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Abstract: A colorimetric and fluorescent dual-channel fluoride chemosensor N,N’-bis 

(4-diethylaminosalicylidene) hydrazine (sensor S) bearing two imine groups has been 

designed and synthesized. This structurally simple probe displays rapid response and 

high selectivity for fluoride over other common anions (Cl
−
, Br

−
, I

−
, AcO

−
, H2PO4

−
, 

HSO4
−
, ClO4

−
, CN

−
 and SCN

−
) in a highly polar aqueous DMSO solution. Mechanism 

studies suggested that the sensor firstly combined with F
−
 through hydrogen bonds 

and then experienced the deprotonation process at higher concentrations of F
−
 anion 

to the two Ar-OH groups. The detection limits was 5.78×10
−7 

M of F
−
, which pointing 

to the high detection sensitivity. Test strips based on sensor S were fabricated, which 

could act as a convenient and efficient F
−
 test kit to detect F

−
 for “in-the-field” 

measurement. 

 

                                                        

Corresponding author 

Tel: +8609317973120. E-mail address: weitaibao@126.com 

mailto:weitaibao@126.com


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Keywords: Fluoride (F
−
); Chemosensor; Colorimetric; Fluorescent; Imine group; 

DFT calculations. 

 

1. Introduction 

In the past few decades, design and synthesis of organic molecules based on 

supramolecular concepts for the colorimetric detection in the presence of various 

anions from industrial effluents, environmental contaminants and the potential for 

applications in biology and medicine has received current attention [1-5]. Fluoride is 

considered as a serious health hazard in the environment because it may lead to bone 

disease in the event of excessive intake of it [6,7]. Therefore, considering the wide 

application of fluoride, there is a great demand for the development of methods that 

can rapidly, sensitively and selectively detect the fluoride anion [8-11]. Up to now, 

many efforts have been made to design simple and low cost chemosensors, several 

anion receptors such as imidazoles [12,13], pyrroles [14,15], calixpyrroles [16,17], 

amides [18-20], carbamides [21,22], urea [23,24],
 
and thiourea [25] have been 

developed.  

In many cases, the anion binding unit is primarily composed of H-bonding donors. 

A variety of neutral receptors have been reported for selective anion recognition based 

on H-bonding owing to the strength and selectivity of this interaction [26,27]. 

Meanwhile, H bonding interactions between an anion and the H-bond donors in a 

sensing system can induce internal charge transfer (ICT), which cause changes in the 

absorption and emission of the chromogenic probe, thus allowing the naked eye 

chemosensing [28,29]. Among them, taking the Ar-OH group as the sensing site 

possesses several merits. For example, it can be used for the hydrogen bond donor site 

and act as anion binding site. Furthermore, owing to the fact that the acidity of 
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“Ar-OH” is stronger than that of “H-C=N-”, the Ar-OH group can sense F
−
 not only 

by forming hydrogen bond (F
−…HO-Ar) but also by a deprotonation process 

(deprotonation of Ar-OH). As a result, it can afford two kinds of sense approaches 

and enhance the sense selectivity for F
−
. 

With this background, as a part of our research interest in molecular recognition 

[30-34], we reported a simple-to-synthesize, yet sensitive and selective fluoride anion 

sensor S. The strategy employed in the design of this sensor is as follows: firstly, we 

introduced hydroxyl and imine groups to the sensor molecule as binding sites to 

detect F
−
 by hydrogen-bonding interactions. Secondly, in order to achieve high 

sensitivity for F
−
, the fluorescent signal report mode has been adopted, because the 

fluorescent sensors often provide higher sensitivity than other optic sensors. Therefore, 

we introduced 4-diethylaminosalicylaldehyde as the fluorescence signal group. 

Finally, the sensor molecular was designed easily to synthesize with low cost. As a 

result, sensor S could detect F
−
 with specific selectivity and high sensitivity. 

Moreover, we also demonstrate that the F
- 

anion recognition mechanism is both 

hydrogen bonding and deprotonation with the Ar-OH in sensor S, which was 

investigated by various methods (such as 
1
H NMR spectroscopic titration, ESI-MS and 

Density functional theory (DFT) calculations), both of which give rise to changes in 

the UV-vis and fluorescent spectra.  

2. Experimental section 

2.1. Materials and physical methods 

All reagents and solvents were commercially available at analytical grade and were 

used without further purification. 
1
H NMR spectra were recorded with a 

Mercury-400BB spectrometer at 400 MHz. 
1
H chemical shifts are reported in ppm 

downfield from tetramethylsilane (TMS, δ scale with the solvent resonances as internal 
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standards). UV-visible spectra were recorded on a Shimadzu UV-2550 spectrometer. 

