In Situ Generation of the Hydrogenation Catalysts RhH(ttp) and RhH(Cyttp), ttp = PhP(CH₂CH₂CH₂-PPh₂)₂ and Cyttp = PhP(CH₂CH₂CH₂PCy₂)₂, by Treating the RhCl(triphosphine) Complexes with either AlEt₃ or AlEt₂Cl

JAMES NIEWAHNER and DEVON W. MEEK*

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, U.S.A.

Received October 8, 1981

A great deal of research has been directed toward homogeneous catalysis by transition metal complexes since Wilkinson and co-workers reported the rapid hydrogenation of olefins by RhCl(PPh₃)₃ [1]. For the Wilkinson complex, it has been generally accepted that dissociation of a PPh₃ ligand is necessary for the hydrogenation catalysis at ambient conditions [2, 3]. On the other hand, DuBois and Meek [4] have shown that a similar-type complex RhCl(ttp), where ttp is the chelating PhP(CH₂CH₂CH₂PPh₂)₂ ligand, catalyzed the hydrogenation of 1-octene when NaBH₄ and ethanol were added. The RhCl(ttp) complex differs significantly from Wilkinson's catalyst since the tridentate ligand remains bonded throughout the reaction [5]; thus, the catalytic activity of RhCl(ttp) was presumed [4] to be due to RhH(ttp), which was generated in situ with NaBH₄ [6, 7].

Herein, we report that the complex RhCl(ttp) in the presence of either triethylaluminum or diethylaluminum chloride is an effective homogeneous catalyst for hydrogenation of 1-olefins and 1-octyne. Proton and phosphorus-31 NMR spectra are used to identify several different chemical species [including RhH(ttp)] in these catalytically active solutions. The observed rate of hydrogenation of 1-octene to n-octane at 20 \pm 0.3 °C and under constant H_2 pressure of 750 torr is $6.4 \times 10^4 \ M^{-1} \ min^{-1}$, i.e., 25 times more rapid than the Wilkinson catalyst, RhCl-(PPh₃)₃, under comparable conditions. The rate expression is first order in the rhodium complex, first order in H₂, and zero order in olefin. A mechanism involving RhR(ttp), RhH(ttp) associated with an ethylaluminum species, and H₂ is proposed to account for the spectroscopic and kinetic data.

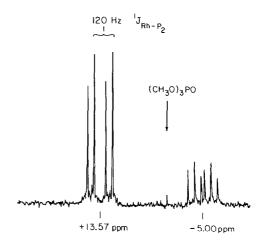


Fig. 1. Phosphorus-31 broad-band, proton-decoupled spectrum of RhCl(ttp) in the presence of a 20-fold molar ratio of Et₃Al in toluene. The (MeO)₃PO signal is the secondary standard, which is superimposed on the spectrum. The phosphorus chemical shifts are reported relative to 85% H₃PO₄ at 0.00 ppm; positive shifts are downfield from the standard.

Experimental

Solutions containing the aluminum alkyls and RhCl(ttp) are air-sensitive, and they were handled under a nitrogen atmosphere using either Schlenk glassware of an inert atmosphere glovebag. Toluene and 1-octene were distilled from sodium benzophenoneketyl into a dry flask under N₂. Toluene solutions (25% w/w) of triethylaluminum, AlEt₃, and diethylaluminum chloride AlEt₂Cl, used in the kinetic study were transferred in a dry box from stock bottles into vials that contained a septum port and valve (available from Pierce Chemical Co.). The reagent was then transferred via a syringe into the reaction flask under an atmosphere of nitrogen in a glovebag.

Most of the hydrogenation experiments were carried out at constant hydrogen pressure using an automatic gas-measuring instrument. Solutions were thermostatted at 20 ± 0.3 °C. For reactions carried out at constant pressure, the system volume was about 125 ml, about 0.5 mM in rhodium, 640 mM in olefin and 25 mM in AlEt₂Cl. The total pressure was kept at about 775 torr; $p(H_2) = 750$ torr, p(solvents) = 25 torr. For reactions carried out at constant volume, the volume of the system was about 400 ml. No hydrogen consumption was observed for solutions containing all the reagents except RhCl(ttp), thereby excluding any significant catalysis by either AlEt₃ or AlEt₂Cl under these conditions.

^{*}Author to whom correspondence should be addressed.

TABLE I. $^{31}P\{^{1}H\}$ NMR Data on RhCl(ttp)-AlEt $_{3-n}$ Cl $_{n}$ Solutions.

