

Subscriber access provided by Weizmann Institute of Science

Au Nanoparticles Supported on BiVO4: Effective Inorganic Photocatalysts for H2O2 Production from Water and O2 under Visible Light

Hiroaki Hirakawa, Shingo Shiota, Yasuhiro Shiraishi, Hirokatsu Sakamoto, Satoshi Ichikawa, and Takayuki Hirai

ACS Catal., Just Accepted Manuscript • DOI: 10.1021/acscatal.6b01187 • Publication Date (Web): 21 Jun 2016 Downloaded from http://pubs.acs.org on June 23, 2016

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Catalysis is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Au Nanoparticles Supported on BiVO₄: Effective Inorganic Photocatalysts for H₂O₂ Production from Water and O₂ under Visible Light

Hiroaki Hirakawa,[†] Shingo Shiota,[†] Yasuhiro Shiraishi,^{*,†,‡} Hirokatsu Sakamoto,[†] Satoshi Ichikawa,[†] and Takayuki Hirai[†]

[†] Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan

[‡] PRESTO, JST, Saitama 332-0012, Japan

¹ Institute for NanoScience Design, Osaka University, Toyonaka 560-8531, Japan

ABSTRACT: Design of safe and sustainable process for the synthesis of hydrogen peroxide (H_2O_2) is a very important subject from the viewpoint of green chemistry. Photocatalytic H_2O_2 production with earth-abundant water and molecular oxygen (O_2) as resources is an ideal process. A successful system has been proposed based on an organic semiconductor; however, it suffers from poor photostability. Here we report an inorganic photocatalyst for H_2O_2 synthesis. Visible light irradiation ($\lambda > 420$ nm) of semiconductor BiVO₄ loaded with Au nanoparticles (Au/BiVO₄) in pure water with O₂ successfully produces H_2O_2 . The bottom of the Bi-VO₄ conduction band (0.02 V vs. NHE, pH 0) is more positive than the one-electron reduction potential of O₂ (-0.13 V), while more negative than the two-electron reduction potential of O₂ (0.68 V). This thus suppresses one-electron reduction of O₂ and selectively promotes two-electron reduction of O₂, resulting in efficient H_2O_2 formation.

KEYWORDS: Photocatalysis · Hydrogen peroxide · Visible light · Bismuth vanadate · Gold nanoparticles

INTRODUCTION

 H_2O_2 is a clean oxidant that emits only water as a byproduct and is widely used for pulp bleaching and disinfection.¹ It has also received much attention as a fuel cell energy carrier alternative to H_2 because it is soluble in water and can be used in an one-compartment cell for electricity generation.² H_2O_2 is currently manufactured by the anthraquinone method based on hydrogenation of anthraquinone with H_2 on Pd-based catalyst followed by oxidation with O_2 .³ Alternative to this highenergy-consuming two-step process, one-step H_2O_2 synthesis based on the reaction of H_2 with O_2 has also been studied with Pd-based catalysts.^{4,5} This direct synthesis quantitatively produces H_2O_2 , but needs special care due to the potential explosive nature of H_2/O_2 mixed gases. A new method that produces H_2O_2 without H_2 is therefore desired.

Catalytic H_2O_2 synthesis with earth-abundant water and O_2 as resources is therefore ideal. Photocatalysis is one promising method for this purpose. The basic concept is as follows: the valence band holes (VB h⁺) formed by photoexcitation of the catalyst oxidize water and produce O_2 and H^+ (eq. 1). Twoelectron reduction of O_2 by the conduction band electrons (CB e⁻) produces H_2O_2 (eq. 2). As a result of this, H_2O_2 can be produced from water and O_2 (eq. 3).

$$2\mathrm{H}_{2}\mathrm{O} + 4\mathrm{h}^{+} \rightarrow \mathrm{O}_{2} + 4\mathrm{H}^{+} \tag{1}$$

$$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2 \tag{2}$$

$$2H_2O + O_2 \rightarrow 2H_2O_2 \tag{3}$$

Some TiO₂-based inorganic photocatalysts have been proposed,⁶⁻⁹ but are inactive for H₂O₂ production from water and O₂. This is because they mainly promote one-electron reduction of O₂, producing a superoxide (*OOH) radical (eq. 4) rather than two-electron reduction of O₂ (eq. 2).⁹ Another reason is that these TiO₂-based catalysts have insufficient activity for water oxidation (eq. 1);¹⁰ therefore, sacrificial electron donors such as alcohols are necessary. In addition, these catalysts require UV light (~400 nm) for photoexcitation; the formed H₂O₂ is subsequently decomposed by absorbing UV light.^{11,12} The design of photocatalysts that promote water oxidation and two-electron reduction of O₂ under visible light irradiation (λ >400 nm) is necessary.

$$O_2 + H^+ + e^- \rightarrow \bullet OOH \tag{4}$$

Earlier, we reported that an organic semiconductor based on graphitic carbon nitride (g- C_3N_4) promotes these reactions (eqs. 1 and 2) under visible light and successfully produces mM levels of H_2O_2 .¹³ This organic system, however, suffers from poor photostability, as often observed for related materials.^{14,15} The design of robust inorganic system is therefore desired for sustainable H_2O_2 synthesis.