Photoluminescence spectra were performed on a Shimadzu RF-5301 fluorescence 

spectrophotometer. Melting points were measured on an X-4 digital melting-point 

apparatus (uncorrected). The infrared spectra were performed on a Digilab FTS-3000 

FT-IR spectrophotometer. Elemental analyses were performed by Thermo Scientific 

Flash 2000 organic elemental analyzer. 

2.2 Synthesis of sensor 1 

4-diethylaminosalicylaldehyde (0.424 g, 2.2 mmol), hydrazine monohydrate (0.100 

g, 2 mmol), and a catalytic amount of acetic acid (five drops of AcOH) were 

combined in absolute ethanol (10 mL). The solution was stirred under reflux for 4 h. 

The reaction mixture was refluxed for 3-4 h and the progress of reaction was 

monitored by thin layer chromatography (TLC). After the completion of the reaction, 

the reaction flask was allowed to cool to room temperature. The solid product that 

appeared in the flask was filtered and recrystallized with ethanol to get orange 

crystalline product S (0.592 g) in 77% yield (mp: 244-246℃); IR: (KBr, cm
-1

) ν: 2978, 

1627, 1590, 1516, 1409, 1355, 1229, 1128, 967, 782; 
1
H NMR (DMSO-d6, 400 MHz): 

δ 1.09-1.13(t, 12H, -CH3), 3.35-3.39 (t, 8H, N-CH2), 6.12 (s, 2H, ArH), 6.30-6.32 (d, 

2H, ArH), 7.27-7.29 (d, 2H, ArH), 8.61 (s, 2H, N=CH), 11.51 (s, 2H, Ar-OH); Anal. 

Calcd for C22H30N4O2: C 69.08, H 7.91, N 14.65. Found: C 69.20, H 7.89, N 14.62. 

ESI-MS: m/z calcd for C22H30N4O2, [M-H]
+ 

= 382.24, found [M-H]
+ 

= 383.29. 

2.3. General procedure for UV-vis experiments 

The solution of sensor S (2.0×10
−4 M) in DMSO was prepared and stored in dry 

atmosphere. The solution was used for all spectroscopic studies after appropriate 

dilution. The DMSO solutions of each anions (1.0×10
−2 M) were prepared, 

respectively, via tetrabutylammonium salts for F
−
, Cl

−
, Br

−
, I

−
, AcO

−
, H2PO4

−
, HSO4

−
 , 
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ClO4
−
 and the sodium salts for CN

−
, SCN

−
. Any changes in the UV-vis spectra of 

sensor S were recorded upon the addition of salts while keeping the concentration of 

sensor S (2.0×10
−5

 M) in all experiments. 

2.4. General procedure for Fluorescence spectra experiments 

The solution of sensor S (2.0×10
−4

 M) in DMSO was prepared and stored in dry 

atmosphere. The solution was used for all spectroscopic studies after appropriate 

dilution. The DMSO solutions of each anions (1.0×10
−2

 M) were prepared, 

respectively, via tetrabutylammonium salts for F
−
, Cl

−
, Br

−
, I

−
, AcO

−
, H2PO4

−
, HSO4

−
, 

ClO4
−
 and the sodium salts for CN

−
, SCN

−
. The fluorescence spectra were obtained by 

excitation at 422 nm. The excitation slit widths were 5 nm and emission slit widths 

were 5 nm, respectively. Any changes in the fluorescence spectra of sensor S were 

recorded upon the addition of salts while keeping the concentration of sensor S 

(2.0×10
−5

 M) in all experiments. 

2.5. General procedure for 
1
H NMR experiments 

For 
1
H NMR titrations, the appropriate concentrated solution of sensor S and the 

guest were both prepared in DMSO-d6. Aliquots of the two solutions were mixed 

directly in NMR tubes. 

3. Results and discussion 

In this work, F
−
 chemosensor S was synthesized by the condensation of 

4-diethylaminosalicylaldehyde and hydrazine monohydrate (Scheme 1) which has 

been characterized by 
1
H NMR, ESI-MS and elemental analyses. The structure of S 

was further confirmed by X-ray crystallography, as shown in Figure 1 (Summary of 

Data CCDC 1060898). A summary of the crystallographic data and structural 

refinements for S are listed in Figure 1, Table S1 (see supporting information). 