	δP ₁ ppm	δP_2 ppm	$^2J_{\mathbf{P_1}-\mathbf{P_2}}$ Hz	¹ J _{Rh} –P ₁ Hz	¹J _{Rh−P₂} Hz
Rh ^a + 2AlEt ₃	-4.6	14.2	43.8	108.5	121.3
$Rh + 2AlEt_3 + C_2H_4$	-12.8	11.5	49.9	141.7	114.7
Rh + 2AlEt ₃ + 1-Octene	-12.4	12.0	49.3	141.9	114.7
	-4.6	14.4	43.0	108.1	121.3
Rh + 2AlEt ₃ + 1-Pentene	-12.6	11.7	49.3	141.9	114.7
Rh + 2AlEt ₂ Cl + 1-Octene	-12.8	12.2	50.0	139.0	115.8
Rh + 2AlEt ₂ Cl + 1-Pentene	-12.1	12.3	50.0	140.5	116.2

aRh = the RhCl(ttp) complex.

Results and Discussion

The ³¹P{¹H} NMR spectrum of a toluene solution of RhCl(ttp) and AlEt₃ is shown in Fig. 1. This ³¹P spectrum also results from a toluene solution of RhCl(ttp) and AlEt₂Cl. The NMR pattern is typical of planar rhodium-ttp complexes and results from spin-spin coupling between the terminal phosphorus, the central phosphorus, and the rhodium atom, all of which have a spin of ½ [5, 8]. Table I also gives the ³¹P{¹H} NMR data for several solutions containing RhCl(ttp) and the aluminum alkyls.

The proton NMR spectrum for the RhCl(ttp)-AlEt₃ solution shows a rhodium hydride resonance at -5.2 ppm. Also, there are two sets of ethyl resonances due to the ethyl groups on aluminum; however, neither of these resonance positions is the same as that of free AlEt₃ or AlEt₂Cl. On the basis of an extensive NMR study, we have concluded that these ethyl resonances arise from two molecules of either AlEt₃ or AlEt₂Cl bonding to RhH(ttp) via both the hydride and the rhodium atom. The hydride is presumed to come from a β -hydride elimination of ethylene from RhEt(ttp), which is formed by an initial alkylation reaction. The upfield set of ethyl resonances is not present after addition of ethylene; thus, it is assigned to an ethylaluminum species that is coordinated to the hydrido ligand. The downfield set of ethyl resonances is assigned to an ethylcompound coordinated directly to aluminum rhodium. This ethylaluminum compound must be in equilibrium with AlEt₃ since the position of the ethyl resonances moves closer to that of free AlEta upon addition of more AlEt₃. Thus, it appears that a toluene solution of RhCl(ttp) and AlEt3 can be characterized by eqn. 1. The exact nature of the ethylaluminum species is not known because of the equilibrium between coordinated and free ethylaluminum species and the likelihood that AlEt2Cl is one of the products in the reaction between RhCl(ttp) and AlEt₃. Hence, the ethylaluminum species is indicated by EtÅ1.

EtAl
(ttp)RhH-AlEt
$$\rightleftharpoons$$
 Et Al + (ttp)RhH-AlEt (1)

Addition of ethylene to a solution of RhCl(ttp) and AlEt₃ results in a new set of ³¹P{¹H} NMR parameters as shown in Table I. Furthermore, the ¹H NMR spectrum no longer exhibits the Rh-H resonance at -5.2 ppm, and the set of ethyl resonances assigned to Rh-H-AlEt is not observed. Thus, this new rhodium species is thought to be EtAl-RhEt(ttp). Similarly, the ³¹P{¹H} NMR spectra show that addition of either 1-pentene or 1-octene to a toluene solution of RhCl(ttp) and AlEt₃ results in a mixture of two compounds. One compound is proposed to be EtAl-Rh(ttp)H-AlEt, whereas the other is assigned as EtAl-RhR(ttp). The chemical equations representing these reactions are as follows:

EtAI

$$RhCl(ttp) + xsAlEt_3 \rightleftharpoons (ttp)Rh - H - AlEt + C_2H_4$$
(2)

EtAI
$$<$$
 EtAI $<$ (ttp)Rh-H-AIEt + olefin \neq (ttp)Rh-R (3)

Addition of 1-pentene or 1-octene to solutions containing RhCl(ttp) and AlEt₂Cl results in a clean ³¹P NMR spectrum that contains only one set of parameters; the parameters are consistent with rhodiumalkyl compounds of the type EtÅl–RhR(ttp). Thus, a kinetic study on the catalytic hydrogenation of olefins was carried out with AlEt₂Cl and RhCl(ttp) in toluene. The observed rate law is $-d[H_2]/dt = k_{obsd}[Rh]_T[H_2]$ in the presence of a large excess of olefin and excess AlEt₂Cl. Table II lists the various substrates hydrogenated catalytically by solutions

