to allow high reaction rates
and to control product selectivity. With the transition from a
fossil-based to a renewable energy supply, a key challenge is to
develop reliable, cheap methods to convert and store
sustainable energy into chemicals (“solar fuels”).1 Examples of
chemical reactions for energy storage include CO2 reduction to
CO, formic acid, or methanol,2 the interconversion between N2
and NH3,

3 and H2O splitting.4 In the latter, the oxidation of
H2O (2H2O → O2 + 4H+ + 4e−)5 provides protons and
electrons that can be used to drive a multitude of subsequent
reactions, either directly or via the formation of H2. The high
thermodynamic and kinetic stability of several of these
molecules (e.g., CO2 and N2) and the multistep, multielectron
nature of their transformation place significant demands on the
catalyst design: catalysts should be stable in a variety of redox
states, be able to efficiently transform a multitude of
intermediates en route to the final product(s), and at the
same time have low activation barriers for each individual step
in the reaction sequence. Against this backdrop, it is perhaps
not surprising that there is much interest in molecular catalysts
for energy applications because these offer the possibility of

tuning the catalyst properties with great precision via rational
molecular design and can provide detailed insight into the
reaction mechanism(s) at play.
The majority of synthetic molecular catalysts that operate via

elementary steps involving changes in the oxidation state are
proposed to do so by changing the formal oxidation state of the
central metal atom. In contrast, Nature often uses metal-
loenzymes in which there is an organic redox-active cofactor
adjacent or bound to the active site. The role of these redox-
active moieties is to accumulate redox equivalents that can
subsequently be used by the metalloenzyme to perform
challenging multielectron transformations. Examples of such
metalloenzymes include galactose oxidase6 and cytochrome
P450,7 which store redox equivalents in the organic ligand
scaffold to ultimately perform two-electron oxidation of
alcohols and aliphatic CH bonds, respectively. Inspired by
these enzymatic systems, there is increasing interest in the
chemistry of synthetic catalysts with redox-active ligands.8 The
electronic structure of such complexes, which underpins our
understanding of the reactivity, is only beginning to be
uncovered in recent years. As an example, iron porphyrin
complexes that perform electrocatalytic CO2 reduction at the
formal Fe0 potential have recently been shown to consist of an
intermediate-spin FeII center that is antiferromagnetically
coupled to a two-electron-reduced porphyrin diradical; the

Special Issue: Applications of Metal Complexes with Ligand-
Centered Radicals

Received: January 12, 2018

Forum Article

pubs.acs.org/ICCite This: Inorg. Chem. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acs.inorgchem.8b00079
Inorg. Chem. XXXX, XXX, XXX−XXX

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

pubs.acs.org/IC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.inorgchem.8b00079
http://dx.doi.org/10.1021/acs.inorgchem.8b00079
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


reducing equivalents in this catalyst species thus reside on the
organic ligand.9 Moreover, electrocatalytic CO2 reduction using
a porphyrin complex with a redox-innocent ZnII ion was
recently reported,10 further highlighting the importance of
ligand-based redox reactions in these systems. Recent studies
on azo-containing pincer ligands have shown that also alcohol
dehydrogenation can be catalyzed via a pathway that involves a
reduced azo moiety.11 Similarly, studies on molecular electro-
catalysts for the hydrogen evolution reaction (HER) have
identified several systems in which the mechanism does not
involve “traditional” metal hydride intermediates;12 instead, the
organic ligand is proposed to be involved as the locus of
reduction, protonation, or both. Thus, the assembly of two
protons and two electrons as required for H2 production
requires a delicate interplay between the reactivity of the metal
center and that of the ligand. Illustrative examples include
cobaloximes13 (Chart 1, A) and related compounds,14 for
which there has been considerable debate on the intermediates
that lead to H2 formation,15,16 and nickel diphosphine
complexes with a “pendant” proton-relay site (Chart 1, B).17

In addition, hydrogen evolution catalysts are known with
“redox-active” ligands: homogeneous cobalt dithiolene com-
pounds have been pioneered by Holland and Eisenberg (Chart
1, C),18−20 and these were recently extended to heterogeneous
systems21 and their mechanisms studied computationally.22

