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Four new (1–4) and 13 known (5–17) sesquiterpene lactones along with two known diterpenes (18, 19)
were isolated from the whole plant of Carpesium faberi. The new structures were elucidated by means of
spectroscopic techniques and some chemical transformations to be pseudoguaian-1a(H)-8a,12-olide-4b-
O-b-D-glucopyranoside (1), 4b,10a-dihydroxy-5a(H)-1,11(13)-guaidien-8a,12-olide (2), 4b,10b-dihy-
droxy-5a(H)-1, 11(13)-guaidien-8b,12-olide (3), and (4S)-acetyloxyl-11(13)-carabren-8b,12-olide (4).
All isolates were tested against MCF-7 human breast cancer cells using the MTT assay. Among them,
the sesquiterpene lactones (except tomentosin 17) possessing an a-methylene-c-lactone moiety were
found to have in vitro antiproliferative activities, with IC50 values of 3.0–38.8 lg/mL. The effects of four
selected sesquiterpene lactones (guaianolide 2, carabranolide 4, pseudoguaianolide 9, eudesmanolide 13)
on the cell cycle were examined using flow cytometry (FCM).

� 2010 Elsevier Ltd. All rights reserved.
The genus Carpesium (Compositae) consists of about 20 species
worldwide, and most of them are distributed in Eastern Asia.1,2 It
has been well documented that sesquiterpene lactones with
different carbon frameworks are characteristic for Carpesium.2,3

Carpesium faberi Winkl. has been used as a folk medicine in
southwestern China due to its hemostatic, vermifugal, anti-inflam-
matory, and detoxifying properties.1,4 However, this plant has not
yet been phytochemically and pharmacologically investigated. As a
part of our ongoing project towards the discovery of novel anti-
tumor agents from plants,5 four pseudoguaianolides (1, 9–11), five
guaianolides (2, 3, 7, 8, 12), three carabranolides (4–6), three
eudesmanolides (13–15), a germacranolide (16), and one xanthan-
olide (17) together with an acyclic (18) and a labdane-type (19)
diterpene (Fig. 1), were obtained from the whole plant of
C. faberi.6,7 Comparing their MS, NMR data, and physical properties
with those of literature, the known compounds were identified as
carabrol (5),3g,8 carabrone (6),3h,9 4b,10b-dihydroxy-5a(H)-1,11(13)-
guaidien-8a,12-olide (7),3c 4a,10b-dihydroxy-5a(H)-1,11(13)-
guaidien-8b,12-olide (8),10 2-desoxy-4-epi-pulchellin (9),2a,11 car-
abrolactone B (10),2a 2,3-dihydroaromaticin (11),12 4-epi-isoinuvi-
scolide (12),8 telekin (13),3f ivalin (14),13 2a,5a-dihydroxy-11a(H)-
eudesma-4(15)-en-8b,12-olide (15),3d carabrolactone A (16),2a

tomentosin (17),8,9 trans-phytol (18),14 and 8a,15-dihydroxy-13E-
labdene (19).15 We herein report the isolation and structure deter-
All rights reserved.
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mination of the new compounds, as well as their antiproliferative
and apoptotic activities against MCF-7 human breast cancer cells.

The molecular formula of compound 116 was determined to be
C21H34O8 from the positive mode high resolution electrospray ion-
ization mass spectra (HR-ESIMS), which gave an [M+Na]+ ion peak
at m/z 437.2147 (calcd 437.2146). Its IR spectrum indicated the
presence of hydroxyl (3405 cm�1) and c-lactone (1771 cm�1)
groups. In the highfield 1H NMR spectrum of 1, one methyl group
singlet at d 0.94 (3H, s) and two methyl group doublets at d 1.16
(3H, d, J = 7.8 Hz) and 0.95 (3H, d, J = 6.4 Hz) were observed
(Table 1). The 13C and DEPT NMR spectra of 1 showed 15 carbon
signals classified as three methyls, four methylenes, six methines
(two oxygenated at d 93.3 and 84.2), and two quaternary carbons
(one carbonyl at d 182.9), in addition to six typical oxygen-bearing
carbons attributed to a glucopyranosyl unit [d 106.1 (CH, C-10), 75.3
(CH, C-20), 78.2 (CH, C-30), 71.6 (CH, C-40), 77.8 (CH, C-50), 62.8 (CH2,
C-60)] (Table 1). These data suggested that 1 should be a sesquiter-
pene glycoside with an aglycone structurally related to the known
pseudoguaianolide 9.2a,11

