ISSN 1070-3632, Russian Journal of General Chemistry, 2018, Vol. 88, No. 5, pp. 883–891. © Pleiades Publishing, Ltd., 2018. Original Russian Text © N.A. Anisimova, E.K. Slobodchikova, V.M. Berestovitskaya, M.E. Ivanova, A.A. Kuzhaeva, T.V. Rybalova, 2018, published in Zhurnal Obshchei Khimii, 2018, Vol. 88, No. 5, pp. 738–746.

Synthesis and Structure of Cyclohexenes Functionalized by Nitro and Trifluoro(chloro)methyl Groups

N. A. Anisimova^{*a,b**}, E. K. Slobodchikova^{*a*}, V. M. Berestovitskaya^{*a*†}, M. E. Ivanova^{*c*}, A. A. Kuzhaeva^{*a*}, and T. V. Rybalova^{*d,e*}

^a Herzen State Pedagogical University of Russia, nab. reki Moiki 48, St. Petersburg, 191186 Russia * e-mail: kohrgpu@yandex.ru

^b St. Petersburg State University of Industrial Technologies and Design, St. Petersburg, Russia

^c Altai State Agricultural University, Barnaul, Russia

^d Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

^e Novosibirsk State University, Novosibirsk, Russia

Received November 16, 2017

Abstract—Cyclohexenes functionalized by nitro and trihalomethyl groups were produced by condensation of 1-nitro- and 1-bromo-1-nitro-3,3,3-trifluoro(chloro)propenes with 2-methyl- and 2,3-dimethyl-1,3-butadienes; their structure was characterized by IR, ¹H, ¹³C, ¹⁹F NMR spectroscopy, and X-ray diffraction method.

Keywords: 1-nitro-3,3,3-trifluoro(chloro)propenes, cyclohexenes, Diels-Alder reaction, acyclic dienes, trihalomethyl group

DOI: 10.1134/S1070363218050079

The cyclohexane ring is widespread in nature; it is a structural fragment of vitamins, terpenes, hormones, alkaloids, shikimic acid, and other practically significant substances [1, 2]. The growing interest in natural compounds containing a cyclohexene or cyclohexadiene ring is driven by the importance of the functions they perform (inhibitors of enzymes [3, 4]) and their usability as key compounds for the production of anticancer [5], narcotic [6, 7], and antiviral [8, 9] drugs, as well as promising anti-AIDS drugs [10].

One convenient and affordable method for the synthesis of functionalized cyclohexenes is the Diels– Alder reaction involving as a dienophile the vicinalsubstituted nitroalkenes containing the second easily modifiable group (CO₂R, SO₂Ph, CHlg₃) [11, 12]. Exactly these dienophiles are used for the synthesis of natural biologically active compounds, including the preparation of natural analgesic epibatidine [13, 14], morphine derivatives [15], and conduritols [10].

Of particular interest are nitrocyclohexenes containing a trihalomethyl group, which is known to allow According to available public references, 1-nitro-3,3,3-trichloropropene enters into diene condensation with alkadienes like 1,3-butadiene, 2,3-dimethyl-1,3butadiene, isoprene, or piperylene), usually under severe conditions (multi-hour heating in an ampule in the medium of a high-boiling solvent) [16–18].

To obtain cyclohexenes containing CCl_3 or CF_3 groups, we studied the diene condensation of 1-nitro-3,3,3-trifluoro(chloro)propenes **1** and **2** and 1-bromo-1-nitro-3,3,3-trifluoro(chloro)propenes **3** and **4** with aliphatic dienes.

The reactions of nitroalkenes (1 and 2) and bromonitroalkenes (3 and 4) with 2,3-dimethyl-1,3-butadiene and isoprene have showed that these dienophiles are reactive with acyclic dienes even without heating (at $4-20^{\circ}$ C, in the absence of a solvent, within 1–7 days). Nitroalkenes 1–4, when reacted with 2,3-dimethyl-1,3butadiene, produced the corresponding cyclohexenes 5–8 in good yields (92–98%).

further modification of the cyclic structure and to enhance the pharmacological activity [14].

[†] Deceased.

Hlg = F: X = H (1, 5, 9a, 9b), Br (3, 7, 11a, 11b); Hlg = Cl: X = H (2, 6, 10a, 10b), Br (4, 8, 12a, 10b).

The interaction of nitro- and *gem*-bromonitroalkenes 1–4 with an asymmetric diene like isoprene predictably resulted in the formation of a mixture of regioisomeric cyclohexenes 9a-12a and 9b-12b, which differ from one another by the mutual arrangement (1,5- vs. 1,4-) of methyl and trihalomethyl groups. In all cases, regioisomer **b** with a remote location of the CH₃ and CHlg₃ groups was dominant.

Judging from the experimental data, nitroalkenes 1 and 3 with a CF₃ group exhibited a greater activity than their structural analogs 2 and 4 containing a CCl₃ group. As such, *gem*-bromonitroalkene 3 reacted faster (4°C, 10 h) than its structural analog, nitroalkene 1 (20°C, 24 h), whereas in a pair of similar compounds 2 and 4 containing a more bulky CCl₃ group, on the contrary, nitroalkene 2 showed a greater activity (20° C, 3 days) compared to *gem*-bromonitroalkene 4 (20° C, 6 days).

The structure of the obtained nitrocyclohexenes 5– 12 was determined by the IR and ¹H NMR spectroscopy methods (Tables 1–3), as well as by comparing their spectral characteristics with those of structurally similar compounds containing CO_2R and $P(O)(OR)_2$ groups [19, 20]. The IR spectra of nitrocyclohexenes **5–12** contain the absorption bands of the nonconjugated NO₂ group, which appear in the regions of 1322–1373 and 1558–1570 cm⁻¹. In the ¹H, ¹³C, and ¹⁹F NMR spectra of nitrocyclohexenes **5–8**, the stereohomogeneity of these compounds is observed (Table 1). The formation of cyclohexenes **9–12** as regioisomers is evidenced by doubling the signals of the methyl substituent and the H⁴ and H⁵ cycle protons, as well as the signals of carbon nuclei of compounds **9a–12a** and **9b–12b** and fluorine nuclei of **9a**, **9b**, **11a**, and **11b** (Tables 2–4) in the ¹H, ¹³C, and ¹⁹F NMR spectra.