Recent work from Grapperhaus and co-workers identified
homogeneous proton reduction catalysts that proceed via
ligand-centered reactions in which metal hydride species are
not involved (Chart 1, D),23 and also nickel porphyrin HER
catalysts have been shown to undergo reduction/protonation to
lead to an organic hydride as the key intermediate generated by
ligand-based [2e−/H+] reactivity.24 In addition to catalysts
containing transition-metal centers, examples have been
reported of main-group complexes that are active in hydrogen
evolution,25 as illustrated by Berben’s aluminum complexes
with reduced pyridinediimine ligands (Chart 1, E).
The mechanistic ambiguities in (electro)catalysis and the

new types of reactivities that can result with metal complexes
that contain redox-active ligands make these interesting systems
for further exploration. Intrigued by work from the Hicks group
on formazanate ligands as nitrogen-rich, redox-active analogues

of the well-known β-diketiminates,26 our group has started a
research program to explore the coordination chemistry, redox
behavior, and reactivity of complexes with formazanate
ligands.27 Although some early reports on related complexes
exist,28,29 it is only recently that interest in this class of ligands
has gained momentum. Concurrent with our work, the Gilroy
group and others have reported related complexes with
formazanate ligands and studied the properties of these
compounds30,31 and materials derived thereof.32 Previously,
we studied ligand-based reductions in boron formazanate
compounds and showed that both one- and two-electron-
reduced products can be obtained (Scheme 1).33 For the boron

difluoride derivative, two-electron reduction leads to the
elimination of 2 equiv of F− and the formation of a boron
carbenoid intermediate, the fate of which is ultimately a series
of B3N3 heterocyclic products that incorporate the boron
formazanate fragment (Scheme 1).34

In this Forum Article, we present boron complexes with the
formazanate ligand L [LBPh2 (2), where L = [PhNNC(p-

Chart 1

Scheme 1. Synthesis of One- and Two-Electron-Reduced
Boron Formazanate Compounds and Their Conversion to
BN Heterocyclic Products via an N-Heterocyclic Boron(I)
Carbenoid Intermediate
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tol)NNPh]−] and explore the nucleophilic reactivity of the
corresponding two-electron-reduced complex [LBPh2]

2− (22−)
with the electrophiles BnBr and H2O. The products are group
13 analogues of leucoverdazyls (tetrahydro-1,2,4,5-tetrazines).
Our results demonstrate that, starting from neutral 2, the
sequential “storage” of two electrons and 1 equiv of an
electrophile (E+ = Bn+, H+) occurs in this main-group
compound, an overall [2e−/E+] process that takes place
exclusively at the organic ligand. The ability of the products
to subsequently undergo homolytic N−H and N−C bond
cleavage was investigated by exchange NMR spectroscopy and
kinetic experiments.

■ RESULTS AND DISCUSSION
The ligand 1H, its corresponding boron complex 2, and the
dianion 22− were prepared as reported previously (Scheme
1).33c Treatment of the two-electron-reduced, dianionic boron
formazanate compound 22− with BnBr on an NMR scale in
tetrahydrofuran (THF)-d8 resulted in the clean formation of a
new compound. The appearance of a set of (broad)
diastereotopic protons at 3.78 and 3.42 ppm in the 1H NMR
spectrum is indicative of a benzyl group attached to an N atom
of the formazanate ligand, and the product is formulated as the
ligand-benzylated compound [BnLBPh2]

− (Bn3−; Scheme 2).

Repeating the reaction on a preparative scale allowed the
isolation of Bn3− (as its sodium salt) in 92% yield as a waxy
green solid upon precipitation with hexane. NMR analysis of
isolated Bn3− at room temperature in a THF-d8 solution shows
fluxional behavior, with several resonances being broadened. A
variable-temperature NMR study (500 MHz, THF-d8) in the
temperature range between −30 and +70 °C shows that the
broadening of the diastereotopic benzyl CH2 resonances is due
to chemical exchange: two sharp doublets are observed at −25
°C (3.79 and 3.38 ppm) that are mutually coupled with 2JHH =
15.3 Hz. At 70 °C, these signals are coalesced and appear as a
sharp singlet at 3.69 ppm. Resonances due to the phenyl groups
bound to boron are also exchange-broadened, with two distinct
BPh resonances observed at low temperature that coalesce to a
single set for the BPh2 moiety at temperatures >65 °C. These
observations are taken as an indication that in the highly
congested structure of Bn3− the rotation around the N−CH2Ph
bond is “geared” to rotation of the BPh moieties. The p-H
atoms of the inequivalent NPh rings in Bn3− are observed at
6.16 and 6.07 ppm, and the former shows additional coupling,
the magnitude of which is temperature-dependent. We attribute
this feature to through-space interactions with protons of the
N-benzyl ring due to their close proximity. The 11B NMR
resonance at 1.16 ppm is indicative of a four-coordinate B
center, supporting the assignment of Bn3− as a boron diphenyl
complex with a benzylated formazanate fragment. The reaction
of 22− with BnBr is best regarded as a SN2-type nucleophilic