The planar structure of 1 was determined by detailed 1D and 2D
NMR (COSY, HSQC, and HMBC) spectroscopic analysis. In the COSY
NMR experiment (Fig. 2) of 1, a spin system [–CH(O)CH2CH2-
CHCH(CH3)CH2CH(O)CH(CHCH3)CH2–] in the aglycone was found
between H-4 at d 3.69 and H2-3 at d 1.99/1.58, between H2-3 and
H2-2 at d 1.72/1.45, between H2-2 and H-1 at d 1.63, between
H-1 and H-10 at d 1.74, between H-10 and Me-15 at d 0.95, be-
tween H-10 and H2-9 at d 2.27/1.25, between H2-9 and H-8 at d
4.47, between H-8 and H-7 at d 2.48, between H-7 and H-11 at d

http://dx.doi.org/10.1016/j.bmcl.2010.10.138
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mailto:jfhu@brain.ecnu.edu.cn
http://dx.doi.org/10.1016/j.bmcl.2010.10.138
http://www.sciencedirect.com/science/journal/0960894X
http://www.elsevier.com/locate/bmcl


O

H

RO
O

O

O

O

O

R2

H

R1

OH

O

O

OH

H
R2

R1

O

OH
OH

H

O

H

O

R3

O

R3

O

R1

R2

O

O

HO

O

O

4  R1 = OAc, R2 = H  
5  R1 = OH,   R2 = H          
6  R1 = R2 = O

R1 R2

2  R1 = CH3,  R2 = OH  
7  R1 = OH,   R2 = CH3

3  R1 = CH3,  R2 = OH  
8  R1 = OH,   R2 = CH3

9    R1 = OH,  R2 = R3 = H  
10  R1 = R3 = OH,  R2 = H          
11  R1 = R2 = O,     R3 = H

R1

R2

13  R1 = H,    R2 = OH, R3 = exocyclic CH2

14  R1 = OH, R2 = H,    R3 = exocyclic CH2

15  R1 = OH, R2 = OH, R3 = β-CH3

7161

12

1    R = β-D-Glucoside 
1a  R = H

1
3

5
7

10

11
12

13

14

15

1

2

3

4

5
7

8

10

11
12

13

14

15

1

5
7

10

11

3

7

10

12

13

1

3
5 11

12

13

14

15
S

OH

OH

H

OH

1918

A B

C

H

H

H
O

O O

H

H

Figure 1. Structures of compounds 1–19.
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2.62, between H-11 and Me-13 at d 1.16, as well as between H-7
and H2-6 at d 1.94/1.51. The relative stereochemistry of the chiral
centers in the aglycone was deduced by extensive analysis of the
coupling patterns of the protons bound to the seven-membered
ring and by the NOE correlations in the NOESY NMR experiment.
Clear NOE correlations (Fig. 2) were observed between H-1 at d
1.63 (br dd, J = 11.1, 10.2 Hz) and H-9ax at d 1.24 (br dd, J = 12.2,
12.0 Hz), between H-1 and H-4, between H-1 and H-7, between
H-1 and Me-15, between H-9ax and H-7, between H-9ax and
Me-15, between H-6ax at d 1.51 (dd, J = 14.8, 12.7 Hz) and H-8 at
d 4.47, between H-6ax and Me-13, between H-6ax and Me-14, be-
tween H-7 and H-6eq at d 1.94 (1H, dd, J = 14.8, 5.6 Hz), between
H-8 and Me-14, between H-8 and H-9eq at d 2.27 (ddd, J = 13.2,
3.6, 3.6 Hz), as well as between H-9eq and H-10 at d 1.74. These
data revealed that H-1, H-4, H-7, H-11, and Me-15 were all a-ori-
ented, whereas H-8, Me-13, and Me-14 were in the b-orientation
(Figs. 1 and 2). Therefore, the A/B/C rings in the aglycone of 1 were
in turn trans-fused.