The signals of methylene protons $H^{6'}$ and $H^{6''}$ in the spectra of compounds **5–8** and **9a–12a** and $H^{3'}$ and $H^{3''}$ of **9b–12b** appear as multiplets in the range of 2.22 to 2.92 ppm with geminal constants of 16.6 to 18.3 Hz. Under the influence of the NO₂ group the signals of methylene protons $H^{3'}$, $H^{3''}$ (**5–8**, **9a–12a**) and $H^{6''}$, $H^{6'''}$ (**9b–12b**) are naturally located downfield (2.40–3.57 ppm, $J_{H'H'}$ 16.5–18.6 Hz).

The nitromethine protons H^4 (5, 6, 9a, and 10a) and H^5 (9b and 10b) also have a downfield position (4.74–5.10 ppm) as compared to the methine protons H^5 (5, 6, 9a, and 10a) and H^4 (9b and 10b) adjacent to the CHlg₃ group (3.10–3.74 ppm).

Table 1. ¹H NMR spectra of nitrocyclohexenes 5–8

~	Hlg	x	δ, ppm (<i>J</i> , Hz)									
Comp.			CH ₃	CH ₃	C^3	Н	C	2 ⁶ H	H^4	H^{5}		
no.					H ^{3'}	H ^{3"}	H ^{6'}	H ^{6"}				
5	F	Н	1.66 s	1.65 s	2.73 d.d	2.58 d.d	2.35 d.d	2.24 d.d	4.78 d.d.d	3.17 m		
					${}^{(3)}_{\text{H}^{3'}\text{H}^{4}} = 9.7,$ ${}^{2}J_{\text{H}^{3'}\text{H}^{3''}} = 16.8)$	${}^{(J_{\text{H}^{3'}\text{H}^{4}}=5.6, \ ^{2}J_{\text{H}^{3'}\text{H}^{3''}}=16.8)}$	${}^{(3)}J_{\rm H6'H5} = 6.9,$ ${}^{2}J_{\rm H6'H6''} =$ 18.0)	${}^{(3)}J_{\rm H6'H5} = 10.1,$ ${}^{2}J_{\rm H6'H6''} = 18.0)$	${}^{3}J_{\mathrm{H}^{3}\mathrm{H}^{4}} = 9.7,$ ${}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{3^{"}}} = 16.8,$ ${}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{5}} = 14.0)$			
6	Cl	Η	1.71 s	1.68 s	2.78 d.d ${}^{3}J_{\mathrm{H}^{3'\mathrm{H}^{4}}} = 6.8,$ ${}^{2}J_{\mathrm{H}^{3'\mathrm{H}^{3''}}} = 16.5)$	2.64 d.d ${}^{3}J_{\mathrm{H}^{3^{n}}\mathrm{H}^{4}} = 6.8,$ ${}^{2}J_{\mathrm{H}^{3^{n}}\mathrm{H}^{3^{n}}} =$ 16.5)	2.66 d.d ${}^{3}J_{\rm H6'H5} = 7.2,$ ${}^{2}J_{\rm H6'H6''} =$ 16.8)	2.38 d.d $({}^{3}J_{\text{H6''H5}} = 7.2,$ ${}^{2}J_{\text{H6'H6''}} = 16.8)$	5.00 d.t $({}^{3}J_{\mathrm{H}^{3}\mathrm{H}^{4}} = 6.8,$ ${}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{3^{n}}} = 6.8,$ ${}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{5}} = 5.6)$	3.70 d.t $({}^{3}J_{\mathrm{H}^{6}\mathrm{H}^{5}} = 7.2,$ ${}^{3}J_{\mathrm{H}^{5}\mathrm{H}^{6^{\prime\prime}}} = 10.1,$ ${}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{5}} = 5.6)$		
7	F	Br	1.69 s	1.65 s	3.46 d $(^2J_{\text{H}^{3'}\text{H}^{3''}} = 17.5)$	2.88 d $({}^{2}J_{\mathrm{H}^{3'}\mathrm{H}^{3''}} =$ 17.5)	2.46 d.d ${}^{3}J_{\rm H^6'H^5} = 7.3,$ ${}^{2}J_{\rm H^6'H^{6''}} =$ 18.3)	2.50 d.d $({}^{3}J_{\mathrm{H6''H5}} = 7.3, {}^{2}J_{\mathrm{H6'H6''}} = 18.3)$	-	3.60 d.t $({}^{3}J_{\mathrm{H}^{6}\mathrm{H}^{5}} = 7.3,$ ${}^{3}J_{\mathrm{H}^{5}\mathrm{H}^{6}\mathrm{H}^{6}} = 7.3,$ ${}^{3}J_{\mathrm{H}^{5}\mathrm{F}} = 8.5)$		
8	Cl	Br	1.73 s	1.66 s	3.53 d $({}^{2}J_{\mathrm{H}^{3}H$	$2.80 d ({}^{2}J_{\mathrm{H}^{3'}\mathrm{H}^{3''}} = 17.4)$	$\begin{array}{c} 2.84 \text{ d.d} \\ ({}^{3}J_{\mathrm{H}^{6}\mathrm{H}^{5}} = 6.0, \\ {}^{2}J_{\mathrm{H}^{6}\mathrm{H}^{6}} = \\ 16.6) \end{array}$	2.77 d.d $({}^{3}J_{\rm H6''H5} = 10.3,$ ${}^{2}J_{\rm H6'H6''} = 16.6)$	-	$3.91 \text{ d.d} ({}^{3}J_{\text{H}^{6}\text{H}^{5}} = 6.0, \\ {}^{3}J_{\text{H}^{5}\text{H}^{6}} = 10.3)$		