substitution, with the highly charged formazanate ligand in 22−

acting as the nucleophile.
Similarly, the reaction of 22− with 1 equiv of H2O results in

the clean formation of the corresponding protonated product
H3− with precipitation of NaOH (Scheme 2). The diagnostic
N−H resonance of H3− is found at 5.04 ppm in the 1H NMR
spectrum, while the ligand and BPh2 groups in

H3− are similar
to those in Bn3− with two upfield N−Ph NMR resonances due
to p-H at 6.12 and 6.08 ppm. The similarity of the NMR
spectral data for H3− and Bn3− suggests that they have
comparable structures, with the same site of attack in the
formazanate ligand for both electrophiles. The compounds are
invariably obtained as oily materials, but storage of a sample of
Bn3− (as a green oil) on THF/hexane at −30 °C for several
days allowed the oil to solidify and form forest-green crystals.
Unfortunately, the crystals melt again when taken out of the
mother liquor, and we were unable to obtain structural data by
X-ray crystallography. Although, in principle, two structural
types can be plausibly formulated for these compounds (six-
and five-membered ring isomers; see Scheme 2), NMR
spectroscopy is most consistent with a six-membered cyclic
structure (shown as Bn/H3−). In particular, two-dimensional
NOESY NMR spectroscopy showed cross-peaks of similar
intensity between the N−H resonance and the o-H signals of
both the p-tolyl and one of the N−Ph rings, as expected for
structures 3−. In addition, a comparison of the empirical and
density functional theory (DFT)-calculated NMR chemical
shifts is most consistent with six-membered chelate rings (see
Supporting Information for details). Finally, six-membered-ring
carbon-based analogues of 3− (leucoverdazyls) are well-
established in the literature, and the reactivity of Bn/H3− (vide
infra) is similar to that in the organic analogues.35 On the basis
of these considerations, we propose that compounds Bn/H3−

have the structures shown in Scheme 2. Related charge-neutral
boron hydride compounds were prepared by the thermolysis of
(formazanate)BH2 compounds. In these systems, intramolec-
ular transfer of a hydride from the BH moiety to the
formazanate ligand occurs at ca. 100 °C, which also formally
involves a [2e−/H+] modification of the ligand, but this is
accompanied by N−N bond cleavage as a result of a second
hydride being transferred.36 The current approach of sequential
two-electron reduction, followed by external electrophile
addition, leads to the clean formation of “borataleucoverdazyls”,
a class of compounds that to the best of our knowledge have
not been prepared previously.
The UV/vis spectra of compounds H3− and Bn3− in THF are

similar and show absorption maxima at 400 and 395 nm,
respectively, presumably because of a π → π* transition in the
(localized) NC bond (Figure S5). These bands are shifted to
higher energies in comparison to the intense π → π* transition
band in compounds with fully delocalized formazanate ligands
(e.g., λmax = 500 nm in 2) but in the same range as that found in
complexes with the same oxidation state of the ligand (L3−),
such as the precursor 22− (λmax = 389 nm).33c

In the context of proton reduction chemistry, it was of
interest to evaluate the further reactivity of these compounds.
The anionic boron compounds Bn/H3− are unreactive toward an
additional 1 equiv of electrophile (BnBr or H2O) but do react
with strong acids such as p-toluenesulfonic acid. The NMR
spectra of these reactions, however, show a complex mixture,
and in no case could the formation of H2 (or BnH) be
ascertained. The lack of controlled further reactivity of Bn/H3−

