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ABSTRACT: A novel method for desaturation of aliphatic 
amines into enamines, allylic-, and homoallylic amines has 
been developed. This general protocol operates via putative 
aryl hybrid Pd-radical intermediates, which combine the 
signature features of radical chemistry, a hydrogen atom 
transfer (HAT) process, and transition metal chemistry, a 
selective β-hydride elimination step, to achieve efficient and 
selective desaturation of amines.  These hybrid Pd-radical 
intermediates are efficiently generated under mild photoin-
duced conditions, and are capable of 1,n-HAT (n=5-7) event 
at C(sp3)–H sites. The selectivity of HAT is tunable by vary-
ing different auxiliaries, which highlight the generality of this 
method. Remarkably, this desaturation method, which oper-
ates under mild conditions and does not require employ-
ment of exogenous photosensitizers or oxidants, can be per-
formed in a practical scalable fashion from simple amines.  

Unsaturated amines are common functional groups found 
in natural products, bioactive molecules, and are versatile 
synthetic building blocks.1 Thus, not surprisingly, an array of 
methods toward these important motifs has been developed. 
Conventional approaches to enamines2 involve condensa-
tions of carbonyl group,2 cross-coupling reactions,3 or hy-
droaminations of alkynes.4 Main methods toward allylic- and 
homoallylic amines usually rely on alkylation of amines5 and 
imines6 with alkenyl halides. While most of the aforemen-
tioned methods are efficient, they all require pre-
functionalized starting materials. It is apparent that straight-
forward conversion of cheap and abundant aliphatic amines 
into valuable alkenyl amines could serve as a more practical 
approach. However, methods for direct dehydrogenation of 
amines into unsaturated amines have not been broadly de-
veloped. One elegant strategy for converting amines into 
enamines employs non-directed7a or directed7b transfer-
hydrogenation process (Scheme 1a). Nonetheless, these 
methods have limited practicability, as they work on  

Scheme 1. Methods for Directed Desaturation of Amines 
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non-functionalizable tertiary alkyl amines7a or employ mois-
ture-sensitive N-vinylsilane substrates.7b Another notewor-
thy, yet moderately efficient approach towards enamine by 
Doucet8a relies on conventional Pd-catalyzed C–H activation 
methodology. Both approaches suffer from harsh reaction 
conditions, and are limited to secondary α-/β-desaturation 
of amines due to restricted size and steric hindrance of tran-
sition metal (TM)-cyclic intermediates.9 Conversely, radical 
strategies have shown exceptional capability for functionali-
zation of unactivated tertiary and secondary C(sp3)–H sites 
due to a facile HAT event.10,11 The current state-of-the-art 
method for a remote desaturation of amines was developed 
by Baran,10a which follows a radical-polar crossover path 
(Scheme 1a). However, due to generation of cationic inter-
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mediates, the end game of this protocol, the proton elimina-
tion step, in some cases, results in low regioselectivity of de-
saturation. Based on these limitations, the development of a 
practical and universal method for site-selective desaturation 
of aliphatic amines is highly desirable. Herein, we report a 
mild, practical, and general protocol for selective desatura-
tion of aliphatic amines (Scheme 1b). This method employs 
simple aliphatic amines, which, under practical conditions, 
are selectively and efficiently transformed into enamines, 
allylic amines, and homoallylic amines.  The high selectivity 
of desaturation is achieved via auxiliaries-controlled 1,5-, 1,6- 
and 1,7-HAT process of the photo-generated aryl hybrid Pd-
radical intermediates12  (Scheme 1b, A→B), and a subse-
quent Pd-involved β-H-elimination step.13  