To ascertain the mutual disposition of the CHlg₃ and NO₂ groups in the molecules of cyclohexenes obtained, the spin-spin coupling constants characterizing the interaction of vicinal protons H⁴ and H⁵ with one another and with the protons of adjacent methylene groups (H³', H³" and H⁶', H⁶") were used as an analytical criterion. The analysis of the coupling constants (Tables 1 and 2) of these protons discovered that cyclohexenes **6**, **9a**, and **9b** with equal constants of methine (${}^{3}J_{H^{4}H^{5}}$) and methylene protons (${}^{3}J_{H^{5}H^{6}} =$ ${}^{3}J_{H^{5}H^{6}}$ ", ${}^{3}J_{H^{4}H^{3}} = {}^{3}J_{H^{4}H^{3}}$ ") have an axial orientation of CHlg₃ and NO₂ groups, while compounds **5**, **10a**, and **106** with different values of these constants have an equatorial orientation of the same groups. This fact is confirmed by the coupling constants of methine protons ${}^{3}J_{H4_{H}5}$, which range between 5.6–7.7 Hz for 5, **9a**, and **9b** and 13.2–14.0 Hz for **6**, **10a**, and **10b** [21].

In the ¹H NMR spectra of all cyclohexenes obtained, the olefin protons appear in the range of 5.38 to 5.58 ppm. Regioisomers a and b of cyclohexenes 9-12 were identified from the position of the methyl group signal (Fig. 1). The CH₃ group signal in isomer **b** predictably appears downfield (1.80–1.86 ppm) as compared to isomer a (1.72-1.75 ppm). Such assignment of CH₃ group signals is additionally confirmed by the data of heteronuclear experiments, specifically ¹H⁻¹³C HMBC (correlation of signals of CH₃ group protons with those of the carbon atoms C^3 of multiple bond and methylene groups). For example, in the ¹H– 13 C HMBC spectrum of a 12a/12b mixture (12a : 12b = 1.0:4.0) a clear correlation between proton signals and the corresponding signals of carbon atoms is observed: for isomer **a**, CH_3 (1.74 ppm)/C¹ (128.83 ppm), C² (118.42 ppm), C³ (51.03 ppm); for isomer **b**, CH₃ (1.80 ppm)/C¹ (132.34 ppm), C² (115.37 ppm), C³ (34.34 ppm), C⁴ (59.31 ppm); H^{3',3''} (2.77 and 2.84 ppm)/ $H' H'' NO_2$

 H_3C $H' H''_NO_2$

$H_{3}C \xrightarrow[H]{1} \stackrel{f}{\longrightarrow} \stackrel{f}{H} \stackrel{f}{\longrightarrow} \stackrel{f}{H} \stackrel{f}{\longrightarrow} \stackrel{f}{$									
						δ, ppm (J , Hz)			
Comp. no.	Hlg	CU	C ² 11	C ³ H		C ⁶ H		114	ц ⁵
		СП3	Сп	$\mathrm{H}^{3'}$	H ^{3"}	H ^{6'}	H ^{6"}	п	П
9a	F	1.72 s	5.38 br.s	2.80 d.d $({}^{3}J_{\mathrm{H}^{3'\mathrm{H}^{4}}} = 3.2,$ ${}^{2}J_{\mathrm{H}^{3'\mathrm{H}^{3'}}} =$ 18.6)	2.70 d.d $({}^{3}J_{\mathrm{H}^{3'}\mathrm{H}^{4}} = 3.2,$ ${}^{2}J_{\mathrm{H}^{3'}\mathrm{H}^{3'}} = 18.6)$	2.60 d.d $({}^{3}J_{\mathrm{H6'H5}} = 8.1, {}^{2}J_{\mathrm{H6'H6''}} = 17.2)$	2.45 d.d $({}^{3}J_{\mathrm{H6'H5}} = 8.1, {}^{2}J_{\mathrm{H6'H6''}} = 17.2)$	4.75 d.t $({}^{3}J_{\mathrm{H}^{3}\mathrm{H}^{4}} = 3.2,$ ${}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{3^{\prime\prime}}} = 3.2,$ ${}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{5}} = 7.7)$	3.10 m
9b	F	1.82 s	5.38 br.s	2.70 d.d $({}^{3}J_{\mathrm{H}^{3'\mathrm{H}^{4}}} = 9.3,$ ${}^{2}J_{\mathrm{H}^{3'\mathrm{H}^{3'}}} =$ 17.9)	2.22 d.d ${}^{3}J_{\mathrm{H}^{3'}\mathrm{H}^{4}} = 9.3,$ ${}^{2}J_{\mathrm{H}^{3'}\mathrm{H}^{3'}} = 17.9)$	2.65 d.d $({}^{3}J_{\rm H6'H5} = 2.8, {}^{2}J_{\rm H6'H6''} = 18.0)$	2.40 d.d ${}^{3}J_{\rm H6'H5} = 2.3,$ ${}^{2}J_{\rm H6'H6''} = 18.0)$	3.23 m	4.74 d.t ${}^{3}J_{\text{H}^{6}\text{H}^{5}} = 2.3,$ ${}^{3}J_{\text{H}^{5}\text{H}^{6}\text{"}} = 2.3,$ ${}^{3}J_{\text{H}^{4}\text{H}^{5}} = 7.3)$
10a	Cl	1.75 s	5.58 m	2.83 d.d $({}^{3}J_{\mathrm{H}^{3'\mathrm{H}^{4}}} = 6.2,$ ${}^{2}J_{\mathrm{H}^{3'\mathrm{H}^{3'}}} =$ 18.0)	2.42 d.d ${}^{3}J_{\mathrm{H}^{3'}\mathrm{H}^{4}} = 6.2,$ ${}^{2}J_{\mathrm{H}^{3'}\mathrm{H}^{3'}} = 18.0)$	2.68 d.d $({}^{3}J_{\text{H}6'\text{H}5} = 7.1,$ ${}^{2}J_{\text{H}6'\text{H}6''} = 17.6)$	2.60 d.d $({}^{3}J_{\mathrm{H6''H5}} = 7.1, {}^{2}J_{\mathrm{H6'H6''}} = 17.6)$	5.10 d.t $({}^{3}J_{\mathrm{H}^{3}\mathrm{H}^{4}} = 6.2,$ ${}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{3^{\prime\prime}}} = 6.2,$ ${}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{5}} = 13.2)$	3.67 d.t ${}^{3}J_{\text{H}^{6}\text{H}^{5}} = 7.1,$ ${}^{3}J_{\text{H}^{5}\text{H}^{6}} = 7.1,$ ${}^{3}J_{\text{H}^{4}\text{H}^{5}} = 13.2)$
10b	Cl	1.86 s	5.43 m	2.70 d.d $({}^{3}J_{\mathrm{H}^{3'\mathrm{H}^{4}}} = 6.9,$ ${}^{2}J_{\mathrm{H}^{3'\mathrm{H}^{3'}}} = =$ 16.9)	2.66 d.d $({}^{3}J_{\mathrm{H}^{3'}\mathrm{H}^{4}} = 6.9,$ ${}^{2}J_{\mathrm{H}^{3'}\mathrm{H}^{3'}} = 16.9)$	2.80 d.d $({}^{3}J_{\mathrm{H}6'\mathrm{H}5} = 6.3, {}^{2}J_{\mathrm{H}6'\mathrm{H}6''} = 18.3)$	2.40 d.d $({}^{3}J_{\rm H6''H^{5}} = 6.3, {}^{2}J_{\rm H6'H6''} = 18.3)$	3.74 d.t $({}^{3}J_{\mathrm{H}^{3'\mathrm{H}^{4}}} = 6.9,$ ${}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{3''}} = 6.9,$ ${}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{5}} = 13.2)$	4.99 d.t ${}^{3}J_{\rm H^{6}H^{5}} = 6.3,$ ${}^{3}J_{\rm H^{5}H^{6^{\prime\prime}}} = 6.3,$ ${}^{3}J_{\rm H^{4}H^{5}} = 13.2)$

