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Sulfamate Esters Guide Selective Radical-Mediated Chlorination 
of Aliphatic C–H Bonds 
Melanie A. Short,[a],[+] J. Miles Blackburn,[a],[+] and Jennifer L. Roizen*[a] 

 

Abstract: Masked alcohols are particularly appealing as directing 
groups because of the ubiquity of hydroxyl groups in organic small 
molecules. Herein, we disclose a general strategy for aliphatic γ-
C(sp3)–H functionalization guided by a masked alcohol. Specifically, 
we determine that sulfamate ester-derived nitrogen-centered 
radicals mediate 1,6-hydrogen-atom transfer (HAT) processes to 
guide γ-C(sp3)–H chlorination. This reaction proceeds through a 
light-initiated radical chain-propagation process and is capable of 
installing chlorine atoms at primary, secondary, and tertiary centers. 

Late-stage alkyl C–H functionalization[1] facilitates 
investigations into pharmaceutical small molecule leads.[2] 
Unfortunately, position-selective reactivity is difficult to achieve 
at unactivated C(sp3)–H centers, which have high bond 
dissociation energies (90–105 kcal/mol), are not acidic (pKa ≥ 
50), and do not integrate more polarizable and electronically 
accessible π-orbitals. Consequently, in most efficient atom-
transfer processes, site-selective activation originates at an 
electron-rich, sterically accessible bond (Scheme 1A),[1b,d,3] or is 
controlled kinetically by a directing group (Scheme 1B). A 
hydroxyl group is attractive as a directing moiety because 
alcohols are common within readily available small molecules. 
To our knowledge, there are no general strategies for aliphatic γ-
C–H functionalization guided by a masked alcohol.[4,5] Herein 
described are the first experiments to demonstrate that 
sulfamate esters[6,7] can mediate 1,6-hydrogen-atom transfer 
(HAT) processes to guide the light-promoted chlorination of 
unactivated γ-C(sp3)–H centers.  

Our strategy for γ-functionalization is inspired by the modern 
resurgence of interest[8,9] in the Hofmann-Löffler-Freytag 
(HLF)[10–12] reaction. In traditional HLF processes, position 
selectivity arises based on formation of an intermediate nitrogen-
centered radical that engages in a 1,5-HAT process[13] through a 
kinetically favored, six-membered transition state. [14] By contrast, 
we anticipate sulfamate esters may be capable of mediating 1,6-
HAT processes, which are rare[15] as they are expected to 
proceed through seven-membered transition states, which are 
often kinetically disfavored.[16] We hypothesize that sulfamate 
esters enable 1,6-HAT because their elongated O–S and S–N 
bonds (~1.58 Å) and compressed O–S–N bond angles 
(~103°)[17] geometrically favor a seven-membered ring transition 
state for C–H abstraction. The site-selectivity available through 
these reactions complements that achieved using traditional 
HLF chlorination transformations,[18] alternative guided 

chlorination methods,[19]  or site-selective intermolecular[20] 
chlorination processes.  

Scheme 1. C(sp3)–H chlorination reactions 

This approach is demonstrated in the course of site-selective 
chlorine-transfer to convert N-chlorinated sulfamate esters 1 to 
alkyl chlorides 2 (Scheme 1B). Predictable control has proven 
more challenging in C(sp3)–H chlorination[21] than bromination 
reactions,[12d,22,23] owing to the promiscuity of chlorine radical 
promoted hydrogen-atom abstraction. Nevertheless, alkyl 
chlorides are useful synthetic intermediates, and components of 
bioactive small molecules, with >2000 known chlorine-containing 
natural products.[24] Consequently, new technologies for 
selective aliphatic C–H chlorination have potential to streamline 
syntheses of bioactive small molecules.[25]   

To minimize mechanistic uncertainty, we chose to generate 
nitrogen-centered radicals by using light to homolyze nitrogen–
chlorine bonds of N-chlorosulfamate esters 1. N-chlorosulfamate 
esters 1 are readily available from sulfamate esters 3[26] upon 
treatment with trichloroisocyanuric acid or tert-butyl hypochlorite 
(see supporting information for details). As anticipated, 
photolysis of pentyl methylchlorosulfamate ester 1a results in 
selective γ-chlorination at a methylene center (Table 1, entry 1, 
C–H bond dissociation energy (BDE) ~ 98 kcal mol–1).[27] This 
reaction does not occur in the absence of light, indicating that 
photolysis initiates the reaction.  