One powerful approach for the design of inorganic photocatalyst for H_2O_2 synthesis is the use of Au nanoparticles. Teranishi et al. prepared TiO₂ loaded with Au particles.¹⁶ The

Au/TiO₂ catalyst, when irradiated by UV light in an EtOH solution, produces relatively larger amount of H₂O₂ than the early reported inorganic systems.^{6–9} As shown in Scheme 1a, the photoformed CB e^- of TiO₂ is trapped by the Au particles. These e⁻ promote two-electron reduction of O₂ more selectively as compared to bare TiO_2 or TiO_2 loaded with other metals. This results in relatively efficient production of H₂O₂. The Au/TiO₂ catalyst is, however, inactive for H₂O₂ formation in water. This is because TiO₂ is less active for water oxidation¹⁰ and UV irradiation is required for its photoexcitation inevitably decomposes the formed H_2O_2 .^{11,12} In addition, as shown in Scheme 1a, the bottom of TiO₂ CB $(-0.19 \text{ V vs. NHE, pH } 0)^{17}$ is more negative than the potentials for one-electron reduction of O_2 (-0.13 V) and two-electron reduction of O_2 (0.68 V).¹⁸ This thus promotes both reduction reactions and decreases the selectivity for H₂O₂ formation. The loading of Au particles onto the semiconductors that are active for water oxidation under visible light and have relatively positive CB would be effective for photocatalytic H₂O₂ production.

Scheme 1. Energy diagrams for (a) Au/TiO₂ and (b) Au/BiVO₄, and reduction potential of O2.

Here we report that the answer may lie in the use of semiconductor bismuth vanadate (BiVO₄), active for water oxida-tion under visible light (\sim 550 nm).¹⁹ We found that BiVO₄ loaded with Au particles (Au/BiVO₄) successfully produces H₂O₂ from water and O₂ under visible light; this is a first example of all-inorganic photocatalyst for H₂O₂ synthesis. As shown in Scheme 1b, the bottom of $BiVO_4 CB (0.02 V)^{20}$ is more positive than the one-electron reduction potential of O₂ (-0.13 V), while more negative than the two-electron reduction potential of O₂ (0.68 V).¹⁸ Photoexcitation of Au/BiVO₄ therefore selectively promotes two-electron reduction of O_2 , successfully producing H₂O₂.

RESULTS AND DISCUSSION

Catalyst preparation and characterization. BiVO₄ was prepared by stirring KV₃O₈ and Bi(NO₃)₃·5H₂O in water.¹⁹ As shown in Figure 1, the obtained yellow powders (average size, 1.2 μ m; BET surface area, 1.5 m² g⁻¹) absorb visible light at <550 nm. As shown in Figure S1 (Supporting Information), Xray diffraction (XRD) analysis of the powders shows distinctive diffractions for monoclinic BiVO₄.²¹ Au particles were loaded on BiVO₄ by the deposition-precipitation method:²² The BiVO₄ powders were stirred in water (pH 7) containing HAuCl₄·4H₂O at 353 K and calcined at different temperatures, affording dark yellow powders of $Au_x/BiVO_4$, where x is the

amount of Au loaded [x (wt %) = Au/BiVO₄ × 100]. As shown in Figure 2, transmission electron microscopy (TEM) image of Au_{0.2}/BiVO₄ prepared by calcination at 673 K shows Au particles with an average diameter 7.2 nm. The lattice spacings of the Au particles (0.24 nm) and BiVO₄ (0.31 nm and 0.26 nm) agree with those of standards Au(111) (JCPDS 01-1174, 0.235 nm), BiVO₄(103) (JCPDS 01-074-4894, 0.312 nm), and Bi- $VO_4(200)$ (0.260 nm). As shown in Figure 1, $Au_{0.2}/BiVO_4$ shows characteristic absorption at ca. 600 nm assigned to the surface plasmon resonance (SPR) of Au particles.

Figure 1. Absorption spectra of BiVO₄ and Au_{0.2}/BiVO₄ prepared by calcination at 673 K. Plots show the action spectrum for H_2O_2 formation on Au_{0.2}/BiVO₄. The apparent quantum yields were calculated with the equation $[\Phi_{AOY} (\%) = ([H_2O_2 \text{ formed}] \times 2) / (M_2O_2 \text{ formed}] \times 2)$ (photon number entered into the reaction vessel) \times 100]. The spectra for other catalysts are summarized in Figure S5 (Supporting Information).

Figure 2. (a) TEM image of $Au_{0.2}/BiVO_4$ prepared by calcination at 673 K and (b) size distribution of the Au particles. (c, d) Highresolution images.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21 22 23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60 **Photocatalytic reaction.** Photoreactions were performed by photoirradiation of pure water (30 mL) containing respective catalysts (50 mg) by a Xe lamp ($\lambda > 420$ nm) with magnetic stirring under O₂ (1 atm) at 298 K. Table 1 summarizes the results obtained by 10 h reaction. Bare BiVO₄ (entry 1) scarcely produces H₂O₂ (<5.0 µM, less than the detection limit). In contrast, Au loading onto BiVO₄ significantly enhances H₂O₂ formation (40.2 µM, entry 2). Other metal particles loaded on BiVO₄ (entries 3–7) are ineffective (<12.4 µM). In addition, other semiconductors such as TiO₂, ¹⁶ WO₃, and AgNbO₃²³ loaded with Au particles (entries 8–10) are also inactive (<13.9 µM) even under UV irradiation. These data suggest that Au/BiVO₄ specifically produces H₂O₂ very efficiently.

