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The solid-phase synthesis of sultams from resin-bound amino acids is described. The sulfonylation of the
resin-bound primary amines afforded the requisite secondary amines, after which the intramolecular
Buchwald–Hartwig-type coupling forms the C–S bond. A final alkylation on the sulfonamides followed
by cleavage provided the corresponding seven-membered sultams.
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Sultams (cyclic sulfonamides) are one of the most important
heterocyclic skeletons in organic chemistry. Due to their diverse
biological properties, sultams have emerged as privileged struc-
tures in drug discovery.1 Most recently, the significance of sul-
tams has reached new frontiers, due in part to the discovery
of promising bioactive sultams in areas such as, antiviral,2 anti-
cancer,3 antimicrobial,4 antimalarial,5 and antileukemic thera-
peutics.6 As part of the efforts toward utilizing solid-phase
synthesis as a powerful methodology for the synthesis of a com-
pound library for discovering biologically relevant compounds,7

herein, we report on the development of a solid-phase synthetic
strategy for the generation of seven-membered sultams. We uti-
lized a Buchwald–Hartwig-type reaction8 between a thiol group
and a-haloarylsulfonamides, in part because a-haloarylsulfona-
mide represents an attractive building block for the production
of benzofused sultams.9

As outlined in Scheme 1, we began our investigation on the
solid-phase using the ‘tea-bag’ methodology.10 Starting from p-
methylbenzhydrylamine (MBHA) resin, a variety of Boc-L-amino
acids (Boc-L-AA-OH) were coupled to the resin. The Boc group
was removed by 55% TFA in DCM. The resulting primary amine
was then coupled with Fmoc-L-Cys(Trt)-OH to provide the dipep-
tide 3, which following a standard Fmoc deprotection afforded
the primary amine. Subsequent sulfonylation of the resin-bound
primary amine with 2-bromoarylsulfonyl chloride gave the resin-
bound sulfonamide 4. The palladium-catalyzed intramolecular
coupling of aryl halides with the thiol group proved to be an
efficient method to form the C–S bond. This C–S bond is a com-
mon functionality found in numerous pharmaceutically active
compounds.11 After optimization of the reaction conditions, we
found that the resin-bound seven-membered sultams could be
obtained efficiently by treatment of 5 with Cs2CO3 (10 equiv),
ll rights reserved.
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Pd(PPh3)4 (0.2 equiv), and (±)-BINAP (0.4 equiv) in anhydrous
DMF at 100 �C for 20 h. Further treatment with K2CO3 and a
variety of electrophilic reagents, such as alkyl halides, benzyl ha-
lides, and phenylacyl bromide introduced the R3 diversity ele-
ment seen in the corresponding resin 7. The desired products
were obtained following cleavage from the resin using HF for
1.5 h at 0 �C. To illustrate the versatility of this chemistry, a li-
brary of 15 compounds (8a–8o) were prepared (Table 1). The
product was characterized by electrospray LC–MS, 1H, and 13C
NMR.12

In summary, we have demonstrated a feasible approach to facil-
itate the rapid parallel multistep synthesis of seven-membered
sultams from amino acids and short peptides on the solid-phase
via a palladium-catalyzed intramolecular cyclization reaction. This
methodology is of value for the formation of a C–S bond. Further-
more, the reaction utilizes chiral amino acids, which in turn pro-
duces chiral sultams.
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Scheme 1. Reagents and conditions: (a) (i) prewash with 5% DIEA/DCM; (ii) Boc-L-AA-OH, DIC, HOBT, DMF, rt, 2 h; (b) (i) 55% TFA/DCM; (ii) Fmoc-L-Cys(Trt)-OH, DIC, HOBT,
DMF, rt, 2 h; (c) (i) 20% piperidine/DMF; (ii) R2SO2Cl, DIEA, DCM, rt, overnight; (d) 5% TFA/5% triisopropylsilane/90% DCM; (e) Pd(PPh3)4, (±)-BINAP, Cs2CO3, 100 �C, 20 h;
(f) R3X, K2CO3, DMF, 48 h; or R3X, DIEA, DMF, 48 h; (g) HF, 0 �C, 1.5 h.

Table 1
Individual sultams of 8

Entry R1 R2 R3 Yielda (%) Purityb (%) MWc

8a H H H 88 98 315.9 ([M+H]+)
8b H CF3– H 76 99 383.9 ([M+H]+)
8c CH3– H H 85 98 329.9 ([M+H]+)
8d CH3– CF3– H 59 87 397.9 ([M+H]+)
8e (CH3)2CHCH2– H H 52 94 372.0 ([M+H]+)
8f –(CH2)3–d H H 98 85 356.0 ([M+H]+)
8g –(CH2)3–d CF3– H 75 98 446.0 ([M+Na]+)
8h CH3SO(CH2)2– H H 67 91 405.9 ([M+H]+)
8i CH3SO(CH2)2– CF3– H 61 89 474.0 ([M+H]+)
8j HOCH2– H H 54 92 345.9 ([M+H]+)
8k HOCH2– CF3– H 67 97 435.9 ([M+Na]+)
8l (CH3)2CH– H CH3CH2– 69 83 408.0 ([M+Na]+)
8m H H 4-NO2PhCH2– 84 70 450.9 ([M+H]+)
8n CH3– H 2,4-Di-FPhCH2– 63 62 478.0 ([M+Na]+)
8o (CH3)2CH– H PhCOCH2– 40 91 498.1 ([M+Na]+)

a Yields (in %) are based on the weight of crude material and are relative to the initial loading of the resin.
b The purity of the crude material was estimated by the peak area from analytical HPLC traces at k = 254 nm.
c Confirmed by mass spectra (ESI).
d –(CH2)3–:
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