Chlorine-transfer proceeds from N-methyl-, N-tert-butyl-, N-
trifluoroethyl- and N-2-(pyridin-2-yl)isopropylchlorosulfamate 
esters 1a–d (Table 1, entries 1–7). The corresponding series of 
sulfamate esters 3 are predicted to differ in terms of N–H bond 
acidity[28] by more than three pKa units, indicating that the 
reaction tolerates broad electronic variations across N-alkyl 
substituents. In all of these cases, the remaining mass balance 
can be accounted for principally by reduced 3. Notably, in the 
reaction of substrate 1b, <2% yield of δ-chlorinated product 4b 
(not depicted) can be detected in the crude reaction mixture 
along with desired γ-chlorinated 2b. While N-alkylsulfamate 
esters facilitate chlorination, some N-arylsulfamate esters may 
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not engage in productive guided chlorine-transfer processes, as 
photochemical irradiation of arylated 1e generates a complex 
mixture of products. 

Table 1. Chlorine-transfer robust to N-substitution  

 
[a] General reaction conditions: 1.0 equiv N-chlorosulfamate ester 1, PhH, 
22 °C, irradiated with a blue Kessil lamp. [b] Aqueous ionization pKa values 
have been predicted using SPARC.[28] [c] Isolated yield. [d] Trace amount of δ-
chlorinated product 4b (not depicted) detected in crude 1H NMR. See 
Supporting Information for details. [e] Reaction run in PhCF3. [f] Reaction run 
in PhCl. 

In these chlorine-transfer processes, site-selectivity is 
orthogonal to that available through most atom-transfer 
processes reliant on innate selectivity. In the productive 
transformations of N-chlorinated 1a–d, chlorinated alkanes 2a–d 
are formed with exquisite γ-selectivity, despite the fact that δ-
functionalization is expected to be favored under conditions that 
rely on inherent selectivity (Table 1; Scheme 1A).  

Guided selectivity is preserved across a range of O-alkyl 
sulfamate esters (Table 2). For menthol-derived 1f, C(5)–H and 
C(8)–H bonds are expected to have very similar electron 
densities.[29] Nevertheless, unguided tertiary-selective 
intermolecular oxidation[29] and amination[30] processes result in 
selective functionalization of analogues at C(5), presumably 
because the C(8)–H bond is sterically encumbered.[29] By 
contrast, under the described conditions, chlorination occurs 
exclusively at C(8)–H, which is poised to interact with the 
sulfamate ester nitrogen-centered radical (entry 1) via a seven-
membered transition state. This position-selectivity is analogous 
to that displayed in iron- and manganese-nitrene-mediated 
intramolecular amination reactions of sulfamate esters.[31,32]   

Furthermore, the directed chlorination reaction overcomes 
the innate site-selectivity that arises from inductive deactivation 
in unguided oxidation processes. In unguided C–H 
functionalization reactions, proximity to inductively electron-
withdrawing groups deactivates C–H bonds to oxidation. This 
phenomenon is evident when 3,7-dimethyloctanol is masked 

with an electron withdrawing group, and engages in undirected 
fluorination,[33] oxygenation,[34] amination,[35] azidation,[36] or 
trifluoromethylthiolation[37] processes that functionalize C(7) in 
preference to C(3). By contrast, the sulfamate ester-guided 
chlorination installs chlorine at the electronically deactivated 
C(3) position (entries 2–3). 

Table 2. Chlorine-transfer robust to O-alkyl substitution 

[a] General reaction conditions: 1.0 equiv N-chlorosulfamate ester 1, PhH, 
22 °C, irradiated with a blue Kessil lamp. [b] Isolated yield. 

Moreover, this guided functionalization process overcomes 
selectivity that typically arises from differences in bond strength. 
Pendant silyl ether 1i undergoes efficient and selective γ-
chlorination, without oxidation of the weak etherial C–H bonds 
(BDE ~ 85 kcal mol–1, entry 4).[27]  

In addition to differentially masked diols, the reaction 
conditions are compatible with a variety of functional groups. 
Sulfamate esters derived from N-protected amino alcohols 
engage in selective atom-transfer, as phthalimidyl 1j provides 
chlorinated 2j in 82% isolated yield (entry 5). As noted 
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previously, the reaction also allows pendant heteroaromatic 
moieties (Table 1, entry 7) and fluorides (Table 1, entries 4–6; 
Table 2, entries 1, 3–5, 9).  