Table 2. ¹H NMR spectra of nitrocyclohexenes 9a, 9b, 10a, and 10b

CH₃ (22.56 ppm), C¹ (132.34 ppm), C² (115.37 ppm), C⁴ (59.31 ppm), C⁵ (96.24 ppm).

In the ¹³C NMR spectra (Table 4) of cyclohexenes **5–8**, **9a–11a**, and **9b–11b**, there are signals of all carbon atoms of the C¹–C⁶ cycle and CHlg₃ groups. The most upfield signals are from carbon atoms of methyl groups (18.16–22.88 ppm) and methylene groups C³H₂ and C⁶H₂ (25.29–52.18 ppm). The signals of carbon atoms of methine groups C⁴H and C⁵H influenced by NO₂ and CHlg₃ groups appear more downfield, in the ranges of 41.90–59.44 ppm $[C^{5(4)}HCHlg_3]$ and 81.08–99.17 ppm $[C^{4(5)}HNO_2]$. The signals of carbon atoms in the C¹=C² bond of the ring appear in the region of 115.91–133.85 ppm. The carbon atoms of CF₃ and CCl₃ groups have signals in the regions of 123.25–126.05 and 77.12–101.47 ppm, respectively [21].

The molecular structure of compound $\mathbf{8}$ was studied by X-ray diffraction. The spatial structure of one of the two independent molecules of compound $\mathbf{8}$ is shown in Fig. 2a¹. The geometries of the two independent molecules of compound **8** are substantially the same, the maximum difference in the length being observed for the N¹–O¹ bond: 1.236(3) and 1.219(3) Å. The unsaturated six-membered cycle has typical distorted *semi-chair* geometry. The almost flat (within ±0.01 Å accuracy) fixed part of the cycle consists of carbon atoms C², C³, C⁴, and C⁵ [the torsion angle C²C³C⁴C⁵ is 2.3(4)° and -2.0(4)° for the two independent molecules], which implies that the C³=C⁴ double bond is not twisted, its length is 1.322(4) and is the same for both independent molecules. The carbon atoms C¹ and C⁶ deviate from the coplanar part of the cycle by 0.326(3) and 0.377(3) Å in the first independent molecule and by 0.370(3) and 0.346(3) Å in the second.

The Br atom is in the axial position, one oxygen atom of the nitro group is almost eclipsed by the Br atom, the torsion angle $Br^1C^1N^1O^2$ is 11.3° and the

¹ The atom numbering in Fig. 2 is different from the indexes provided above, which correspond to the nomenclature.