(other than decomposition to unidentified products when

Scheme 2. Synthesis of Compounds Bn3− and H3−
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reacted with strong acid) might indicate that these anionic
compounds are not sufficiently basic (nucleophilic) to react
with mild electrophiles. Although these preliminary data
suggest that in the present system accumulation of the [2e−/
2H+] equivalents required for proton reduction is not feasible,
we anticipate that changes in the ligand substitution pattern
and/or the use of acids of intermediate pKa might solve these
problems. It is important to note that ligand-centered reactions
that accumulate two electrons and a proton ([2e−/H+]) were
recently shown to generate an organic “hydride equivalent” in
the case of a nickel “hangman” porphyrin that is able to release
H2 following a second protonation step.24 In this system, the
sequence of reduction/protonation events (and thus the
mechanism of H2 evolution catalysis) was shown to be highly
dependent on the acid strength. Our results demonstrate that a
similar accumulation of [2e−/H+] can take place in the boron
complex 2, but the reactivity of the resulting organic (ligand)
“hydride” needs further exploration.
Given the similarity of the anionic compounds Bn/H3− to

neutral leucoverdazyls (1,2,3,4-tetrahydro-1,2,4,5-tetrazines),
we became interested in cleavage of the N−H and N−C
bonds in these systems. Hicks and co-workers recently
described that coordination to a Ru center weakens the N−C
bond in an N-benzyltetrazine via metal−ligand noninnocence
and leads to homolysis that is ca. 40 times faster than that
without metal bound.37 The influence of main-group or
transition-metal elements incorporated into these heterocyclic
structures has not been studied before, but homolytic cleavage
is expected to generate the radical anions 2•−, which contain
ligand-based radicals and are relatively stable due to
delocalization of the unpaired electron over all four N atoms
(Figure S14).33c,35b For the “borataleucoverdazyl” H3−, its lack
of symmetry (C1) results in inequivalent N−Ph groups, and 2D
EXSY NMR spectroscopy in a THF-d8 solution shows chemical
exchange cross-peaks between the well-separated o-H reso-
nances of these rings, which is the result of net H-atom transfer
between the two “internal” N atoms in the ligand backbone.
The mechanism of H-atom transfer can occur either via a
dissociative mechanism (N−H bond homolysis) or intra-
molecularly via a bimolecular (associative) pathway. To probe
the mechanism of H-atom transfer, the exchange kinetics were
measured by 2D EXSY NMR spectroscopy in the temperature

range 10−65 °C. Subsequent Eyring analysis afforded the
activation parameters as ΔH⧧ = 44.2 ± 0.9 kJ·mol−1 and ΔS⧧ =
−93 ± 3 J·mol−1·K−1 (see the Supporting Information for
details). The large, negative activation entropy is in agreement
with a bimolecular mechanism, and the activation enthalpy is
too low for (homolytic) N−H bond dissociation as the rate-
determining step. An estimation of the N−H bond dissociation
energy using DFT calculations (via geometry optimizations at
increasing N−H distances) reveals a value of ca. 275 kJ·mol−1,
in agreement with the experimental values for leucoverdazyls
(281−307 kJ·mol−1).38 These arguments support a (sym-
metrical) exchange pathway via the bimolecular mechanism
shown in Scheme 3.
The reaction of H3− with TEMPO in THF is fast and

generates 2•− according to electron paramagnetic resonance
(EPR) spectroscopy by comparison to an authentic sample.
Despite the presence of paramagnetic species, the 1H NMR
spectra show relatively sharp resonances for H3− and TEMPO-
H, and complete (>95%) consumption of the starting material
for a 1:1 mixture indicates that the N−H bond in H3− is weaker
than that in TEMPO-H, for which a bond dissociation free
energy of 270−280 kJ·mol−1 in organic solvents has been
reported.39