TABLE II. Relative Rates of Hydrogenation of Various Substrates,

Substrate	Relative Rate	
1-Octene		
2,3-Dimethyl-1-butene	5.2	
2,3-Dimethyl-2-butene	NO RXN.	
cis-2-Octene	1.2	
trans-2-Octene	0.84	
trans-2-Pentene	1.1	
Cyclohexene	NO RXN.	
1,3-Octadiene (cis + trans)	NO RXN.	
1-Octyne	28	
Cyclohexanone	NO RXN.	
1-Octene (Wilkinson's catalyst)	3.8	

^aThe observed rate of hydrogenation of 1-octene to n-octane at 20 \pm 0.3 °C and under constant H₂ pressure of 750 torr is $6.4 \times 10^4 \, M^{-1} \, \text{min}^{-1}$.

or RhCl(ttp) and AlEt₂Cl and the relative rates based on 1-octene being assigned a value of 100. The rates indicate, as is expected, that internal and more hindered olefins react slower than terminal unhindered olefins.

A consideration of the ³¹P{¹H} and the ¹H NMR spectra, the rate data, and the fact that solution of RhCl(ttp) and either AlEt₃ or AlEt₂Cl catalyze the hydrogenation of olefins, leads us to propose the following mechanism for the catalytic hydrogenation of olefins by RhCl(ttp) and excess AlEt₂Cl. Association of the ethylaluminum species with the rhodium complex is omitted for clarity.

$$RhCl(ttp) + AlEt_2Cl \stackrel{K_1}{\rightleftharpoons} RhEt(ttp) + AlEtCl_2$$

RhEt(ttp)
$$\stackrel{K_2}{\rightleftharpoons}$$
 RhH(ttp) + C_2H_4

$$RhH(ttp) + alkene \stackrel{K_3}{\longleftarrow} RhR(ttp)$$

$$RhR(ttp) + H_2 \xrightarrow{k} RhH(ttp) + alkane$$

After the catalysis solutions were treated with H_2 , the resultant solutions were analyzed by glc; they contained only the saturated alkane in all but one case. In the case of 1-octene, 96% of the olefin was reduced to n-octane and 4% was isomerized to an internal olefin. n-Octane was obtained quantitatively from 1-octyne, even though it should generate 1-

octene as an intermediate. The rate of reactions using solutions of previously used catalyst decreased with successive additions of 1-octene; our observations suggest that the life of the catalyst is related more to the air sensitivity (and concomitant handling problems) of the Et₂AlCl than to the instability of the rhodium complex.

Use of a More Bulky Triphosphine

Use of the more sterically hindered catalyst RhCl(Cyttp), where Cyttp represents the tetra-

cyclohexyl triphosphine ligand $\text{Cy}_2\text{P}(\text{CH}_2)_3\text{P}(\text{CH}_2)_3$ -PCy2, resulted in a calculated second-order rate constant of 6.5 \times 10⁴ M^{-1} min⁻¹. However, the reaction is definitely dependent on the concentration of the olefin, in contrast to the RhCl(ttp) system. The third-order rate constant for the equation $r = k[\text{H}_2][\text{Rh}]_T$ -[octene) is about 1.2 \times 10⁴ M^{-2} min⁻¹. The olefin dependence is understandable in terms of the mechanism proposed for catalysis by RhCl(ttp). In the case of the more hindered catalyst RhCl(Cyttp), equilibrium constant K_3 would be smaller than for RhCl(ttp); thus, the hydrogenation mechanism with RhCl(Cyttp) is probably more complicated and involves an olefin complex in the rate step.

Acknowledgements

The authors are grateful to the Northern Kentucky University for a sabbatical leave to J. N. During 1978–1979, to P. Kreter, T. Mazanec, and R. Waid for collecting the ³¹P NMR spectra, and to Johnson Matthey and Engelhard Industries for loans of small amounts of rhodium trichloride.

References

- J. A. Osborn, F. H. Jardine, J. F. Young and G. Wilkinson, J. Chem. Soc., A, 1711 (1966).
- 2 B. R. James, 'Homogeneous Hydrogenation', Wiley, New York, 1973.
- 3 E. L. Muetterties, Ed. 'Transition Metal Hydrides', M. Dekker, New York, 1971.
- 4 D. L. DuBois and D. W. Meek, *Inorg. Chim. Acta*, 19, L29 (1976).
- D. W. Meek and T. J. Mazanec, Acct. Chem. Res., 14, 266 (1981).
- 6 S. H. Strauss and D. F. Shriver, *Inorg. Chem.*, 17, 3069 (1978).
- S. E. Diamond and F. Mares, J. Organomet. Chem., 142, C55 (1977).
- 8 J. A. Tiethof, J. L. Peterson and D. W. Meek, *Inorg. Chem.*, 15, 1365 (1976).