(Insert Scheme 1) 
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(Insert Figure 1) 

The absorption spectrum of sensor S in DMSO solution exhibits the absorption 

band at 422 nm. When 50 equiv. of F
-
 was added to the DMSO solution of sensor S, 

the band at 422 nm is red-shifted to 456 nm (Figure 2). This absorption was 

responsible for the color change (from yellow to dark-yellow) and perceptible to the 

naked eyes (Figure 2, insert). To validate the selectivity of sensor S, the same tests 

were applied using Cl
−
, Br

−
, I

−
, AcO

−
, H2PO4

−
, HSO4

−
, ClO4

−
, CN

−
 and SCN

−
 anions, 

and none of these anions induced any significant changes in the UV-vis spectrum. The 

selective fluorescence response of S to F
−
 anion was also investigated (Figure 3). The 

emission of S appeared at the maximum emission wavelength was 488 nm in DMSO 

solution when excited at λex = 422 nm. When 50 equiv. of F
−
 was added to the 

solution of sensor S, the strong fluorescence emission band at 488 nm is quenched 

and the fluorescence color changed from blue-green to pale-yellow (Figure 3, inset), 

which could be easily distinguished by the naked eye under the aid of a normal UV 

lamp (λex =365 nm). To validate the selectivity of sensor S, the same tests were also 

applied using Cl
−
, Br

−
, I

−
, AcO

−
, H2PO4

−
, HSO4

−
, ClO4

−
, CN

−
 and SCN

−
 anions, and 

none of these anions induced any significant changes in the fluorescent spectrum of 

the sensor. 

(Insert Figure 2) 

(Insert Figure 3) 

The binding affinities of S and F
−
 have been examined through the titration 

experiments. As shown in Figure 4, with the increasing concentrations of F
−
, the 

strong absorption band of S centered at 422 nm gradually decreased along with the 

appearance of a new absorption band centered at 456 nm. The formation of new band 

may be due to the hydrogen bond formation of the F
–
 with Ar-OH protons or 
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deprotonation of Ar-OH protons [32]. Similarly, in the florescence titration spectrum 

(Figure 5), while the concentration of F
−
 was increased, the emission maximum at 488 

nm gradually decreased. The sensor gives an immediate response to the fluoride anion 

(see supporting information, Figure S5) and the detection limit of the S for the 

determination of F
−
 was estimated to be 5.78×10

−7
 M, which pointing to the high 

detection sensitivity (see supporting information, Figure S6). The Job plot between S 

and F
−
 was implemented, demonstrating a 1:4 stoichiometry for the S and F

−
, as 

shown in Figure 6 [35].  

(Insert Figure 4) 

(Insert Figure 5) 

(Insert Figure 6) 

To explore the sensing mechanism of sensor S to F
−
, the 

1
H NMR titration were 

investigated, which illustrated the characteristic structural changes occurring upon 

interaction with F
−
. As shown in Figure 7, before the addition of fluoride anion, the 

1
H 

NMR chemical shifts of the Ar-OH
 
and -HC=N- protons on S were at δ 11.51, 8.61 

ppm, respectively. Upon the addition of 0.5 and 1.0 equiv. of fluoride anion, the 

resonance for Ar-OH were gradually decreased and then completely disappeared. 

Further addition of F
−
 to 2.0 equiv. resulted in the formation a new peak at 16 ppm 

which pertained to [HF2]
− 

[36]. These observations obviously indicate the 

deportonation process of the fluoride anion with the two Ar-OH groups in sensor S. A 

plausible mechanism for the formation of S-F
−
 has been proposed in Scheme 2. 

(Insert Figure 7) 

(Insert Scheme 2) 

Further to confirm the proposed mechanism of sensor S with F
−
, we performed 

DFT calculations done at the B3LYP/6-311+g (2d, p) level of theory [37]. The 
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optimized stationary structures (minima, saddle points) on the potential surfaces of the 

reactions are depicted schematically in Figure 8. Calculations results show: 1) the 

sensor S firstly combined with F
−
 through hydrogen bond and then experienced the 

deprotonation process at higher concentrations of F
−
 anion to the two Ar-OH groups; 

2) the reaction process of IM1 to IM2 is endothermic by 19.5 kJ·mol
−1

 on the ground 

potential energy surface, while the whole reaction is exothermic by 277.7 kJ·mol
−1

, 

which showed that the reaction of probe S with F
−
 is easy to carry out. These 

calculations results are consistent with the experimental results. 

(Insert Figure 8) 

To investigate the practical application of sensor S, test trips were prepared by 

immersing filter papers into DMSO solution of S (0.1 M) and then drying in air. The 

test strips containing S were utilized to sense F
−
. As shown in Figure 9, when F

−
 anion 

was added on the test kits, the obvious color change was observed both in visible light 

and under the 365 nm UV-lamp. 