Recently, we developed Si-based auxiliaries for proximal 
and remote desaturation of aliphatic alcohols via photoin-
duced generation of hybrid aryl- and alkyl Pd-radical spe-
cies.14 Expectedly, due to the much lower hydrolytic stability 
of the N–Si bond compared to that of the O–Si bond,15 em-
ployment of these Si-based tethers for desaturation of ali-
phatic amines was not feasible. Thus, we examined more 
practical amide-based tethers. Delightfully, it was found that 
piperidine 1a, protected with commercially available o-
iodobenzoyl chloride (tether T1), under our previously re-
ported conditions14 underwent efficient α-/β- desaturation 
via a facile 1,5-HAT11 producing cyclic enamine 2a in nearly 
quantitative yield (Table 1). This represents the first room 
temperature dehydrogenation of an amine into an enamine, 
which operates under visible light-induced16 Pd-catalyzed 
conditions without employment of exogenous photosensi-
tizers17 or oxidants. Moreover, this method can efficiently be 
performed in a practical fashion without isolation of the 
tethered amine intermediate to produce enamine 2a directly 
from amine 1a in excellent yield over the two steps. 

Next, the generality of the α-/β-desaturation of aliphatic 
amines was examined. Morpholine derivative 1b found to be 
a competent substrate, producing dihydrooxazine 2b in 95% 
yield. Piperidines, possessing an unprotected secondary al-
cohol moiety (1c) or a labile acetal group (1d), also reacted 
well, producing enamines 2c and 2d in high yields. These 
results represent the efficient synthesis of endocyclic 
enamines, which are difficult to access via traditional meth-
ods mentioned above.2-4 Linear amines were also amenable, 
yielding almost quantitative yields of enamine products (2e, 
2f-α/β). It is worth mentioning that amine 1f failed to react 
under reported C–H activation conditions.8a Gratifyingly, 
desaturation of pyrrolidine derivative and a bicyclic substrate 
produced the corresponding enamines in good yields (2g, 
2h). Interestingly, double-fold desaturation of piperazine, 
decorated with two reacting tethers, produced dehydropyra-
zine 2i in good yield. Notably, caprolactam derivative was 
selectively desaturated at an unusual reaction site (2j).18 De-
hydrogenation of proline- and pipecolic esters (1k-m) 

 

Table 1. α -β  Desaturation of Amines with T1
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aIsolated yields for two steps (1→2) are shown. Yields for one-

step desaturation (from amine protected with reactive tether) are 
shown in parenthesis. r.r, regiomeric ratio. Bz, benzoyl.  

furnished separable mixtures (except for 2k) of regioisomers, 
with the less substituted alkenes being the major products. 
Finally, desaturation of substrate 1n, containing two amine 
moieties underwent selective directed reaction at the proxi-
mal site producing enamine 2n in 64% NMR yield.  

After establishing the scope of α-/β-desaturation, we 
turned our attention to remote desaturation of amines (Ta-
ble 2). Apparently, for achieving this goal, the development 
of the tether capable of HAT at a more distant C–H site was 
necessary. Based on the efficient and selective remote HAT 
of Baran’s tosyl triazene auxiliary (Scheme 1a),10a we as-
sumed that the aryl iodide derivative of it could be an appro-
priate choice of tether (T2, Scheme 2). Indeed, this tether 
can easily be installed at the amine group using a commer-
cially available o-iodobenzenesulfonyl chloride. Upon gener-
ation of the hybrid Pd-radical species, it expected to undergo 
1,n-HAT (n=6,7) at an unactivated C(sp3)–H site,10a fol-
lowed by Pd-involved elimination to selectively furnish a 
remote alkene moiety.  Remarkably, it was found that amine 
1f, now protected by T2 tether underwent efficient 1,6-HAT 
to produce β-/γ-desaturation product in 47% yield together 
with 31% of the cyclic sulfonamide, a product of cyclization 
of the formed alkyl radical at the aromatic ring of the aryl-
sulfonyl group19 (Table 2).  On the other hand, the same 
amine (1f), while decorated with T1 tether (vide supra), un-
derwent efficient α-/β-desaturation to produce enamine 2f-
α/β  (Table 1).  These results, where two auxiliaries com-
pletely switched the regioselectivity of desaturation of 
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Table 2. β -γ - and γ -δ  Desaturation of Amines with T2
a 
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shown in parenthesis. r.r, regiomeric ratio. bThe Boc installation 
was not applicable for secondary amines (1f, 1y-1aa, 1ac). c31% of 
HAT/cyclization at aromatic ring product was also isolated. dCon-
tains minor amount of hydrodehalogenation by-product. 