The glycosidic linkage position at C-4 was determined by the
HMBC NMR experiment (Fig. 2). A clear 3J correlation were found
between the anomeric proton at d 4.30 (1H, d) and C-4 resonating
at d 93.3. The b-glycosidic linkage was deduced based on the ob-
served coupling constant (7.8 Hz) of the anomeric proton. In addi-
tion, the enzymatic hydrolysis17 of 1 with b-glucosidase gave the
aglycone 1a18 (Table 1) and glucose. The relative stereochemistry
of 1a was further analyzed by its own NOESY NMR experiment,
which was in full agreement with those of 1. The D-configuration
of the glucose was identified by direct comparison with an authen-
tic sample using HPLC analysis and optical rotation [purified sugar:
½a�22
D +52 (c 0.09, H2O)].17 Thus, compound 1 was elucidated to be

pseudoguaian-1a(H)-8a,12-olide-4b-O-b-D-glucopyranoside.
Based on their HR-ESIMS, the molecular formula C15H20O4 of

both compounds 219 and 320 were determined to be the same as
those of the known guaianolides 73c and 8.10 Compounds 2, 3, 7,
and 8, each possessing an a-methylene-c-lactone moiety, were
found to have similar NMR spectral features (Table 2). The proton
and carbon signals of the diastereoisomers 2 and 3 were unambig-
uously assigned by 2D NMR experiments (COSY, HSQC, and HMBC).
Similar to 1, the relative stereochemistry of 2 and 3 was deduced
according to the coupling patterns of the protons bound to the se-
ven-membered ring and the NOE correlations in their NOESY NMR
experiments (Fig. 3). In the NOESY spectrum of 2, clear NOE corre-
lations were observed between H-7 at d 3.07 and H-5 at d 2.82, be-
tween H-7 and H-6eq at d 2.18 (ddd, J = 12.6, 4.6, 3.2 Hz), between
H-7 and H-9ax at d 2.08 (dd, J = 13.8, 11.2 Hz), between H-8 at
d 3.83 and H-6ax at d 1.01 (dd, J = 12.1, 12.1 Hz), between H-8
and H-9eq at d 2.49 (dd, J = 13.8, 4.4 Hz), between H-8 and Me-14
at d 1.58, between H-9eq and Me-14, between H-5 and Me-15 at
d 1.39, as well as between H-6eq and Me-15. These data showed
that the c-lactone ring is trans-fused at C-7 and C-8 in compound
2. Therefore, 2 is the C-10 epimer of compound 7. Similarly
(Fig. 3), compounds 3 and 8 are epimers at C-4, and both com-
pounds have a cis-fused c-lactone ring at C-7 and C-8. Therefore,
compounds 2 and 3 were elucidated to be 4b,10a-dihydroxy-
5a(H)-1,11(13)-guaidien-8a,12-olide and 4b,10b-dihydroxy-5a(H)-
1,11(13)-guaidien-8b,12-olide, respectively. Interestingly, the
structure of 3 was once presented as a known compound by Hocine
Dendougui et al.;21 however, the structure (without any NMR data)



Table 1
1H (500 MHz) and 13C (125 MHz) NMR Data of 1, 1a, and 4a

Position 1b 1ac 4c

dH (mult, J, Hz) dC (DEPT) dH (mult, J, Hz) dC (DEPT) dH (mult, J, Hz) dC (DEPT)