In contrast to H3−, the benzyl analogue Bn3− does not show
2D EXSY NMR cross-peaks even at elevated temperature (75
°C). This likely is due to a change in the mechanism, with
(dissociative) homolytic cleavage of the N−C bond now
operative. To obtain insight into the N−C(Bn) bond
dissociation energy, the kinetics of benzyl transfer from Bn3−

to TEMPO were measured in the temperature range between
55 and 85 °C. To effectively trap the Bn• radical formed, kinetic
experiments were carried out in the presence of 20 equiv of
TEMPO. Monitoring the reaction at regular time intervals by
1H NMR spectroscopy showed clean exponential decay of the
starting material and the concomitant appearance of TEMPO-
Bn. Eyring analysis afforded the activation parameters as ΔH⧧ =
121 ± 5 kJ·mol−1 and ΔS⧧ = 77 ± 14 J·mol−1·K−1 (see the
Supporting Information for details). Under similar conditions,
transfer of the 4-fluorobenzyl group in F‑Bn3− to TEMPO was
evaluated, which was shown to have activation parameters of
ΔH⧧ = 107 ± 3 kJ·mol−1 and ΔS⧧ = 36 ± 9 J·mol−1·K−1. In
agreement with rate-determining N−C(Bn) bond homolysis,

Scheme 3
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the activation entropy is large and positive, and ΔH⧧ can be
taken as an approximation of the N−C bond dissociation
enthalpy.37,40 The ΔH⧧ values of 121 ± 5 and 107 ± 7 kJ·mol−1

for Bn3− and F‑Bn3−, respectively, are somewhat smaller than
that in pure carbon-based N-alkyl-substituted benzyltetra-
zines37,41 and fall in the lower range of C−O bond dissociation
energies in the well-studied alkoxyamines40,42 or Ti−O bond
dissociation energies in titanocene(IV) complexes derived from
nitroxyl radicals.43

■ CONCLUDING REMARKS
In conclusion, this work shows that the ligand in boron
formazanate complexes is reactive and can be used to
accumulate [2e−/E+] equivalents (E+ = Bn+, H+), a step that
has precedent in nontraditional hydrogen evolution catalysts
(i.e., those not going through metal hydride intermediates; E+ =
H+).24 Although preliminary attempts to elicit “organohydride”
reactivity in H3− by protonation, a reaction relevant to
hydrogen evolution, were not successful, compounds Bn/H3−

are shown to have weak N−H/N−C bonds that are readily
cleaved homolytically. Our results complement Hicks’ obser-
vation that N−C bond homolysis in coordinated leucoverdazyls
may be controlled by metal−ligand covalency and consequent
spin delocalization onto the metal center. The incorporation of
an element other than C (here, B) in the six-membered ring of
leucoverdazyls similarly allows modulation of the homolytic
N−C and N−H bond cleavage energies. The weak N−C and
N−H bonds in these systems is a result of the stability of the
resulting boron formazanate radical (“borataverdazyl”) species.
Having established the synthesis and characterization of
“borataleucoverdazyls”, we are currently exploring ligand-
substituent effects on the reactivity of these compounds. In
general, we anticipate that the ability to influence the basicity,
radical stability, and N−H/N−C bond strength of compounds
containing the formazanate ligand, either via substituent effects
or by the incorporation of different central elements (main
group or transition metal), can be used to modulate the
reactivity and steer it away from the observed radical reactions
(H•/Bn• transfer) toward multielectron reactions (e.g., [2e−/
2H+]). These reactions are of fundamental importance, for
example, in electrocatalytic hydrogen evolution, and we are
actively working toward applying our systems in this area.

■ EXPERIMENTAL SECTION
General Considerations. All manipulations were carried out

under a nitrogen or an argon atmosphere using standard glovebox,
Schlenk, and vacuum-line techniques. Toluene and hexane (Aldrich,
anhydrous, 99.8%) were passed over columns of Al2O3 (Fluka), BASF
R3-11-supported copper oxygen scavenger, and molecular sieves
(Aldrich, 4 Å). THF (Aldrich, anhydrous, 99.8%) was dried by
percolation over columns of Al2O3 (Fluka). Compounds H3−, Bn3−,
and F‑Bn3− are highly air-sensitive, and the solvents (THF and hexane)
used for their preparation and characterization were additionally dried
on a sodium/potassium alloy and subsequently vacuum-transferred
and stored under nitrogen. All solvents were degassed prior to use and
stored under nitrogen. THF-d8 (Sigma-Aldrich) was vacuum-trans-
ferred from a sodium/potassium alloy and stored under nitrogen.
Compound 22− (as its disodium salt, [(PhNNC(p-tol)NNPh)BPh2]-
[Na2(THF)6]) was synthesized according to a published procedure.33c