This method transforms C(sp3)–H bonds at secondary, 
tertiary (BDE ~ 96 kcal mol–1),[27] and benzylic centers (BDE ~ 90 
kcal mol–1)[27] in synthetically useful yields (entries 1–8). 
Generally, chlorination of γ-C(sp3)–H centers occurs in 
preference to β-C–H centers, even when the γ-C–H bond is 
primary and significantly stronger (BDE ~ 101 kcal mol–1)[27] than 
a secondary β-C–H bond. For example, chlorination of propyl 
tert-butylsulfamate ester 1m and (–)-borneol derivative 1n occur 
at the stronger primary C–H bonds, albeit with diminished 
efficiency (entries 8–9). While each of these substrates displays 
a geometrically accessible β-methylene center, chlorination at 
these positions is not detected. Instead, dehalogenated 
sulfamate esters 3m and 3n are the primary byproducts of these 
transformations. An analogous reactivity trend has been 
documented with White’s manganese-catalyzed intramolecular 
amination with sulfamate esters.[32]  

In principle, this chlorination reaction could proceed through 
a closed cycle and/or a radical chain propagation mechanism 
(Scheme 2). In either pathway, initiation would occur by light-
promoted N–Cl bond homolysis, thereby converting N-
chlorosulfamate ester 1b to chlorine radical and sulfamyl radical 
5b. The resulting nitrogen-centered radical 5b mediates an 
intramolecular 1,6-HAT to generate a carbon-centered radical 
6b with exquisite position selectivity. Subsequent divergence in 
carbon–chlorine bond forming events then distinguishes 
between the proposed pathways. In the closed radical cycle 
mechanism, intermediate carbon-centered radical 6b 
recombines with the chlorine radical to terminate the reaction 
and provide 2b (not depicted). Alternatively, carbon-centered 
radical 6b could engage in chlorine-atom abstraction with 
another equivalent of N-chlorosulfamate ester 1b (Scheme 2). 
This sequence would release desired halogenated 2b, along 
with another equivalent of radicalloid 5b, which could propagate 
this chain reaction. 

Scheme 2. Chlorination proceeds through light-initiated chain-propagation  

These mechanistic hypotheses differ in terms of the number 
of product equivalents that can be generated per absorbed 
photon, a relationship that defines quantum yield (Φ). While a 
closed radical cycle could furnish a maximum of one product 

molecule per absorbed photon (Φ ≤ 1), a radical chain 
propagation mechanism could provide multiple equivalents of 
the product per absorbed photon (Φ > 1).  

Quantum yield measurements have been performed to 
provide insight into the operative reaction mechanism,[38] and 
provide evidence that the reaction proceeds through a light-
initiated chain propagation mechanism. Briefly, standard 
chemical actinometry using potassium ferrioxalate allowed us to 
determine the photon flux of a fluorimeter at 313 nm.[38,39] After 
15 minutes of irradiation of N-chlorinated 1b in benzene at 313 
nm in the calibrated fluorimeter, 68% conversion to chloroalkane 
2b is observed. This yield corresponds to 77 equivalents of 
product formed per absorbed photon (Φ = 77), indicating that 
this reaction proceeds through a chain propagation mechanism.  

This sulfamate ester-guided HLF reaction is expected to 
provide a powerful and general platform to complement current 
HLF technologies. This research is among the first to establish 
that sulfamate esters can mediate 1,6-HAT such that the 
generated carbon-centered radicals can be trapped efficiently in 
guided intermolecular reactions. Furthermore, the method 
provides efficient access to secondary and tertiary alkyl 
chlorides, a valuable class of synthetic intermediates, with novel 
and predictable site-selectivity. 
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Guided Chlorination: Aliphatic γ-C(sp3)–H chlorination is directed by a sulfamate-
ester masked alcohol. This reaction involves a light-initiated N–Cl bond homolysis, 
followed by an unusual radical-mediated 1,6-hydrogen-atom abstraction with 
subsequent chlorination enabled by a chain-propagation process. Through this 
process, chlorine atoms can be selectively installed at primary, secondary, and 
tertiary centers with predictable selectivity.  
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