Н'、

H' =												
C		δ, ppm (<i>J</i> , Hz)										
Comp. no.	Hlg	CU	CH^2	C	³ H	C	бН	H^4	ц ⁵			
		СП3	Сн	$\mathrm{H}^{3'}$	H ^{3"}	$\mathrm{H}^{6'}$	$\mathrm{H}^{6''}$		п			
11a	F	1.75 s	5.46 s	$3.43 d (^{2}J_{H^{3'}H^{3''}} = 17.7)$	2.86 d.d ${}^{(3}J_{H^{3''}H^5} = 2.1,$ ${}^{2}J_{H^{3'}H^{3''}} = 17.7)$	2.40 d.d $({}^{3}J_{\mathrm{H}^{6'}\mathrm{H}^{5}} = 7.3,$ ${}^{2}J_{\mathrm{H}^{6'}\mathrm{H}^{6''}} = 16.6)$	2.52 d.d ${}^{(3}J_{\text{H6}^{"}\text{H5}} = 7.3,$ ${}^{2}J_{\text{H6}^{'}\text{H6}^{"}} = 16.6)$	_	3.55 m			
11b	F	1.78 s	5.34 d (${}^{4}J_{{\rm H}^{2}{\rm H}^{4}}$ = 2.1)	2.50 d.d ${}^{(3}J_{H^{3'}H^{4}} = 5.3,$ ${}^{2}J_{H^{3'}H^{3''}} = 17.2)$	2.45 d.d ${}^{(3}J_{\text{H}^{3''}\text{H}^5} = 5.3,$ ${}^{2}J_{\text{H}^{3'}\text{H}^{3''}} = 17.2)$	$\begin{array}{c} 3.00 \text{ d.d} \\ ({}^{5}J_{\mathrm{H}^{6}\mathrm{F}} = 4.6, \\ {}^{2}J_{\mathrm{H}^{6'}\mathrm{H}^{6''}} = 17.9) \end{array}$	3.43 d.d ${}^{5}J_{\rm H6"F} = 4.6,$ ${}^{2}J_{\rm H6'H6"} = 17.9$	3.65 m	_			
12a	Cl	1.74 s	$5.50 \text{ d} \\ ({}^{3}J_{\text{H}^{2}\text{H}^{3}} = 6.4)$	2.88 d.d $({}^{3}J_{\mathrm{H}^{3}\mathrm{H}^{2}}=6.4,$ ${}^{2}J_{\mathrm{H}^{3}\mathrm{H}^{3}\mathrm{H}^{3}}=17.9)$	3.57 d ($^2J_{\text{H}^3'\text{H}^3''} = 17.9$)	2.73 d.d ${}^{(3}J_{\text{H}^{6'}\text{H}^{5}} = 6.3,$ ${}^{2}J_{\text{H}^{6'}\text{H}^{6''}} = 17.6)$	2.92 d.d ${}^{(3}J_{\text{H6''H5}} = 6.3,$ ${}^{2}J_{\text{H6'H6''}} = 17.6)$	_	3.82 d.d ${}^{3}J_{\text{H}^{5}\text{H}^{6'}} = 6.3,$ ${}^{3}J_{\text{H}^{5}\text{H}^{6''}} = 6.3)$			
12b	Cl	1.80 s	5.33 d $({}^{3}J_{\mathrm{H^{2}H^{3''}}} = 6.1)$	2.77 d.d $({}^{3}J_{\mathrm{H}^{3'\mathrm{H}^{2}}} = 5.2,$ ${}^{2}J_{\mathrm{H}^{3'\mathrm{H}^{3''}}} = 17.6)$	2.84 d.d. d ${}^{3}J_{\mathrm{H}^{3''\mathrm{H}^{2}}} = 6.1,$ ${}^{2}J_{\mathrm{H}^{4}\mathrm{H}^{3''}} = 5.2,$ ${}^{2}J_{\mathrm{H}^{3'\mathrm{H}^{3''}}} = 17.6)$	2.98 d $(^2J_{\rm H^6'H^6''} = 17.6)$	3.52 d ($^2J_{\text{H}^6\text{'H}^6\text{''}} = 17.6$)	$\begin{array}{c} 3.92 \text{ d.d} \\ ({}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{3'}} = 5.2, \\ {}^{3}J_{\mathrm{H}^{4}\mathrm{H}^{3''}} = 5.2) \end{array}$	_			

Table 3. ¹H NMR spectra of cyclohexenes 11a, 11b, 12a, and 12b

Η'、

H".

corresponding angle in the second molecule is 7.5°. The trichloromethyl group is in the equatorial position and its rotation is retarded with respect to the C^6-C^1 bond, the torsion angle $C^1 C^6 C^7 Cl^3$ is -82.3° and -76.7° . This group is in the gauche(+) position with respect to the Br atom and in the gauche(-) position with respect to the nitro group. The torsion angles $C^{7}C^{6}C^{1}Br^{1}$ are 60.5(2)° and 62.9(2)° and $C^{7}C^{6}C^{1}N^{1}$ are

Fig. 1. ¹H NMR spectrum of mixture of regioisomeric cyclohexenes 10a, 10b.

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 88 No. 5 2018

			R ²	2^{3} 4^{1} X^{NO_2}		NC	$P_2 R^2$	165 Br		
			R^1	CHlg	R^1	CH	[lg ₃	CHI	g ₃	
				5-8		9a, 11a		9b, 11b		
Comp. no.	Hlg	Х	R ¹ , R ² (CH ₃)	C^1	C^2	C^3	C ⁴	C^5	C^6	CHlg ₃
5	F	Н	18.40, 18.54	122.03	122.97	35.74	$81.08 \text{ d} \\ ({}^{3}J_{\rm C^{4}F} = 1.1)$	41.90 d $(^2J_{C^5F} = 27.5)$	29.18 d $({}^{3}J_{C^{6}F} = 2.5)$	125.96 d (${}^{1}J_{\text{CF}} = 280.0$)
6	Cl	Н	18.57, 18.69	122.89	125.36	36.23	84.23	56.29	33.49	77.12
7	F	Br	18.27, 18.48	121.57	122.8	48.46	94.66	47.81 $(^2J_{C^5F} = 26.8)$	31.00	124.80
8	Cl	Br	18.16, 18.29	120.91	123.88	52.18	99.17	59.44	35.46	98.95
9a	Cl	Н	22.63	130.89	119.12	34.20	83.98	55.19	26.90	95.50
9b	Cl		22.88	133.85	116.58	30.01	55.67	83.55	31.45	101.47
11a	F	Br	22.50	129.66	117.25	46.94	94.33	46.67	25.29	123.25
11b	F		22.52	131.34	115.91	29.88	47.53	94.45	43.44	126.05

Table 4. ${}^{13}C{}^{1}H$ NMR spectra of cyclohexenes 5–8, 9a, 9b, 11a, 11b (δ_C , ppm)

 $-61.8(2)^{\circ}$ and $-60.3(2)^{\circ}$. A shortened intramolecular contact $O^1 \cdots Cl^2$ of 3.09 and 3.06 Å (the sum of the van der Waals radii equal to 3.34 Å [22]) leads to deviations in the bond angles in the $O^1N^1C^1C^6C^7Cl^2$ chain from the ideal values. The $O^1N^1C^1$ angle is $113.2(2)^{\circ}$ and $114.7(2)^{\circ}$, and $C^1C^6C^7$ is 119.7(2) Å in both molecules, while the $C^6C^7Cl^2$ angle is $114.3(2)^{\circ}$ and $113.7(2)^{\circ}$. The weak intramolecular hydrogen bonds are compiled in Table 5.