1 1.63 brdd (11.1, 10.2) 48.1 (CH) 1.58 brdd (10.3, 9.8) 47.6 (CH) 0.43 m 34.7 (CH)
2 1.72 m, overlapped 26.7 (CH2) 1.73 m 25.3 (CH2) 1.30 m (2H) 24.9 (CH2)

1.45 m 1.43 m, overlapped
3 1.99 m 28.8 (CH2) 1.97 m 28.9 (CH2) 1.68 m 35.9 (CH2)

1.58 m 1.34 m 1.56 m
4 3.69 dd (9.2, 8.9) 93.3 (CH) 3.74 dd (9.4, 8.3) 82.2 (CH) 4.88 m 70.7 (CH)
5 45.8 (C) 44.4 (C) 0.34 m 22.8 (CH)
6 1.94 dd (14.8, 5.6, Heq) 35.7 (CH2) 1.83 dd (14.6, 5.7, Heq) 34.7 (CH2) 2.35 dd (14.1, 6.9, Heq) 30.8 (CH2)

1.51 dd (14.8, 12.7, Hax) 1.41 m, overlapped 0.90 m
7 2.48 m 44.2 (CH) 2.41 m 43.2 (CH) 3.15 dddd (11.8, 9.2, 3.1, 3.0) 37.8 (CH)
8 4.47 ddd (11.2, 10.5, 3.3) 84.2 (CH) 4.36 ddd (11.3, 10.3, 3.4) 83.4 (CH) 4.76 ddd (11.2, 9.2, 4.4) 75.6 (CH)
9 2.27 ddd (13.2, 3.6, 3.6, Heq) 46.1 (CH2) 2.33 ddd (13.0, 3.7, 3.6, Heq) 44.9 (CH2) 2.31 dd (13.8, 4.4, Heq) 37.3 (CH2)

1.24 br dd (12.2, 12.0, Hax) 1.23 br dd (12.2, 12.0, Hax) 0.94 dd (13.8, 11.2, Hax)
10 1.74 m, overlapped 30.6 (CH) 1.69 m 29.7 (CH) 17.0 (C)
11 2.62 dq (7.9, 7.8) 41.4 (CH) 2.62 dq (7.9, 7.8) 39.8 (CH) 139.0 (C)
12 182.9 (C) 179.9 (C) 170.5 (C)
13 1.16 d (7.8) 11.8 (CH3) 1.17 d (7.8) 11.6 (CH3) 6.22 d (2.8), 5.54 d (2.3) 122.5 (CH2)
14 0.94 s 18.5 (CH3) 0.87 s 17.3 (CH3) 1.05 s 18.2 (CH3)
15 0.95 d (6.4) 20.9 (CH3) 0.93 d (6.5) 20.5 (CH3) 1.20 d (6.3) 21.3 (CH3)
OAc 2.01 s 19.9 (CH3)

170.7 (C)
10 4.30 d (7.8) 106.1 (CH)
20 3.19 dd (8.8, 7.8) 75.3 (CH)
30 3.34 dd (9.0, 8.8) 78.2 (CH)
40 3.29 dd (9.3, 9.0) 71.6 (CH)
50 3.24 ddd (9.3, 5.6, 2.1) 77.8 (CH)
60 3.83 dd (11.8, 2.1) 62.8 (CH2)

3.66 dd (11.8, 5.6)

a Assignments were made by a combination of 1D and 2D NMR techniques (COSY, HSQC, and HMBC).
b Recorded in CD3OD.
c Recorded in CDCl3.
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cited therein was not identical to the original one.10,21 Thus, 3 is
still a new naturally occurring compound.

