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Selective functionalization of aliphatic C−​H bonds remains 
a considerable challenge1. Positions adjacent to functional 
groups tend to be activated towards functionalization, whether 

by classical deprotonation strategies or by emerging radical abstrac-
tion approaches. Among the latter, C–H bonds adjacent to alcohols, 
ethers and amides have been demonstrated to be susceptible to 
hydrogen atom transfer (HAT) chemistry with electrophilic agents 
such as the thiyl radical2,3 and quinuclidinium radical cation4–6. 
These processes are selective because of a polarity match2—a 
nucleophilic or hydridic hydrogen atom source is required. Amine 
activation is also an area of intense interest, dominated by tertiary 
amines which may be oxidized to the radical cation with subsequent 
proton loss to deliver an α​-amino alkyl radical (Fig. 1a)7–10. Efficient 
α​-functionalization of simple primary aliphatic amines is exceed-
ingly rare, regardless of mechanism11–13. Indeed, primary aliphatic 
amines pose a significant challenge not just because of their much 
higher oxidation potential14 and propensity for over-oxidation to 
the imine or nitrile (Fig. 1a)15, but also because of their pronounced 
nucleophilicity and basicity16,17.

It has long been recognized that primary alkyl amines react read-
ily and reversibly with CO2 to form carbamates18. In the context of 
our recent effort in the area of selective amine functionalization19,20, 
we speculated that this equilibrium might be utilized to modulate 
the reactivity of primary alkyl amines, as the formation of alkylam-
monium carbamate would dramatically diminish the nucleophilic-
ity of the NH2 motif (Fig. 1b)21, thereby providing opportunities for 
functionalization of less reactive C(sp3)−​H bonds. A central advan-
tage of this strategy is that the free NH2 group would be restored 
via facile CO2 dissociation, making further synthetic manipulations 
possible without the need for protection and deprotection steps22–24.  
However, the installation of an electron-withdrawing group on 
nitrogen would also render the α​-C−​H bond less hydridic25,26, and 
would thus decelerate functionalization reactions using electro-
philic reagents. We speculated, however, that if we used an electro-
philic HAT catalyst that was cationic, such as the quinuclidinium 
radical cation, we could rely on an electrostatic attraction27 with 

the carbamate oxygen to potentially facilitate the transformation 
(Fig. 1b).

Results and discussion
Our proposed mechanistic cycle for a CO2-promoted α​-alkylation/
lactamization of primary aliphatic amines is outlined in Fig.  2a. 
Irradiation of Ir(iii) photocatalyst PC1 with visible light gener-
ates the long-lived excited state *Ir(iii) 1, which is a strong oxidant 
(E1/2

red [*Iriii/Irii] =​ +​1.21 V versus saturated calomel electrode (SCE) 
in CH3CN)28 capable of oxidizing a HAT catalyst such as quinucli-
dine (E1/2

ox =​ +​1.1 V versus SCE in CH3CN)29 to form radical cation 
4 and Ir(ii) 2. Meanwhile, the primary alkyl amine reacts readily 
with CO2 to form alkylammonium carbamate 6 (ref. 18). Facilitated 
by electrostatic attraction27, the electrophilic quinuclidinium radical 
4 should selectively abstract the α​-C−​H bond of the in situ gener-
ated alkylammonium carbamate 6 to produce carbon-centred radi-
cal 7, which adds to an electron-deficient acrylate to furnish alkyl 
radical 8. Single-electron reduction of radical 8 by Ir(ii) species 2, 
followed by protonation4,19, CO2 dissociation and intramolecular 
cyclization, then affords the final γ​-lactam product30.

We began our investigation by using 3-phenyl-1-propyl-
amine 9 and methyl methacrylate 10 as model substrates and 
found that α​-alkylation/lactamization product 11​ could be iso-
lated in 80% yield using Ir[dF(CF3)ppy]2(dtbbpy)PF6 [dF(CF3)
ppy = ​ 2-(2,4-dif luorophenyl)-5-trif luoromethylpyridine; 
dtbbpy =​ 4,4′​-di-tert-butyl-2,2′​-bipyridine] (PC1) as the photocata-
lyst and quinuclidine (3) as the HAT catalyst under an atmospheric 
pressure of CO2 with illumination by blue light-emitting diodes 
(LEDs) (Fig. 2b). Control experiments revealed that the photocata-
lyst, visible light, quinuclidine and CO2 were all necessary compo-
nents for achieving high efficiency of this reaction (Supplementary 
Table 1). To verify if alkylammonium carbamate is involved in the 
reaction as proposed, carbamate 12​ was synthesized31 and subjected 
to the optimal reaction conditions in the absence of CO2; product 
11​ was isolated in 75% yield (Fig. 2c), lending further support to 
our proposal.
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With the optimal conditions in hand, we investigated the scope 
of the reaction and found that a diverse array of primary amines and 
acrylates are viable in this transformation, providing γ​-lactams 13​–57​  
in moderate to good yields and with diastereomeric ratios, where 