Table 1. Results of photocatalytic H₂O₂ production.^a

entry	catalyst	metal particle size [nm] ^b	light irradiation [nm]	H_2O_2 [μ M] ^c
1	BiVO ₄		>420 ^g	<5.0
2	Au _{0.2} /BiVO ₄ ^d	7.2 ± 2.2	>420 g	40.2
	1st reuse ^e		>420 g	39.2
	2nd reuse ^e	7.4 ± 1.8	>420 g	40.0
3	Ag _{0.2} /BiVO ₄ ^f	7.0 ± 2.0	>420 g	12.4
4	Pd _{0.2} /BiVO ₄ ^f		>420 g	<5.0
5	Pt _{0.2} /BiVO ₄ ^f		>420 ^g	<5.0
6	Co _{0.2} /BiVO ₄ ^f		>420 g	<5.0
7	Ni _{0.2} /BiVO4 ^f		>420 g	<5.0
8	Au _{0.2} /TiO ₂ ^d		>300 ^h	<5.0
9	$Au_{0.2}/WO_3^{d}$		>420 g	13.9
10	Au _{0.2} /AgNbO ₃ ^d		>420 ^g	<5.0

^{*a*} Reaction conditions: water (30 mL), catalyst (50 mg), O₂ (1 atm), temperature (298 K), time (10 h). ^{*b*} Determined by TEM observations (Figure S6, Supporting Information). ^{*c*} Determined by redox titration with KMnO₄ (detection limit, 5.0 μM). ^{*d*} Prepared by the deposition–precipitation followed by calcination at 673 K. ^{*e*} Catalysts were reused after simple washing with water followed by drying in vacuo. ^{*f*} Prepared with sodium formate as a reductant. ^{*g*} Light intensity at 420–500 nm is 26.9 W m⁻². ^{*h*} Light intensity at 300–450 nm is 27.3 W m⁻².

Figure 3 shows the time-dependent changes in the H_2O_2 concentrations during reactions on $Au_{0.2}/TiO_2$ and $Au_{0.2}/BiVO_4$. $Au_{0.2}/TiO_2$ scarcely produces H_2O_2 (<5.0 µM). In contrast, on $Au_{0.2}/BiVO_4$, H_2O_2 concentration increases with time. This suggests that photoexcited Au/BiVO₄ promotes water oxidation (eq. 1) and O_2 reduction (eq. 2), producing H_2O_2 (eq. 3). Figure 1 shows the action spectrum for H_2O_2 formation on $Au_{0.2}/BiVO_4$. Change in the apparent quantum yields (Φ_{AQY}) agree well with the absorption spectrum of bare BiVO₄. This indicates that band-gap excitation of BiVO₄ promotes the reactions, where the SPR absorption of the Au particles does not affect the reaction. As shown in Table 1 (entry 2), the catalyst recovered after the reaction exhibits almost the same activity as the fresh one, indicating that the catalyst is reusable without the loss of activity.

Figure 3. Time-dependent changes in the H₂O₂ concentrations during photoreaction on Au_{0.2}/TiO₂ ($\lambda > 300$ nm) and Au_{0.2}/BiVO₄ prepared by calcination at 673 K ($\lambda > 420$ nm). Reaction conditions are identical to those in Table 1.

The photoexcited Au/BiVO₄ produces H₂O₂ via water oxidation and two-electron reduction of O_2 (eqs. 1–3). This is confirmed by the half reactions: the O₂ reduction with EtOH as an electron donor (Figure S2, Supporting Information) and the water oxidation with AgNO₃ as an electron acceptor (Figure S3, Supporting Information) successfully occur on the $Au_{0.2}/BiVO_4$ catalyst. It is noted that O_2 reduction with EtOH by 10 h photoreaction produces much larger amount of H₂O₂ (257 μ M) than that formed in pure water (40 μ M, Figure 3). It is also noted that the initial rate of water oxidation with Ag-NO₃ on Au_{0.2}/BiVO₄ (8.6 μ mol h⁻¹) is larger than those on $Au_{0.2}/TiO_2$, $Au_{0.2}/WO_3$, and $Au_{0.2}/AgNbO_3$ (<3.5 µmol h⁻¹); this is consistent with the activity tendency for H₂O₂ production (Table 1, entries 2 and 8-10). These findings suggest that water oxidation (eq. 1) is the rate-determining step for H_2O_2 production from water and O₂; the Au/BiVO₄ catalyst with higher activity for water oxidation exhibits the best catalytic performance.²