The molecular formula C17H24O4 of compound 422 was deduced
from its positive mode HR-ESIMS, which resulted in an [M+Na]+ ion
peak at m/z 315.1587 (calcd 315.1567). Its 1H and 13C NMR data
(Table 1) showed that 4 is an analog of 5,3g,8 with an acetoxyl group
[dH: 2.01 (3H, s, H-17), dC: 19.9 (CH3), 170.7 (C@O)] in place of the
hydroxyl group at C-4 in the side chain of 5. Alcoholysis23 of 4 with
MeOH/MeONa gave 4a, which was found to be identical to
compound 5 by comparing their spectroscopic data and physical
properties. To the best of our knowledge, the stereochemistry of
C-4 in 4a (5) has not been previously assigned. Compound 4a
was then subjected to a modified Mosher’s method24,25 by treat-
ment with (S)- and (R)-a-methoxy-a-trifluoromethylphenyl acetic
acid (MTPA) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC�HCl) and 4-dimethylaminopyri-
dine (4-DMAP) to give its 4-(S)-MTPA ester (4b)26 and 4-(R)-
MTPA ester (4c),27 respectively. In their 1H NMR spectra, the
chemical shifts of Me-15 and H-4 in 4b could be observed at
higher fields (DdH = dS � dR: negative value), while the other pro-
tons resonated at a lower field (DdH: positive value) (Fig. 4) when
compared with those of 4c. This indicated an S configuration at
C-4 in 4a. Thus, compound 4 was elucidated as (4S)-acetyloxyl-
11(13)-carabren-12,8b-olide. Consequently, the structure of 5
was updated as (4S)-acetyloxyl-11(13)-carabren-8b,12-olide.
Compound 4 was detected in the MeOH extract of the title plant
by TLC and HPLC analysis, which indicated that 4 is not an artifi-
cial product.



Table 2
1H (500 MHz) and 13C (125 MHz) NMR data of 2, 3, and 7 (in CDCl3)a

Position 2 3 7b

dH (mult, J, Hz) dC (DEPT) dH (mult, J, Hz) dC (DEPT) dH (mult, J, Hz)

1 151.8 (C) 151.8 (C)
2 5.68 br s 125.0 (CH) 5.57 br s 122.0 (CH2) 5.88 dd (3.0, 1.6)
3 2.51 d (17.4) 45.9 (CH2) 2.40 br s (2H) 46.7 (CH2) 2.51 d (17.2)

2.33 dd (17.4, 3.2) 2.31 dd (17.2, 3.2)
4 81.5 (C) 81.3 (C)
5 2.82 dd (12.6, 4.8) 54.7 (CH) 2.70 br d (12.0) 55.4 (CH) 2.36 dd (12.6, 3.1)
6 2.18 ddd (12.6, 4.6, 3.2, Heq) 32.0 (CH2) 2.06 ddd (13.2, 4.7, 4.4, Heq) 32.5 (CH2) 2.22 ddd (12.6, 3.5, 3.5, Heq)

1.01 br dd (12.2, 12.2, Hax) 1.34 br dd, overlapped 1.07 br dd (12.4, 12.2, Hax)
7 3.07 dddd (11.8, 9.2, 3.1, 3.0) 45.6 (CH) 3.39 m 42.2 (CH) 2.65 dddd (11.5, 9.8, 3.3, 3.0)
8 3.83 ddd (11.2, 9.2, 4.4) 81.8 (CH) 5.15 ddd (11.7, 4.5, 3.5) 77.5 (CH) 3.97 ddd (11.2, 9.8, 1.4)
9 2.49 dd (13.8, 4.4, Heq) 46.5 (CH2) 2.29 dd (13.8, 4.0, Heq) 42.5 (CH2) 2.50 dd (14.2, 1.3, Heq)

2.08 dd (13.8, 11.2, Hax) 1.76 dd (13.8, 12.1, Hax) 2.07 dd (14.2, 11.3, Hax)
10 70.2 (C) 69.6 (C)
11 139.8 (C) 140.4 (C)
12 170.0 (C) 170.1 (C)
13 6.21 d (3.0) 120.1 (CH2) 6.26 d (2.8) 121.6 (CH2) 6.17 d (3.4)