applicable, ranging from 1:1 to 2.3:1 (Fig. 3). Acrylates with or with-
out an α​ or β​ substituent are tolerated, providing the desired products 
in reasonable to good yields (13​–18​, 41–81% yield). In addition to 
acrylate, methacrylonitrile may be coupled to give cyclic amidine with 
moderate efficiency (19​, 54% yield). With respect to primary aliphatic 
amines, a broad range of simple amines with a linear or branched alkyl 
chain are successfully alkylated and cyclized to afford γ​-lactams 20​–28​ 
in 50–75% yields. Amines with an α​-substituent and cyclic primary 
amines are well tolerated, furnishing γ​-lactams with a tetrasubsti-
tuted stereocentre in moderate to good yields (29​–37​, 43–70% yield). 
Sterically demanding primary amines are converted into the desired 
products 38​ and 39​ in 52% and 66% yields, respectively. Notably, pri-
mary alkyl amines with additional functionalities are also compatible 
with this protocol. For example, fluorinated amines (40​, 41​), tert-
butyldimethylsilyl (TBS)-protected alkanolamine (42​, 43​), β​-alanine 
ethyl ester (44​), amines bearing a bisbenzylic hydrogen (45​, 46​) or 
an acetal functionality (47​, 48​) all underwent the reaction smoothly 
to afford the desired products in 45–75% yield. Moreover, heteroaryl 
groups commonly found in pharmaceuticals, such as pyridinyl (49​), 
imidazolyl (50​), isoxazolyl (51​) and thiazolyl (52​), could be incorpo-
rated into the γ​-lactam products with equally high efficiency (62–80% 
yield). Comparable yields of 50​ and 52​ could be obtained with lower 
photocatalyst loading when the reactions were carried out on 1 or 
3 mmol scales. Alkene- or alkyne-containing amines (53​, 54​), mono-
Boc (Boc, tert-butoxycarbonyl) protected diamines (55​, 56​) and the 
l-lysine derivative (57​) are also effective substrates. Of particular 
note is that when N-Boc-1,3-propanediamine was subjected to the 
standard reaction conditions, alkylation occurred selectively at the α​ 
position of the free NH2 group to give γ​-lactam 55​ in 64% yield, dem-
onstrating that even subtle difference between N-Boc carbamate and 
the in situ generated alkylammonium carbamate can be differentiated 
under the reaction conditions. It is also noteworthy that the α​-amino 
radical derived from the anionic carbamate is more nucleophilic than 
that derived from the N-Boc carbamate, leading to a faster alkylation.

A series of mechanistic studies were performed to better under-
stand the mechanism of the reaction. Stern–Volmer luminescence 
quenching experiments revealed that quinuclidine efficiently 
quenches the excited state of photocatalyst PC1 while primary 
amine 9 and the corresponding carbamate 12​ do not (Supplementary 
Section  6). Careful monitoring of the reaction between primary 
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amine 9 and acrylate 58 in the presence and absence of CO2 revealed 
that acrylate consumption and product formation are much faster 
in the presence of CO2 (Fig. 4a). If the sole role of CO2 is to insulate 

the amine from undergoing N-alkylation via reversible formation of 
alkylammonium carbamate, the acrylate should be consumed faster 
in the absence of CO2. The fact that the reverse is true suggests that 
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the in situ generated carbamate is activated towards productive 
HAT and subsequent alkylation by acrylate (Fig. 4b).