In the crystalline structure molecular layers are distinguished in the (a + c, b + c) plane (Fig. 2b). The symmetrically independent molecules of cyclohexene **8** form pairs of associates due to intermolecular hydrogen bonds of the C–H···O type with H···O distances of 2.609 Å (C⁶–H···O²–N¹) and 2.715 Å (C^{6A}H···O^{2A}–N^{1A}). The paired associates of molecules **8** are interconnected into layers in one direction by shortened contacts Cl³···Br^{1A} 3.407(2) Å and in the other by Cl^{1A}···O¹ 3.232(3) Å (the sums of the Van der Waals radii, Cl···Br and Cl···O, amount to 3.63 Å [22]).

Thus, the study has demonstrated that 1-nitro- and 1-bromo-1-nitro-3,3,3-trifluoro(chloro)propenes are active dienophiles. They successfully react with acyclic dienes to form the corresponding cyclohexenes with good yields. As such, the CHlg₃ group effectively

competes with the NO_2 group for the regio- and stereodirectivity of diene condensation.

EXPERIMENTAL

¹H, ¹³C{¹H}, ¹H–¹³C HMQC, and ¹H–¹³C HMBC NMR spectra were recorded on a Jeol ECX400A spectrometer at operating frequencies of 100.52 MHz (¹³C) and 399.78 MHz (¹H) in deuterochloroform-*d* using the residual signal of an undeuterated solvent as an internal reference. IR spectra were obtained on a Shimadzu IR Prestige-21 Fourier spectrometer in chloroform. Spectral studies were performed at the Center for Joint Use of the Faculty of Chemistry of the Herzen State Pedagogical University of Russia, St. Petersburg.

Separation of the individual compounds was carried out by column chromatography on Chemapol 100/200 silica gel using solvents according to the procedure described in [23]. The TLC test was performed on Silufol 254 plates, eluent a 3:2 hexane–acetone mixture, developmentunder UV light. The ratios of isomers **9a–12a** and **9b–12b** were determined by ¹H NMR spectroscopy prior to chromatography of the reaction mixture.

Fig. 2. General view of one of the two independent molecules (a) in the crystal and (b) the molecular layer parallel to (a + c, b + c) plane in the crystals of compound 8. (Dashed line) intermolecular hydrogen bonds and shortened contacts.

X-ray diffraction analysis of a single crystal of compound 8 was carried out by an X-ray diffraction analysis team of the Center for Spectral Information at the Vorozhtsov Novosibirsk Institute of Organic Chemistry (Siberian Branch, Russian Academy of Sciences). An X-ray diffraction experiment on crystals 8 grown from hexane was performed at 296(2) K on a Bruker Kappa APEX II diffractometer (MoK_a radiation, graphite monochromator, CCD detector, 20 55.2°). Single crystals 8 are triclinic, unit cell parameters are as follows: a 8.720(5), b 10.832(6), c 14.546(8) Å, a 103.27(2)°, β 92.11(1)°, γ 99.18(1)°, V 1316.2(12) Å³, space group *P*-1, *Z* 4, C₉H₁₁BrCl₃NO₂, *d*_{calc} 1.774 g/cm³, μ 3.72 mm⁻¹, sample size 0.48×0.26×0.09 mm. The intensities of 7539 independent reflections were measured. A correction for extinction was introduced using the SADABS program (transmission 0.2685-0.7309). The structure was solved by the direct method by means of the SHELXS-97 program and refined in the anisotropic-isotropic (for H) approximation using the SHELXL-97 program. The hydrogen positions were calculated geometrically and the parameters of the H atoms were refined in the isotropic approximation using the *rider* model. The final refinement parameters are as follows: wR₂ 0.0946, S 1.034, 293 parameters were refined (*R* 0.0349 for 5633 $F > 4\sigma$). The independent part of unit cell 8 contains two molecules. The atomic coordinates, bond lengths, and angles are deposited with the Cambridge Crystallographic Data Centre [24, 25] (CCDC 874993).

Nitroalkenes 1 and 2 were synthesized according to known literature methods through preliminary preparation of the corresponding nitro alcohols [26, 27] followed by further transformation (acylation and elimination of H_2O , AcOH) [28, 29]. *gem*-Bromonitroalkenes **3** and **4** were prepared according to the procedures described in [30–32].

1,2-Dimethyl-4-nitro-5-trifluoromethyl-1-cyclohexene (5). 2.05 g (0.025 mol) of 2,3-dimethyl-1,3butadiene was added to 3.50 g (0.025 mol) of 1-nitro-3,3,3-trifluoropropene **1**. The reaction mixture was held at 20°C for 24 h. The reaction mixture was chromatographed (eluent: hexane). Yield 5.43 g (98%), mp 38–40°C (hexane). Found, %: C, 47.80, 47.60; H 5.19, 5.23; N 6.25, 6.14; F 25.98, 25.83. C₉H₁₂F₃NO₂. Calculated: C 48.43; H 5.38; N 6.28; F 25.56.