As shown in Figure 3, during the reaction on Au_{0.2}/BiVO₄, the rate of H₂O₂ formation decreases with photoirradiation time. This is due to the subsequent decomposition of the formed H₂O₂ by photocatalytic reactions. Figure S4 (Supporting Information) shows the results for H₂O₂ decomposition experiments on Au/BiVO₄. In the dark condition, H₂O₂ is scarcely decomposed. In contrast, visible light irradiation of the solution even with EtOH as an electron donor or with NaIO₃ as an electron acceptor under Ar atmosphere decreases the concentration of H₂O₂. This indicates that, as usually observed in related systems, H₂O₂ is decomposed by the reduction with CB e⁻ (eq. 5)¹⁶ and by the oxidation with VB h⁺ (eq. 6).²⁵.

$$H_2O_2 + e^- \rightarrow {}^{\bullet}OH + OH^-$$
 (5)

$$\mathrm{H}_{2}\mathrm{O}_{2} + 2\mathrm{h}^{+} \rightarrow \mathrm{O}_{2} + 2\mathrm{H}^{+} \tag{6}$$

Selective two-electron reduction of O2. One-electron reduction of O₂ (eq. 4) is suppressed on the Au/BiVO₄ catalyst. As shown in Scheme 1b, the BiVO₄ CB $(0.02 \text{ V})^{20}$ lies between the potentials for one-electron reduction of O_2 (-0.13 V) and two-electron reduction of O_2 (0.68 V),¹⁸ although those of many other semiconductors such as TiO₂ lie on more negative positions (Scheme 1a).¹⁷ This positive CB level of BiVO₄ therefore suppresses one-electron reduction of O_2 (eq. 4). This is confirmed by electron spin resonance (ESR) analysis with 5.5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trapping reagent. An EtOH/water mixture (9/1 v/v, 5 mL) containing DMPO (0.1 mmol) was photoirradiated with Au_{0.2}/BiVO₄ or Au_{0.2}/TiO₂ catalyst (20 mg). Figure 4 shows the ESR spectra of the solutions recovered after 3 min photoirradiation. The Au_{0.2}/BiVO₄ sample (red) shows almost no signal, but the Au_{0.2}/TiO₂ sample (black) exhibits distinctive signals assigned to the DMPO-OOH spin adduct ($\alpha_N = 13.5$ G; $\alpha_H^{\beta} = 9.2$ G, g = 2.0066).^{26,27} This clearly suggests that Au/BiVO₄ suppresses one-electron reduction of O₂.

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31 32

33

34 35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58

59 60

Figure 4. ESR spectra measured at 298 K for the solutions obtained by (a) $\lambda >$ 420 nm light irradiation of Au_{0.2}/BiVO₄ or (b) $\lambda >$ 300 nm light irradiation of Au_{0.2}/TiO₂ in an EtOH/water/O₂ system with DMPO (0.1 mmol). The catalysts were prepared by the deposition–precipitation method followed by calcination at 673 K.

Photoexcited Au/BiVO₄ promotes selective two-electron reduction of O₂ on the Au particles. Electrochemical analysis with a rotating disk electrode confirms this. Figure 5a shows the linear-sweep voltammograms of the catalysts measured in a buffered water (pH 7) under O₂ (1 atm) at different rotating speeds.^{28,29} At negative forward voltages, the e⁻ transferred from the semiconductor CB to the Au particles promote O₂ reduction.³⁰ The Koutecky–Levich plots of the data obtained at the constant electrode potential (–0.3 V) are shown in Figure 5b. The slope of the plots obtained by linear regression was used to estimate the average number of electrons (*n*) involved in the overall O₂ reduction.^{31,32} The plots were interpreted on the following equations, where *j* is the measured current density, *j*_k is the kinetic current density, and ω is the rotating speed (rpm), respectively:

$$j^{-1} = j_k^{-1} + B^{-1} \omega^{-1/2}$$
(7)

$$B = 0.2nFv^{-1/6}CD^{2/3}$$
(8)

F is the Faraday constant (96485 C mol⁻¹), *v* is the kinetic viscosity of water (0.01 cm² s⁻¹), *C* is the bulk concentration of O₂ in solution (1.3×10^{-6} mol cm⁻³), and *D* is the diffusion coefficient of O₂ (2.7×10^{-5} cm² s⁻¹), respectively.³³ The *n* for Au_{0.2}/TiO₂ (black) is determined to be 1.6, suggesting that one-electron reduction of O₂ (*n* = 1) indeed occurs mainly on Au/TiO₂, as supported by the ESR data (Figure 4). This indicates that, as shown in Scheme 1a, the negative CB level of TiO₂ promotes one-electron reduction of O₂. In contrast, the *n* for Au_{0.2}/BiVO₄ (red) is 2.5, indicating that the e⁻ on the Au particles mainly promotes two-electron reduction of O₂ (*n* = 2). This suggests that, as shown in Scheme 1b, the relatively positive CB of BiVO₄ selectively promotes two-electron reduction of O₂ on the Au particles. This thus facilitates efficient production of H₂O₂.

Figure 5. (a) Linear-sweep voltammograms of $Au_{0.2}/TiO_2$ and $Au_{0.2}/BiVO_4$ prepared by calcination at 673 K, measured on a rotating disk electrode at different rotating speeds. (b) The Koutecky-Levich plots of the data obtained at the constant potential (-0.3 V).