NMR spectra were recorded on a Varian Mercury 400, Inova 500, or
Bruker 600 spectrometer. The 1H and 13C NMR spectra were
referenced internally using the residual solvent resonances and
reported in ppm relative to TMS (0 ppm); J is reported in hertz.
The assignments of NMR resonances were aided by COSY, NOESY,
HSQC, and HMBC experiments using standard pulse sequences. UV/

vis spectra were recorded in a THF solution (∼10−3 M) in a quartz
cuvette using an AVANTES AvaSpec-2048 spectrometer. Samples for
elemental analyses were sent to Kolbe Microanalytical Laboratory
(Mülheim an der Ruhr, Germany). However, despite our best efforts,
no satisfactory analysis data could be obtained for these compounds,
which is likely due to their highly air-sensitive nature and/or to the fact
that these compounds are oily and therefore still contain residual
solvent and/or (unknown) impurities. It should be noted, however,
that NMR spectroscopy indicates that compounds H/Bn3− are formed
cleanly (>90% by integration relative to an internal standard).

Synthesis of [HLBPh2]Na(THF)2 (H3−). Compound 22− (400 mg,
0.598 mmol) was dissolved in 2 mL of THF in a Schlenk tube inside
the glovebox. To this was added 1 equiv of H2O (as a dilute solution in
THF), which caused the color to change from orange to purple-red.
After the mixture was stirred for 1 h, all of the volatiles were removed
under reduced pressure and the crude product was washed with
hexane (3 × 2 mL). Subsequently, drying under vacuum gave
compound H3− as an oily green material (339 mg, 0.524 mmol, 87%).
1H NMR (500 MHz, THF-d8, −5 °C): δ 7.79 (d, J = 8.0 Hz, 2H, p-tol
o-H), 7.39 (d, J = 7.1 Hz, 4H, BPh o-H), 7.01 (d, J = 8.0 Hz, 2H, p-tol
m-H), 6.97 (d, J = 7.9 Hz, 2H, N(2)Ph o-H), 6.91 (t, J = 7.1 Hz, 4H,
BPh m-H), 6.85 (t, J = 7.1 Hz, 2H, BPh p-H), 6.67−6.52 (overlapped,
6H, N(1)Ph (o + m)-H and N(2)Ph m-H), 6.12 (t, J = 7.0 Hz, 1H,
N(2)Ph p-H), 6.08 (t, J = 6.8 Hz, 1H, N(1)Ph p-H), 5.04 (s, 1H,
NCNH), 3.62 (m, 10H, THF), 2.28 (s, 3H, p-tol CH3), 1.78 (m, 10H,
THF). 11B NMR (128.0 MHz, THF-d8, 25 °C): δ 0.4 (s). 13C NMR
(125 MHz, THF-d8, −5 °C): δ 156.39 (BPh ipso-C), 155.14 (N(1)Ph
ipso-C), 154.55 (N(2)Ph ipso-C), 138.48 (NCN), 136.20 (p-tol
CNCN), 135.88 (BPh o-CH), 135.62 (p-tol CCH3), 128.75 (p-tol m-
CH), 127.40 (N(2)Ph m-CH), 126.86 (BPh m-CH), 126.78 (N(1)Ph
o-CH), 125.47 (p-tol o-CH), 124.33 (BPh p-CH), 118.94 (N(2)Ph o-
CH), 117.35 (N(1)Ph m-CH), 113.93 (N(2)Ph p-CH), 113.31
(N(1)Ph p-CH), 68.30 (THF), 26.44 (THF), 21.41 (p-tol CH3).