1,2-Dimethyl-4-nitro-5-trichloromethyl-1-cyclohexene (6). 1.48 g (0.018 mol) of 2,3-dimethyl-1,3butadiene was added to 3.50 g (0.018 mol) of 1-nitro-3,3,3-trichloropropene **2**. The reaction mixture was held at 20°C for 3 days. The reaction mixture was

 Table 5. Weak intramolecular hydrogen bonds in the molecule of compound 8

Hydrogen bond	Н…А	D…A	D–H…A
$C^{2A}\!\!-\!\!H^{\dots}O^{1A}$	2.43	2.843(3)	106
C^2 – H ···O ¹	2.45	2.869(4)	106
$C^{5A}\!\!-\!\!H^A\!\cdots\!Cl^{2A}$	2.64	3.125(3)	111
$C^{5A}\!\!-\!\!H^B\!\cdots\!Cl^{1A}$	2.72	3.154(3)	107
C^5 – H^A ··· Cl^2	2.59	3.068(3)	110
C^5 – H^B ···· Cl^1	2.80	3.217	107
$C^6\!\!-\!\!H^{\dots}O^1$	2.48	2.848(3)	100
$C^{6A}\!\!-\!\!H^{\dots}O^{1A}$	2.54	2.862	99

chromatographed (eluent: hexane). Yield 4.61 g (92%), colorless oil, R_f 0.69. Found, %: C 39.65, 39.70; H 4.35, 4.38; N 5.16, 5.20. C₉H₁₂Cl₃NO₂. Calculated, %: C 39.63; H 4.41; N 5.14.

4-Bromo-1,2-dimethyl-4-nitro-5-trifluoromethyl-1-cyclohexene (7). 0.90 g (0.011 mol) of 2,3-dimethyl-1,3-butadiene was added to a solution of about 2.50 g (0.011 mol) of 1-bromo-1-nitro-3,3,3-trifluoropropene **3** in diethyl ether under cooling (-10° C). The resulting mixture was held at 4°C for 10 h. The reaction mixture was chromatographed (eluent: hexane). Yield 3.12 g (97%), mp 40–42°C (hexane). Found, %: C 35.60, 35.75; H 3.69, 3.65; N 4.71, 4.64; F 18.98, 18.75; Br 26.60, 26.63. C₉H₁₁F₃NO₂Br. Calculated, %: C 35.76; H 3.64; N 4.64; F 18.87; Br 26.49.

4-Bromo-1,2-dimethyl-4-nitro-5-trichloromethyl-1-cyclohexene (8). A mixture of 4.00 g (0.015 mol) of 1-bromo-1-nitro-3,3,3-trichloropropene **4** and 1.23 g (0.015 mol) of 2,3-dimethyl-1,3-butadiene was held at 20°C for 6 days and then was chromatographed on silica gel. From a fraction washed with hexane, 4.46 g (85%) of cyclohexene **8** of mp 76–78°C was separated. Found, %: C 30.78; 30.83; H 3.16, 3.26; N 4.03, 4.08. C₉H₁₁Cl₃BrNO₂. Calculated, %: C 30.73; H 3.13; N 3.98.

1-Methyl-4(5)-nitro-5(4)-trifluoromethyl-1-cyclohexene (9a, 9b). A mixture of 3.00 g (0.021 mol) of 1-nitro-3,3,3-trifluoropropene **1** and 1.45 g (0.021 mol) of 2-methyl-1,3-butadiene was held at 20°C for 24 h and then was chromatographed on silica gel (eluent: hexane). Yield 3.82 g (87%), isomer ratio **9a** : **9b** = 1 : 4, $R_{\rm f}$ 0.91, 0.78.

1-Methyl-4(5)-nitro-5(4)-trichloromethyl-1-cyclohexene (10a, 10b). A mixture of 3.50 g (0.018 mol) of 1-nitro-3,3,3-trichloropropene 2 and 1.25 g (0.018 mol) of 2-methyl-1,3-butadiene was held at 20°C for 6 days. The reaction mixture was chromatographed (eluent: hexane). Yield 4.42 g (95%), isomer ratio 10a : 10b = $1.0 : 2.5, R_f 0.84, 0.54$. Found, %: C 37.13; 37.16; H 3.87, 3.86; N 5.41, 5.45. C₈H₁₀Cl₃NO₂. Calculated, %: C 37.14; H 3.87; N 5.42.

4(5)-Bromo-1-methyl-4(5)-nitro-5(4)-trifluoromethyl-1-cyclohexene (11a, 11b). 0.46 g (0.007 mol) of 2-methyl-1,3-butadiene was added to a solution of about 1.50 g (0.007 mol) of 1-bromo-1-nitro-3,3,3-trifluoropropene **3** in diethyl ether under cooling (-10° C). The mixture was held at 4°C for 10 h and then chromatographed on silica gel (eluent: hexane). Yield 1.31 g (65%), isomer ratio **11a** : **11b** = 1 : 4. **4(5)-Bromo-1-methyl-4(5)-nitro-5(4)-trichloromethyl-1-cyclohexene (12a, 12b).** A mixture of 3.20 g (0.012 mol) of 1-bromo-1-nitro-3,3,3-trichloropropene **5** and 0.81 g (0.012 mole) of 2-methyl-1,3-butadiene was held at 20°C for 6 days and then chromatographed on silica gel (eluent: hexane). Yield 2.27 g (56%), isomer ratio **12a** : **12b** = 1 : 3, R_f 0.82, 0.64. Found, %: C 28.42; 28.43; H 2.69, 2.65; N 4.17, 4.12. C₈H₉BrCl₃NO₂. Calculated, %: C 28.44; H 2.67; N 4.15.

ACKNOWLEDGMENTS

The authors are grateful to the Chemical Service Center for Joint Use of the Siberian Branch of the Russian Academy of Sciences for performing the X-ray diffraction analysis.