Effect of Au particle size and amount of Au loaded. The size of Au particles strongly affects the catalytic activity. The $Au_{0.2}/BiVO_4$ catalysts were prepared at different calcination temperatures to create Au particles with different sizes. As shown in Figure 6a (circle), the size of Au particles increases with a rise in temperature because the particle migration leads to their sintering;²² the treatment at 623, 673, 773 and 873 K produces Au particles with 6.5, 7.2, 11.1 and 13.5 nm diameters, respectively.³⁴ These catalysts were used for photocatalyt-

4

60

ic H₂O₂ production. The bar data in Figure 6a show the H₂O₂ concentration obtained by 10 h reaction. The catalyst prepared at 623 K shows lower activity than that of the catalyst prepared at 673 K. This is probably because, as observed in related systems,35-37 calcination at lower temperature leads to weaker adhesion of metal particles onto the semiconductor surface and suppresses electron transfer from photoexcited BiVO₄ to Au particles. In contrast, the calcination at higher temperature creates stronger interaction between BiVO₄ and Au particles, but the catalysts prepared at higher temperature (723, 773, and 823 K) show very low activity. This is because they contain larger Au particles, which have smaller surface areas and decrease the number of active sites for O2 reduction. Photocurrent response analysis confirms this. Figure 7 shows the photocurrent response of the catalysts loaded on a FTO glass electrode, obtained under visible light irradiation. Au_{0.2}/BiVO₄ prepared at 673 K (red) generates current larger than that of bare BiVO₄ (black), suggesting that Au particles mediate the e⁻ migration from BiVO₄ to FTO glass.³⁸ Au_{0.2}/BiVO₄ prepared at 873 K (blue) that contains larger Au particles shows smaller current enhancement, indicating that the decreased number of surface Au atoms suppresses e migration from BiVO₄ to FTO glass. These findings suggest that smaller Au particles have larger number of reduction sites for O_2 and efficiently produce H_2O_2 (Figure 6a).

Figure 6. Effects of (a) calcination temperature of $Au_{0.2}/BiVO_4$ and (b) amount of Au loaded (x) for $Au_x/BiVO_4$ on the H_2O_2 concentration formed by 10 h photoreaction. Reaction conditions are identical to those in Table 1. Circles denote the average diameters of Au particles on the catalysts. The calcination temperature for the catalysts (b) is 673 K. Typical TEM images of catalysts and size distributions of their Au particles are summarized in Figure S6 (Supporting Information).

The amount of Au loaded also affects the catalytic activity. Au_x/BiVO₄ catalysts with different Au loadings (x = 0.2, 0.5, 0.5) 1.0, and 2.0 wt %) were prepared by calcination at 673 K. As shown by the circles in Figure 6b, the sizes of Au particles increase with an increase in the Au loadings;²² the average diameters for x = 0.2, 1.0 and 2.0 catalysts are 7.2, 11.9 and 12.5 nm, respectively. As shown by the bar data in Figure 6b, the activities of these catalysts decrease with the Au loadings, although the loading of larger amount of Au increases the net surface areas of Au particles. This is due to the suppression of e⁻ injection from the photoexcited BiVO₄ to Au particles. The metal/semiconductor heterojunction creates a Schottky barrier $(\phi_{\rm B})$ that strongly affects the efficiency for e⁻ injection. The increase in the amount of metal loaded onto the semiconductor leads to an increase in the height of $\phi_{\rm B}$, because of the decrease in the Fermi level of the semiconductor.³⁹ The decreased catalytic activity for larger Au loading catalysts is therefore because the increased $\phi_{\rm B}$ suppresses the e⁻ injection from the photoexcited BiVO₄ to Au particles. As shown in Figure 7, Au_{2.0}/BiVO₄ (green) generates current much smaller than that of Au_{0.2}/BiVO₄ (red), suggesting that the e⁻ injection is indeed suppressed. The above findings indicate that loading of smaller numbers of small Au particles (ca. 7 nm) exhibits best catalytic performance for the H₂O₂ production.

Figure 7. Photocurrent response of bare BiVO₄, Au_{0.2}/BiVO₄, Au_{2.0}/BiVO₄ prepared by calcination at 673 K, and Au_{0.2}/BiVO₄ prepared by calcination at 873 K, obtained under visible light irradiation ($\lambda > 420$ nm) at a bias of 0.5 V. The average sizes of Au particles on the respective catalysts (d_{Au}) are denoted in the figure.

CONCLUSION

We found that Au/BiVO₄ promotes photocatalytic H₂O₂ production from water and O₂ under visible light irradiation, via the promotion of water oxidation and selective twoelectron reduction of O₂. At present, the catalytic activity is insufficient; the Φ_{AQY} at 420 nm is 0.24%, which is one-tenth of that of the organic semiconductor photocatalysts (2.6%).¹³ Activity improvement is therefore necessary for practical applications. Nevertheless, the inorganic system presented here based on water oxidation and selective two-electron reduction of O_2 may contribute to the design of green, stable and sustainable H_2O_2 synthesis based on photocatalysis.

EXPERIMENTAL SECTION

Materials. All of the reagents used were purchased from Wako, Tokyo Kasei, and Sigma-Aldrich and used without further purification. Water was purified by the Milli Q system. TiO_2 (JRC-TIO-4) was kindly supplied from the Catalyst Society of Japan (Japan Reference Catalyst). WO₃ was purchased from Kojundo Chemical Laboratory Co..