5.52 d (3.0) 5.59 d (2.4) 5.46 d (3.1)
14 1.58 s 30.7 (CH3) 1.54 s 29.9 (CH3) 1.45 s
15 1.39 s 23.3 (CH3) 1.36 s 24.5 (CH3) 1.39 s

a Assignments were made by a combination of 1D and 2D NMR techniques (COSY, HSQC, and HMBC).
b Data were recorded in CDCl3 for the first time.
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Table 3
Effects of 1–19 against MCF-7 cells (mean ± SD, n = 3)

Compound IC50 (lg/mL)

1 >50
2 31.7 ± 1.6
3 38.8 ± 0.5
4 9.4 ± 0.3
5 11.4 ± 0.3
6 10.6 ± 0.6
7 31.9 ± 1.6
8 26.5 ± 0.6
9 9.8 ± 0.4

10 10.7 ± 0.1
11 3.9 ± 0.2
12 16.3 ± 1.1
13 3.0 ± 0.1
14 12.5 ± 0.7
15 >50
16 >50
17 >50
18 >50
19 18.6 ± 0.4
5-Fluorouracil 14.1 ± 0.7
Daunorubicin 0.5 ± 0.1
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The genus Carpesium is a rich source of sesquiterpene lac-
tones.2,3 From a chemotaxonomical point of view the isolation of
different types of sesquiterpene lactones (1–17) from C. faberi
may be of interest. Sesquiterpene lactone glycosides (e.g., 1) have
seldom been found from this genus.3e All isolated compounds
(1–19) were evaluated for their antiproliferative activities
(Table 3) against MCF-7 human breast cancer cells using the MTT
assay.5,28,29 The isolated sesquiterpene lactones (except xanthano-
lide 17) with an a-methylene-c-lactone moiety exhibited



Figure 5. Cell cycle effects of compounds 2, 4, 9, and 13 on MCF-7 cells.

Figure 6. Effects of compounds 2, 4, 9, and 13 on MCF-7 cells after 24 h exposure
(mean ± SD, n = 3).*p <0.05; **p <0.01.
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significant in vitro antiproliferative activities, and compounds 11
and 13 were the most potent with an IC50 value of 3.9 and
3.0 lg/mL, respectively. Cell cycle analysis30 indicated that when
MCF-7 cells were treated with four selected sesquiterpene lactones
(guaianolide 2, carabranolide 4, pseudoguaianolide 9, eudesmano-
lide 13) at IC50 concentrations for 24 h, the percentage of cells in
the G2/M phase was significantly increased (p <0.01) (Figs. 5 and
6), suggesting that the cancer cells were killed mostly at G2/M
phase of the cell cycle. Moreover, when treating MCF-7 cells with
compounds 2 and 4 at IC50 concentrations for 24 h, obvious
sub-G1 peaks (apoptosis >5%) were observed (Figs. 5 and 6),
demonstrating that these two new compounds may have apoptosis
effects on MCF-7 cells.
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30. Flow cytometric (FCM) analysis: MCF-7 cells were used to analyze the cell cycle
effects of compounds 2, 4, 9, and 13. MCF-7 cells were seeded at 10 � 104 cells
per well in six-well culture plates. After 24 h, the cells were treated with tested
compounds at concentrations equivalent to their IC50 values, and incubated for
an additional 24 h. Control samples included 0.5% DMSO and 1.8 lg/mL
daunorubicin. The cells were then fixed with 70% ethanol at 4 �C overnight,
then treated with RNAse (100 lg/mL) for 20 min, stained with propidium
iodide (Sigma, USA) for 10 min, and finally analyzed using a FACS Calibur flow
cytometer (Becton Dickson, USA). The percentages of cells in G1, S, and G2/M
phases were determined by ModFit software (Verity Software House). All
experiments were performed in triplicate and gave the similar results.
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