We subsequently undertook computational studies to gain further 
insight into the mechanistic aspects of this transformation and the ori-
gins of selectivity (Fig. 4c–f). Using a high-level but affordable quan-
tum-chemical approach at the CPCM (toluene) DLPNO-CCSD(T)/
def2-TZVPD//CPCM (toluene) M06L/6-31+​G(d,p) level of theory 
(see Supplementary Section  9 for details), we initially assessed the 
effect of CO2 incorporation on the bond dissociation energy (BDE) of 
various C−​H sites in the substrate. This analysis revealed that there is 
no pronounced difference in BDEs of the reactive C−​H bonds between 
the free amine 9 and CO2-incorporated analogues, that is, alkylammo-
nium carbamate 60 or carbamic acid 61 (Fig. 4c). Moreover, for car-
bamate 60, BDEs predict the benzylic C−​H site (γ) to be the weakest 
(BDE =​ 88.8 kcal mol−1), yet selective functionalization at the α​-C−​H 
site was observed experimentally. Thus, although commonly utilized 
as guidelines to rationalize and predict radical reactivities, thermo-
dynamic descriptors, such as radical stabilities or bond strengths, do 
not allow rationalization of the observed site selectivity nor reactivity 
enhancement under CO2 conditions. By contrast, our calculations of 
the activation free energy barriers for hydrogen atom abstraction by a 
quinuclidinium radical cation were fully consistent with experimental  

observations (Fig. 4d). First, abstraction of the hydrogen atom at the 
benzylic C−​H site (γ​) has a Δ​Δ​G‡ of +​8.2 kcal mol−1 higher activa-
tion free energy barrier than abstraction at the α​-C−​H site, in line 
with exclusive functionalization at the α​ site. We observed the same 
trend also with other substrates containing an activated γ​-C−​H site  
(for example, the starting materials of 45​, 49​, 51​ and 52​, Supplementary 
Fig.  8). Second, the carbamate 60 is predicted to be more reactive 
relative to the free amine 9 (Δ​Δ​G‡ =​ +​ 4.4 kcal mol−1), consistent with 
the reactivity enhancement observed (Fig. 4a). Similar observations 
of counter-thermodynamic reactivity trends in HAT reactions have 
previously been made, with the underlying causes being ascribed to 
polarity matching4,6, entropy control32 and steric factors33. Our data 
suggest that the origin of the exquisite site selectivity is due primarily 
to stabilizing electrostatic interactions in the transition state between 
the reactive centre α​ to the alkylammonium carbamate and the proxi-
mal positive charge of the quinuclidinium, displaying therefore the 
lowest activation barrier over alternative sites. In line with this, we pre-
dict decreased selectivities for HAT reagents for which the charge is 
absent (62, 63) or is located more distantly (64), regardless of the size 
of the reagent and the central atom (nitrogen versus carbon), render-
ing the benzylic C−​H site (γ​) more reactive in these cases (Fig. 4f and 
Supplementary Fig. 6).
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Conclusions
In summary, we have developed a direct alkylation of primary 
amines using photoredox catalysis. The key finding is the use of 
CO2 to form the carbamate functionality in situ, which accelerates 
C−​H bond activation by HAT. We present experimental and com-
putational evidence in support of an electrostatic attraction again 
highlighting the unique role of the carbamate, which is capable of 
undergoing accelerated HAT with the quinuclidinium radical cat-
ion in spite of its decreased hydridicity.

Methods
General procedure for α-alkylation/lactamization of primary aliphatic amines. 
To a 25 ml oven-dried Schlenk sealing tube containing a magnetic stir bar were 
added [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (6.6 mg, 0.006 mmol), quinuclidine (11.1 mg, 
0.1 mmol), primary alkyl amine (0.3 mmol), acrylate (0.2 mmol) and 0.5 ml of 
toluene and tAmOH mixture (1/3, vol/vol). The reaction tube was sealed, frozen  
by liquid nitrogen for 10 min, and evacuated under vacuum and backfilled with 
CO2 (balloon) three times through a three-way stopcock. Liquid nitrogen and 
the CO2 balloon were then removed. The reaction tube was sealed and allowed 
to stand at room temperature for 10 min, at which time the plug of the tube was 
slowly opened to release the excess CO2 gas. The tube was then resealed and placed 
approximately 3 inches away from a Kessil LED illuminator. The reaction mixture 
was stirred and irradiated for 24–48 h. The internal temperature was measured to 
be approximately 40 °C using an infrared thermometer. The crude mixture was 
then concentrated in vacuo and purified by flash chromatography on silica gel  
with a 4g column on a Teledyne ISCO CombiFlash Rf+ Lumen instrument using 
the indicated solvent system.

Data availability. All data generated and analysed during this study are included 
in this Article and its Supplementary Information, and are also available from the 
corresponding authors upon reasonable request.
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