Catalyst preparation. BiVO₄ was prepared as follows:¹⁹ a mixture of K_2CO_3 (115 mg) and V_2O_5 (455 mg) was calcined in air at 730 K for 10 h, producing KV_3O_8 . The obtained KV_3O_8 was added to water (50 mL) with Bi(NO₃)₃·5H₂O (2.3 g) and stirred at 298 K for 72 h. The solids were recovered by centrifugation, washed with water, and dried in vacuo.

AgNbO₃ was prepared according to literature procedure:²³ a mixture of Ag₂O (232 mg) and Nb₂O₅ (266 mg) was calcined in air at 1173 K for 12 h.

Au_x/BiVO₄ [*x* (wt %) = 0.2, 0.5, 1.0, and 2.0] were prepared as follows:²² HAuCl₄·4H₂O (2.1, 5.2, 10.5, or 20.9 mg) was added to water (50 mL). The pH of the solution was adjusted to 7 by an addition of 1 M NaOH. BiVO₄ (0.5 g) was added to the solution and stirred vigorously at 353 K for 3 h. The solids were recovered by centrifugation, washed with water, and calcined at the disignated temperature (673, 723, 773, or 873 K) for 2 h under air flow. Au_{0.2}/TiO₂, Au_{0.2}/WO₃, and Au_{0.2}/AgNbO₃ were prepared in a similar manner.

 $M_{0.2}$ /BiVO₄ [M = Ag, Pd, Pt, Co, and Ni] were prepared as follows:⁴⁰ BiVO₄ (0.5 g) was added to water (20 mL) containing AgNO₃ (1.6 mg), Pd(NO₃)₂ (2.2 mg), H₂PtCl₆·6H₂O (2.7 mg), Ni(NO₃)₂·6H₂O (5.0 mg), or CoCl₂·6H₂O (4.0 mg), and evaporated under stirring at 393 K for 12 h. The resultant was dried at 673 K for 2 h. The powders were added to a sodium formate solution (0.1 M, 20 mL) and stirred at 313 K for 2 h under Ar (1 atm). The particles were recovered by centrifugation, washed with water, and dried in vacuo.

Photoreaction. Catalyst (50 mg) was added to water (30 mL) within a borosilicate glass bottle (φ 35 mm; capacity, 50 mL), and the bottle was sealed with a rubber septum cap. The catalyst was dispersed well by ultrasonication for 5 min, and O₂ was bubbled through the solution for 15 min. The bottle was immersed in a temperature-controlled water bath (298 K) and photoirradiated at λ >420 nm using a 2 kW Xe lamp (USHIO Inc.) with magnetic stirring.⁴¹ Photocatalytic O₂ reduction with EtOH as sacrificial electron donor was performed with catalyst (50 mg) in an EtOH/water (9/1 v/v) mixture (30 mL) under O₂ atmosphere.⁴² Photocatalytic water oxidation was performed with catalyst (50 mg) in water (30 mL) containing AgNO₃ (0.05 M) under Ar atmosphere.¹³ Decomposition experiment of H₂O₂ was performed with catalyst (50 mg) in solution (30 mL) containing H₂O₂ (10 mM) under Ar atmosphere, where water, EtOH/water (9/1 v/v), and aqueous NaIO₃ solution (0.05 M) were used as a solvent. Spectral irradiance for the Xe lamp was measured with a spectroradiometer USR-40 (USHIO Inc.). After the reaction, the gas-phase products were analyzed by GC-TCD (Shimadzu; GC-14B). The catalyst was recovered by centrifugation, and H₂O₂ concentration in solution was determined by the redox titration with $KMnO_4$.

Action spectrum analysis. Photoreactions were carried out in water (30 mL) with Au_{0.2}/BiVO₄ (50 mg) within a borosilicate glass bottle (φ 35 mm; capacity, 50 mL). After ultrasonication and O₂ bubbling, the bottle was photoirradiated using a Xe lamp for 10 h, where the incident light was monochromated by the band-pass glass filters (Asahi Techno Glass Co.).⁴³ The full-width at half-maximum (fwhm) of the lights was 11–16 nm.

ESR analysis. The spectra were recorded at the X-band using a Bruker EMX-10/12 spectrometer with a 100 kHz magnetic field modulation at a microwave power level of 10.5 mW, where microwave power saturation of the signals does not occur.⁴⁴ The magnetic field was calibrated with a 1,1'-diphenyl-2-picrylhydrazyl (DPPH) as a standard. The measurements were carried out as follows: catalyst (20 mg) was suspended in an EtOH/water mixture (9/1 v/v, 5 mL) containing DMPO (0.1 mmol) within a Pyrex glass tube (φ 12 mm; capacity, 20 mL), and the tube was sealed with a rubber septum cap. After ultrasonication (3 min) and O₂ bubbling (5 min), the solution was photoirradiated with magnetic stirring for 3 min. After the irradiation, the catalyst was recovered by centrifugation, and the resulting solution was subjected to analysis.