the same substrate,20 clearly indicate the potential of this  
strategy toward development of auxiliaries-controlled site 
selective C–H functionalizations. Due to the observed com-
peting cyclization of the formed β-alkyl radical at the aryl-
sulfonyl group, at the moment, the attempts on further ex-
ploration of the β-/γ-desaturation of amines were halted; 
and we turned our attention to the γ-/δ-desaturation reac-
tion. Delightfully, it was found that γ-/δ-desaturation of the 
amine 1o via a three-step procedure (without isolation of the 
intermediates) produced 2o as a sole product in excellent 
yield, which is superior, in both yield and regioselectivity, to 
those reported via the radical/cationic approach.10a Evident-
ly, the observed highly regioselective outcome reflects the 
nature of the “controlled” β-Pd-H elimination step of the 
operative hybrid Pd-radical mechanism (vide infra). Desatu-
ration of various aliphatic amines (1p-1r) proceeded une-
ventfully, resulting in the formation of homoallylic amines 
(2p-2r) in good yields. Particularly, acid-sensitive groups, 
such as primary TBS-ether (1s) or acetal groups (1t) which 
do not withstand the reported acidic conditions,10a,19 were 
well-preserved in this reaction. Leucine ester (1u) and 
menthyl-amine (1v) were found to be competent substrates 
yielding the corresponding desaturation products 2u-2v in 
reasonable yields. Amines bearing primary (1w) and tertiary 

(1x) alkyl carbon chains also provided high yields of the cor-
responding desaturation products. Notably, unprecedented 
remote desaturation of secondary amines 1y, 1z proceeded 

smoothly, furnishing the corresponding products (2y, 2z) in 
good to excellent yields. Markedly, functionalization of inert 
secondary C−H bonds occurred efficiently (1aa, 1ab), resulting 
in homoallylic amines 2aa, 2ab in respectable yields, where 
substrate possessing bulkier substituent at N-atom (1ab) 
resulted in better selectivity of the HAT event. A heterocy-
clic substrate, azepane derivative 1ac, reacted efficiently to 
produce 2ac in 77% yield. Importantly, under the reported 
conditions,15 benzenesulfonyl group in homoallylic amine 2y 
can easily be removed.19 Finally, the practicality of this 
method was illustrated by a gram-scale desaturation of amine 
1p into homoallylic amine 2p in nearly quantitative yield 
over the three steps (eq 1). 

              no isolated intermediates

BocN SO2Ph

2p

NH2

4.4 mmol 
scale 98% isolated yield

1p

1.46 g

3 steps

 

Based on the literature reports13,14 and our initial mecha-
nistic studies,19 including the radical scavenger experiments, 
deuterium labeling studies, and Stern-Volmer quenching 
studies, the following mechanism for this remote desatura-
tion reaction of amines is proposed (Scheme 2). The formed 
in situ Pd(0) complex undergoes excitation by the visible 
light to form the active Pd(0)* catalyst. The latter engages in 
an SET event with aryl iodide 1-T to generate aryl hybrid 
Pd-radical species 3, which via 1,n-HAT (n=5-7) produces 
alkyl hybrid Pd-radical species 4. A subsequent β-hydrogen 
elimination (path A)13 or a direct hydrogen abstraction 
(path B)21 generates the desaturated product 2 and regener-
ates the catalyst. 

Scheme 2. Proposed Mechanism 
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In summary, a general, mild, efficient, and selective 
method for desaturation of aliphatic amines has been devel-
oped. This method employs easily installable/removable15,19 
aryl iodide-containing tethers, which upon visible light irra-
diation/Pd-catalysis generate an aryl radical at the tether, 
which triggers an auxiliary-controlled 1,n-HAT event at the 
aliphatic amine moiety, followed by the Pd-assisted β-H 

(1) 
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elimination step. It is expected that this operationally simple 
and easily scalable method, which does not require employ-
ment of exogenous photosensitizers or external oxidants, will 
find broad applications in synthesis.  
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