Synthesis of [BnLBPh2]Na(THF)2 (Bn3−). Compound 22− (400 mg,
0.498 mmol) was dissolved in 2 mL of THF in a Schlenk tube inside a
glovebox. To this was added 1 equiv of benzyl bromide, which caused
the color to change from orange to purple-red. After the mixture was
stirred for 1 h, all of the volatiles were removed under reduced
pressure and the crude product was washed with hexane (3 × 2 mL).
Subsequently, drying under vacuum gave compound Bn3− as an oily
green material (292 mg, 0.450 mmol, 92%). 1H NMR (600 MHz,
THF-d8, 10 °C): δ 7.83 (d, J = 8.1 Hz, 2H, p-tol o-H), 7.69 (d, J = 6.9
Hz, 2H, B(1)Ph o-H), 7.09 (t, J = 7.0 Hz, 2H, B(1)Ph m-H), 7.05−
6.98 (overlapped, 6H, (benzyl)Ph o-H, B(2)Ph o-H, and p-tol m-H),
6.97 (t, J = 7.0 Hz, 1H, B(1)Ph p-H), 6.94 (d, J = 6.4 Hz, 2H, N(1)Ph
o-H), 6.87−6.79 (m, 3H, (benzyl)Ph (m + p)-H), 6.57−6.53
(overlapped, 5H, N(1)Ph m-H and B(2)Ph (m + p)-H), 6.47−6.45
(m, 4H, N(2)Ph (o + m)-H), 6.17−6.14 (m, 1H, N(2)Ph p-H), 6.07
(t, J = 7.0 Hz, 1H, N(1)Ph p-H), 3.78 (d, J = 15.3 Hz, 1H, benzyl
CH2), 3.62 (m, 8H, THF), 3.42 (d, J = 15.3 Hz, 1H, benzyl CH2), 2.28
(s, 3H, p-tol CH3), 1.78 (m, 8H, THF).

11B NMR (128.3 MHz, THF-
d8, 25 °C): δ 1.16 (s).

13C NMR (150 MHz, THF-d8, 10 °C): δ 158.66
(N(2)Ph ipso-C), 155.48 (B(1,2)Ph ipso-C), 154.07 (N(1)Ph ipso-C),
142.34 (NCN), 141.66 ((benzyl)Ph ipso-C)), 137.67 (NCN-p-tol ipso-
C), 137.17 (B(1)Ph o-CH), 137.08 (B(2)Ph o-CH), 135.25 (p-tol-
CH3 ipso-C), 129.62 ((benzyl)Ph o-CH), 128.77 (p-tol m-CH), 127.41
(p-tol o-CH), 127.34 ((benzyl)Ph p-CH), 126.59 (B(2)Ph m-CH),
126.33 (B(1)Ph m-CH), 126.14 (N(2)Ph o-CH), 125.69 (B(2)Ph p-
CH), 125.64 ((benzyl)Ph m-CH), 124.03 (B(1)Ph p-CH), 123.77
(N(2)Ph p-CH), 123.40 (N(1)Ph m-CH), 118.56 (N(1) Ph o-CH),
116.37 (N(2)Ph p-CH), 113.78 (N(1)Ph p-CH), 68.29 (THF), 26.45
(THF), 21.37 (p-tol CH3).

Synthesis of [F‑BnLBPh2]Na(THF)2 (
F‑Bn3−). Compound 22− (100 mg,

0.12 mmol) was dissolved in 1 mL of THF in a Schlenk tube inside a
glovebox. To this was added 1 equiv of 4-fluorobenzyl bromide, which
caused the color to change from orange to purple-red. After the
mixture was stirred for 1 h, all of the volatiles were removed under
reduced pressure and the crude product was washed with hexane (3 ×
2 mL). Subsequently, drying under vacuum gave compound F‑Bn3− as
an oily purple-red material (72 mg, 0.095 mmol, 79%). 1H NMR (400
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MHz, THF-d8, 25 °C): δ 7.81 (d, J = 8.1 Hz, 2H, p-tol o-H), 7.69 (bs,
2H, BPh o-H), 7.10 (bs, 3H, BPh (m + p)-H), 7.02 (overlapped, 4H,
BPh o-H and p-tol m-H), 7.00−6.96 (m, 2H, (benzyl)Ph o-H), 6.95
(d, J = 8.1 Hz, 2H, N(1)Ph o-H), 6.55 (overlapped, 7H, (benzyl)Ph m-
H, N(1)Ph m-H, and BPh (m + p)-H), 6.47−6.45 (m, 4H, N(2)Ph (o
+ m)-H), 6.16 (m, 1H, N(2)Ph p-H), 6.07 (t, J = 7.1 Hz, 1H, N(1)Ph
p-H), 3.75 (d, J = 15.0 Hz, 1H, benzyl CH2), 3.39 (d, J = 15.0 Hz, 1H,
benzyl CH2), 2.29 (s, 3H, p-tol CH3).

19F NMR (376 MHz, THF-d8,
25 °C): δ −118.45 (m, benzyl p-F).
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