Electrochemical analysis. Rotating disk electrode analysis was performed on a computer-controlled CHI600D advanced electrochemical system with a three-electrode cell. An Ag/AgCl electrode and a Pt wire electrode were used as the reference and counter electrode, respectively. The working electrode was prepared according to literature procedure:⁴⁵ catalysts (50 mg) were dispersed in EtOH (2 mL) with Nafion (50 mg) as an ionomer by ultrasonication. The suspension (20 μ L) was put onto a Pt disk electrode and dried at room temperature. The linear-sweep voltammograms were obtained in O₂-saturated 0.1 M phosphate buffer solution (pH 7) with a scan rate 10 mV s⁻¹ at different rotating speeds (400–1600 rpm). After each scan, O₂ was bubbled through the electrolyte for 5 min to saturate O₂.

Photocurrent response was measured in a conventional three-electrode cell using an electrochemical analyzer (SI 1280B, TOYO Corp.). The working electrode was prepared using a fluoride tin oxide (FTO) glass. Catalysts (50 mg) were dispersed in EtOH (1 mL) with *p*-ethylene glycol (60 mg), and the suspension was ultrasonicated for 1 h. The resultant slurry (10 µL) was put onto a FTO glass. After drying in air, the glass was annealed at 623 K for 30 min under air flow for strong adhesion of the catalyst.⁴⁶ An water containing 0.5 M Na₂SO₄ was used as the electrolyte. N₂ gas was bubbled through the solution 10 min. The working electrode was immersed in the solution with a Pt sheet and a Ag/AgCl electrode as the counter and reference electrodes, respectively. The working electrode was photoirradiated ($\lambda > 420$ nm) from the back side (FTO glass/semiconductor interface) at a potential of 0.5 V. The exposed area under photoirradiation was 0.25 cm².

Other analysis. XRD patterns were measured on a Philips X'Pert-MPD spectrometer. Diffuse-reflectance (DR) UV-vis spectra were measured on an UV-vis spectrophotometer (JASCO Corp.; V-550) equipped with Integrated Sphere Ap-

60

1 2

3

56

57

58 59 60 paratus ISV-469, using $BaSO_4$ as a reference. The spectra for catalysts are summarized in Figure S5 (Supporting Information). TEM observations were performed using an FEI Tecnai G2 20ST analytical electron microscope operated at 200 kV.⁴⁷ Typical TEM images of catalysts and size distributions of their metal particles are summarized in Figure S6 (Supporting Information).

ASSOCIATED CONTENT

XRD patterns of catalysts (Figure S1), time-profiles for H_2O_2 formation in an EtOH/water/O₂ system (Figure S2), time-profiles for water oxidation with AgNO₃ (Figure S3), results of H_2O_2 decomposition on Au/BiVO₄ (Figure S4), DR UV-vis spectra of catalysts (Figure S5), and TEM images of catalysts and size distribution of metal particles (Figure S6). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

shiraish@cheng.es.osaka-u.ac.jp

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by the Grant-in-Aid for Scientific Research (No. 26289296) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), and by the Precursory Research for Embryonic Science and Technology (PRESTO) from Japan Science and Technology Agency (JST).

REFERENCES

(1) Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

- (2) Mousavi Shaegh, S. A.; Nguyen, N.-T.; Mousavi Ehteshami, S. M.; Chan, S. H. *Energy Environ. Sci.* **2012**, *5*, 8225–8228.
- (3) Sandelin, F.; Oinas, P.; Salmi, T.; Paloniemi, J.; Haario, H. Ind. Eng. Chem. Res. 2006, 45, 986–992.

(4) Liu, Q.; Bauer, J. C.; Schaak, R. E.; Lunsford, J. H. Angew. Chem., Int. Ed. 2008, 47, 6221–6224.

(5) Edwards, J. K.; Solsona, B.; Ntainjua, N. E.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. *Science* **2009**, *323*, 1037–1041.

(6) Cai, R.; Kubota, Y.; Fujishima, A. J. Catal. 2003, 219, 214–218.

(7) Maurino, V.; Minero, C.; Mariella, G.; Pelizzetti, E. Chem. Commun. 2005, 2627–2629.

(8) Hirakawa, T.; Nosaka, Y. J. Phys. Chem. C 2008, 112, 15818-15823.

(9) Shiraishi, Y.; Kanazawa, S.; Tsukamoto, D.; Shiro, A.; Sugano, Y.; Hirai, T. *ACS Catal.* **2013**, *3*, 2222–2227.

(10) Henderson, M. A. Surf. Sci. Rep. 2011, 66, 185-297.

- (11) Goldstein, S.; Aschengrau, D.; Diamant, Y.; Rabani, J. *Environ. Sci. Technol.* **2007**, *41*, 7486–7490.
- (12) Moon, G.-H.; Kim, W.; Bokare, A. D.; Sung, N.-E.; Choi, W. *Energy Environ. Sci.* **2014**, *7*, 4023–4028.

(13) Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. *Angew. Chem., Int. Ed.* **2014**, *53*, 13454–13459.

(14) Maeda, K.; Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.; Domen, K. J. Phys. Chem. C 2009, 113, 4940–4947.

(15) Wang, X.; Blechert, S.; Antonietti, M. ACS Catal. 2012, 2, 1596–1606.