(Insert Figure 9) 

4. Conclusion 

In summary, we have proposed a facile, low-cost, and efficient double Schiff-base 

example of a highly selective chemosensor for F
−
 through hydrogen bonding and 

deprotonation between S and the anion. The sensor gives an immediate response to the 

fluoride anion both by visible color changes as well as fluorescence turn-off response. 

Fluoride anion are detectable by hydrogen bonding and deprotonation to the Ar-OH 

groups and the mechanism of the reaction was investigated by various means (such as 

1
H NMR spectroscopic titration，ESI-MS and DFT calculation). Moreover, test strips 

based on sensor S was fabricated, which could serve as practical colorimetric to detect 

F
–
 for “in-the-field” measurement and did not require any additional equipment but 
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just by virtue of “dip-sticks” approach. We believe the test strips could act as a 

convenient and efficient F
−
 test kit. More applications of this efficient strategy might 

be found in extended occasions of this concept, such as with combinations of 

anion-neutral molecules. 
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Scheme 1. Synthetic procedures for sensor S. 
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Scheme 2 A possible mechanism of the sensor S to F
−
. 
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Figure 1 The single crystal X-ray structure of S. 
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Figure 2 Absorbance emission data for probe S in the DMSO solution. 

Inset: color changes observed for S upon the addition of F−, Cl−, Br−, I−, 

AcO−, H2PO4
−, HSO4

−, ClO4
−, CN−, SCN− (50 equiv., respectively) in 

DMSO. 
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Figure 3 Fluorescence emission data for probe S in the DMSO solution 

(excitation wavelength=422 nm). Inset: Visual fluorescence emissions of 

S upon the addition of F−, Cl−, Br−, I−, AcO−, H2PO4
−, HSO4

−, ClO4
−, CN−, 

SCN− (50 equiv., respectively) in DMSO on excitation at 365 nm using 

UV lamp at rt. 
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Figure 4 Absorbance spectra of probe S in the presence of different 

concentration of F− 
in DMSO. Inset: A plot of absorbance depending on 

the concentration of F− in the range from 0 to 120.56 equiv. The detection 

wavelength was 480 nm. 
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Figure 5 Fluorescence spectra of probe S in the presence of different 

concentration of F− 
in DMSO. Inset: A plot of fluorescence intensity 

depending on the concentration of F− in the range from 0 to 111.64 equiv. 

The detection wavelength was 488 nm. 
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Figure 6 Job’s plot of S with F− in DMSO, indicating the 1:4 

stoichiometry for S and F− clearly. 
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Figure 7 Partial 
1
H NMR spectra of S (0.05M, DMSO-d6) and in the 

presence of varying amounts of F−. 
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Figure 8 The optimized stationary structures on the potential surfaces of the reactions. 

(R1 is sensor S, IM1 is intermediate 1, IM2 is intermediate 2, IM3 is intermediate 3, P 

is S-F
−
, pale-blue ball is fluoride, grey ball is carbon, blue ball is nitrogen, red ball is 

oxygen, white ball is hydrogen). 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

 

Figure 9 Photographs of S on test papers (a) left: only S, right: after 

immersion into DMSO solutions with F−; (b) left: only S, right after 

immersion into DMSO solutions with F− under irradiation at 365 nm.  
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Graphical Abstract 

 

A colorimetric and fluorescent dual-channel fluoride chemosensor N,N’-bis 

(4-diethylaminosalicylidene) hydrazine (sensor S) bearing two imine groups has been 

designed and synthesized. This structurally simple probe displays rapid response and 

high selectivity for fluoride over other common anions (Cl
−
, Br

−
, I

−
, AcO

−
, H2PO4

−
, 

HSO4
−
, ClO4

−
, CN

−
 and SCN

−
) in a highly polar aqueous DMSO solution. Mechanism 

studies suggested that the sensor firstly combined with F
−
 through hydrogen bonds 

and then experienced the deprotonation process at higher concentrations of F
−
 anion 

to the two Ar-OH groups. The detection limits was 5.78×10
−7 

M of F
−
, which pointing 

to the high detection sensitivity. Test strips based on sensor S were fabricated, which 

could act as a convenient and efficient F
−
 test kit to detect F

−
 for “in-the-field” 

measurement. 
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Highlights 

 

1. Synthesize an effective F− chemosensor. 

2. Study the mechanism by different way.  

3. Test trips can be used to detect F− easily. 