REFERENCES

- 1. Ono, N., *The Nitro Group in Organic Synthesis, Organic Nitro Chem. Ser.*, New York: VCH, 2001, p. 372.
- 2. Perekalin, V.V., Lipina, E.S., Berestovitskaya, V.M., and Efremov, D.A., *Nitroalkenes. Conjugated Nitro Compounds*, Chichester: John Wiley and Sons, 1994.
- Nakai, K., Kamoshita, M., Doi, T., Yamada, H., and Takahashi, T., *Tetrahedron Lett.*, 2001, vol. 42, no. 44, p. 7855. doi 10.1016/S0040-4039(01)01655-0
- Poigny, S., Nouri, S., Chiaroni, A., Guyot, M., and Samadi, M., *J. Org. Chem.*, 2001, vol. 66, no. 22, p. 7263. doi 10.1021/jo010154c
- Carballares, S., Craig, D., Lane, C.A.L., MacKenzie, A.R., Mitchell, W.P., and Wood, A., *Chem. Commun.*, 2000, no. 18, p. 1767. doi 10.1039/B005533F
- Jwamatsu, S., Matsubara, K., and Nagashima, H., J. Org. Chem., 1999, vol. 64, no. 26, p. 9625. doi 10.1021/jo9912146
- Arce, E., Carreno, M.C., Cid, M.B., and Ruano, J.L., J. Org. Chem., 1994, vol. 59, no. 12, p. 3421. doi 10.1021/jo00091a035
- Node, M., Jmazato, H., Kurosaki, R., Kawano, Y., Inoue, T., Nishide, K., and Fuji, K., *Heterocycles*, 1996, vol. 42, no. 2, p. 811. doi 10.3987/COM-95-S88
- Chandler, M., Conroy, R., Cooper, A.W.J., Lamont, R.B., Scicinski, J.J., Smart, J.E., Storer, R., Weir, N.G., Wilson, R.D., and Wyatt P.G., *J. Chem. Soc., Per. Trans. 1*, 1995, no. 9, p. 1189. doi 10.1039/ P19950001189
- Cere, V., Montovani, G., Peri, F., Pollicino, S., and Ricci, A., *Tetrahedron*, 2000, vol. 56, no. 9, p. 1225. doi 10.1016/S0040-4020(00)00011-9

- vol. 77, no. 1, p. 25. doi 10.1134/S1070363207010045 21. Prech, E., Byul'mann, F., and Affol'ter, K., Opredelenie stroeniya organicheskikh soedinenii (Structure Deter-
- mination of Organic Compounds), Moscow: BINOM. Laboratoriya Znanii, 2013.
- 19. Kuzhaeva, A.A., Berestovitskaya, V.M., Deiko, L.I., Anisimova, N.A., and Berkova G.A., Russ. J. Gen. Chem., 2002, vol. 72, no. 10, p. 1652. doi 10.1023/
- Russ. Chem. Bull., 1961, vol. 10, no. 3, p. 482. doi 10.1007/BF01131072 18. Dudinskaya, A.A., Novikov, S.S., and Shvekhgeimer, G.A., Russ. Chem. Bull., 1965, vol. 14, no. 11, p. 1988. doi
- A:1023360322616 20. Berestovitskaya, V.M., Anisimova, N.A., Kuzhaeva, A.A., Berkova, G.A., Deiko, L.I., Russ. J. Gen. Chem., 2007,
- 10.1007/BF00845896

13. Albertini, E., Barco, S., Benetti, S., De Risi, C., Pollini, G.P., Romagnoli, R., and Zanirato, V., Tetrahedron Lett., 1994, vol. 35, no. 49, p. 9297. doi 10.1016/0040-4039

11. Burkett, H. and Wright, W., J. Org. Chem., 1960,

12. Ono, N., Kamimura, A., and Kaji, A., J. Org. Chem.,

vol. 25, no. 2, p. 276. doi 10.1021/jo01072a614

- (94)88492-7
- Per. Trans. 1, 1999, no. 10, p. 1253. doi 10.1039/A901802F
- 15. Barltrop, J.A. and Nicholson, J.S., J. Chem. Soc., 1951, p. 2524. doi 10.1039/JR9510002524

16. Dudinskaya, A.A., Shvekhgeimer, G.A., and Novikov, S.S., Russ. Chem. Bull., 1961, vol. 10, no. 3, p. 484. doi

17. Dudinskaya, A.A., Shvekhgeimer, G.A., and Novikov, S.S.,

10.1007/BF01131073

- 14. Habermann, J., Lev, S.V., and Scott, J.S., J. Chem. Soc.,

- 1988, vol. 53, no. 2, p. 251. doi 10.1021/jo00237a005 panion. A Handbook of Practical Data, Techniques and References, New York: Wiley, 1972.
 - 24. Allen, F.H., Acta Crystallogr. (B), 2002, vol. 58, p. 380. doi 10.1107/S0108768102003890

22. Rowland, R.S. and Taylor, R., J. Phys. Chem., 1996,

23. Gordon, A.J. and Ford, R.A., The Chemist's Com-

vol. 100, no. 18, p. 7384. doi 10.1021/jp953141+

- 25. Bruno, I.J., Cole, J.C., Edgington, P.R., Kessler, M., Macrae, C.F., McCabe, P., Pearson, J., and Taylor, R., Acta Crystallogr. (B), 2002, vol. 58, p. 389. doi 10.1107/S0108768102003324
- 26. Compton, M., Higgins, H., MacBeth, L., Osborn, J., and Burkett, H., J. Am. Chem. Soc., 1949, vol. 71, no. 9, p. 3229. doi 10.1021/ja01177a085
- 27. Lee, S.A., US Patent 5248832, 1993, Russian Patent 2056402, Byull. Izobret., 1996, no. 8.
- 28. Brower, F. and Burkett, H., J. Am. Chem. Soc., 1953, vol. 75, no. 5, p. 1082. doi 10.1021/ja01101a021
- 29. Shechter, H., Ley, D.E., and Roberson, E.B., J. Am. Chem. Soc., 1956, vol. 78, no. 19, p. 4984. doi 10.1021/ ja01600a049
- 30. Durden, J.A., Heywood, D.L., Sousa, A.A., and Spurr, H.W., J. Agr. Food Chem., 1970, vol. 18, no. 1, p. 50. doi 10.1021/jf60167a011
- 31. Dornow, A. and Muller, A., Chem. Ber., 1960, vol. 93, no. 1, p. 32. doi 10.1002/cber.19600930108
- 32. Anisimova, N.A., Slobodchikova, E.K., Kuzhaeva, A.A., Stukan', E.V., Bagryanskaya, I.Yu., and Berestovitskaya, V.M., Russ. J. Org. Chem., 2016, vol. 52, no. 10, p. 1379. doi 10.1134/S1070428016100018