- (16) Teranishi, M.; Naya, S.; Tada, H. J. Am. Chem. Soc. 2010, 132, 7850–7851.
- (17) Burnside, S.; Moser, J.-E.; Brooks, K.; Grätzel, M.; Cahen, D. J. Phys. Chem. B 1999, 103, 9328–9332.
- (18) Tsukamoto, D.; Shiraishi, Y.; Hirai, T. Catal. Sci. Technol. 2013, 3, 2270–2277.
- (19) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459–11467.
- (20) Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S. *Energy Environ. Sci.* **2011**, *4*, 1781–1787.
- (21) Liu, S.; Yin, K.; Ren, W.; Cheng, B.; Yu, J. J. Mater. Chem. 2012, 22, 17759–17767.
- (22) Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. **2012**, *134*, 6309–6315.

(23) Kato, H.; Kobayashi, H.; Kudo, A. J. Phys. Chem. B 2002, 106, 12441–12447.

(24) As shown in Figure S2 (Supporting Information), the amount of H_2O_2 formed in an EtOH/O₂ system on $Au_{0.2}/BiVO_4$ (257 μ M) is similar to that on $Au_{0.2}/WO_3$ (285 μ M), although $Au_{0.2}/WO_3$ is less active in a water/O₂ system (Table 1, entries 2 and 9). This indicates that $Au_{0.2}/WO_3$ is active for alcohol oxidation and effective for H_2O_2 production in the case using alcohol as an electron donor.

- (25) Salvador, P.; Decker, F. J. Phys. Chem. 1984, 88, 6116-6120.
- (26) Harbour, J. R.; Hair, M. L. J. Phys. Chem. 1978, 82, 1397-1399.
- (27) Tsukamoto, D.; Ikeda, M.; Shiraishi, Y.; Hara, T.; Ichikuni, N.; Tanaka, S.; Hirai, T. *Chem. Eur. J.* **2011**, *17*, 9816–9824.
- (28) Jiang, H.; Zhu, Y.; Feng, Q.; Su, Y.; Yang, X.; Li, C. Chem. Eur. J. 2014, 20, 3106–3112.
- (29) Guo, Z.; Liu, H.; Jiang, C.; Zhu, Y.; Wan, M.; Dai, L.; Jiang, L. Small 2014, 10, 2087–2095.
- (30) Miki, T.; Yanagi, H. Langmuir 1998, 14, 3405-3410.

(31) Sheng, H.; Ji, H.; Ma, W.; Chen, C.; Zhao, J. Angew. Chem., Int. Ed. 2013, 52, 9686–9690.

(32) Lin, L.; Zhu, Q.; Xu, A. J. Am. Chem. Soc. 2014, 136, 11027–11033.

(33) Liu, Y.; Liu, H.; Wang, C.; Hou, S.-X.; Yang, N. Environ. Sci. Technol. 2013, 47, 13889–13895.

(34) As shown in Figure S1 (Supporting Information), XRD patterns of the catalysts reveal that phase transition of BiVO₄ support scarcely occurs during calcination at this temperature range.

(35) Burch, R.; Loader, P. K.; Cruise, N. A. Appl. Catal. A: Gen. 1996, 147, 375–394.

(36) Zimowska, M.; Wagner, J. B.; Dziedzic, J.; Camra, J.; Borzecka-Prokop, B.; Najbar, M. Chem. Phys. Lett. **2006**, 417, 137–142.

(37) Shiraishi, Y.; Kofuji, Y.; Kanazawa, S.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. *Chem. Commun.* **2014**, *50*, 15255– 15258

- (38) Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. J. Phys. Chem. Lett. 2010, 1, 2607–2612.
- (39) Uchihara, T.; Matsumura, M.; Yamamoto, A.; Tsubomura, H. *J. Phys. Chem.* **1989**, *93*, 5870–5874.
- (40) Agostini, G.; Lamberti, C.; Pellegrini, R.; Leofanti, G.; Giannici, F.; Longo, A.; Groppo, E. *ACS Catal.* **2014**, *4*, 187–194.
- (41) Sugano, Y.; Shiraishi, Y.; Tsukamoto, D.; Ichikawa, S.; Tanaka, S.; Hirai, T. *Angew. Chem., Int. Ed.* **2013**, *52*, 5295–5299.
- (42) Shiraishi, Y.; Kofuji, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. *ACS Catal.* **2015**, *5*, 3058–3066.
- (43) Shiraishi, Y.; Hirakawa, H.; Togawa, Y.; Hirai, T. ACS Catal. 2014, 4, 1642–1649.

(44) Sakamoto, H.; Ohara, T.; Yasumoto, N.; Shiraishi, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2015, 137, 9324–9332.

(45) Schmidt, T. J.; Gasteiger, H. A.; Stäb, G. D.; Urban, P. M.;
Kolb, D. M.; Behm, R. J. J. Electrochem. Soc. **1998**, 145, 2354–2358.
(46) Wang, Y.; Yu, J.; Xiao, W.; Li, Q. J. Mater. Chem. A **2014**, 2, 3847–3855.

(47) Shiraishi, Y.; Tanaka, K.; Shirakawa, E.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. *Angew. Chem., Int. Ed.* **2013**, *52*, 8304–8308.

