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Catalytic asymmetric synthesis of 1,1-disubstituted

tetrahydro-b-carbolines by phase-transfer catalyzed alkylationsw
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Efficient catalytic asymmetric synthesis of 1,1-disubstituted

tetrahydro-b-carbolines has been achieved via asymmetric

alkylation of 1-cyanotetrahydro-b-carbolines using a binaphthyl-

modified N-spiro-type chiral phase-transfer catalyst. This is a

valuable example of hitherto difficult highly enantioselective

alkylations at a-carbon of the cyano group under phase-transfer

conditions.

The structure of 1-substituted tetrahydro-b-carboline appears

in many important natural products and biologically active

compounds, hence numerous synthetic efforts especially in

a stereoselective manner have been made to build up this

structure.1–5 Several efficient catalytic methods were developed

for the synthesis of these compounds via asymmetric hydro-

genations,3 Mannich-type reactions,4 and Pictet–Spengler

reactions.5 On the other hand, only two examples of the

catalytic asymmetric synthesis of 1,1-disubstituted tetrahydro-

b-carbolines of type 1 possessing a chiral quaternary carbon

center6 have been reported recently,7 despite the importance of

these compounds in natural product chemistry8 and medicinal

chemistry9 (Fig. 1). Notably, these two examples included

similar Pictet–Spengler-type intramolecular cyclizations, and

the structural motif of the obtained products was limited to a

tetracyclic lactam structure. For these reasons, the development

of novel catalytic asymmetric methods for the synthesis of

different types of 1,1-disubstituted tetrahydro-b-carbolines 1 is

highly desirable.10

Our strategy for the synthesis of 1,1-disubstituted tetrahydro-

b-carbolines of type 1 involves asymmetric phase-transfer

alkylation11,12 of racemic 1-cyanotetrahydro-b-carboline 2,

which can be prepared easily from 3,4-dihydro-b-carboline via
cyanation (Scheme 1).13 The electron-withdrawing nature of

the cyano group in compound 2 offers appropriate reactivity

for phase-transfer alkylations, and the cyano group of

alkylation product 3 can be transformed into various useful

functional groups. Although many examples of phase-transfer

catalyzed asymmetric alkylations at a-carbon of the carbonyl

group to create quaternary stereocenter via ammonium enolate

A (Scheme 2) are known,11,12 only limited examples of the

alkylations at a-carbon of the cyano group via intermediate B

(Scheme 2) have been reported14,15 despite the high synthetic

utility of this group. Here we wish to report highly

enantioselective alkylations of 1-cyanotetrahydro-b-carbolines
2 under mild phase-transfer conditions. The present reaction is

a valuable example of hitherto difficult highly enantioselective

a-alkylations of cyano compounds under these conditions.

As a key substrate for the asymmetric synthesis of 1,1-

disubstituted tetrahydro-b-carboline of type 1 under phase-

transfer conditions, 1-cyanotetrahydro-b-carboline 2a was

selected as a model substrate. An attempted reaction of

1-cyanotetrahydro-b-carboline 2a with benzyl bromide

(1.2 equiv.) in aqueous KOH/toluene under the influence of

N-spiro-type phase-transfer catalyst (S,S)-4a (2 mol%) at 0 1C

for 24 h afforded benzylation product 3a with 71% ee (Table 1,

entry 1). Switching the 3,30-aromatic substituent (Ar) of the

catalyst to a 3,5-bis(trifluoromethyl)phenyl group (4b) resulted

in improved enantioselectivity, and the product 3a was

obtained with high enantioselectivity (94% ee, entry 2).

Further screening of 3,30-aromatic substituent (Ar) of (S,S)-

416 did not improve the enantioselectivity (entries 3 and 4). The

use of phase-transfer catalyst (S)-5,17 which has one binaphthyl

unit, gave a product with moderate enantioselectivity (entry 5).

With optimal reaction conditions in hand, we further studied

the generality of the asymmetric alkylation of 1-cyanotetrahydro-

b-carboline 2a under the influence of chiral phase-transfer

catalyst (S,S)-4b, as shown in Table 2. A series of benzylic

bromides with different steric and electronic properties

Fig. 1 1,1-Disubstituted tetrahydro-b-carboline.

Scheme 1 Synthetic scheme of 1,1-disubstituted tetrahydro-b-carboline.

Scheme 2 Phase-transfer catalyzed alkylations.
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were tolerated, thus allowing the preparation of structurally

diverse, enantioenriched 1,1-disubstituted tetrahydro-b-carbolines
(90–96% ee, entries 1–7). The alkyl halide containing a hetero-

aromatic ring could also be applied to the reaction with high

enantioselectivity (95% ee, entry 8). The reaction with cinnamyl

bromide gave the product 3i in good yield with moderate

enantioselectivity (entry 9).18 The absolute configuration of 3d

was determined by X-ray diffraction analysis.19

Other types of 1-cyanotetrahydro-b-carbolines 2 were found
to be employable for the reaction (Table 3). The introduction

of electron-donating and electron-withdrawing substituents on

the aromatic ring of tetrahydro-b-carboline core gave high

enantioselectivities (92–96% ee, entries 1 and 2). The use of N-

methyl and N-allyl substituted tetrahydro-b-carbolines also

gave high enantioselectivities (92–94% ee, entries 3 and 4).

The cyano group of the alkylation products 3 and 6 can be

readily transformed to other functional groups. For example,

the optically active alkylation product 3a was subjected to

alkaline hydrolysis to furnish amide derivative 7 possessing a

tetracyclic hydantoin structure (Scheme 3), which was observed

in biologically active compounds.20

In summary, we have successfully developed the highly

enantioselective alkylation of 1-cyanotetrahydro-b-carbolines
for the synthesis of 1,1-disubstituted tetrahydro-b-carbolines
under mild phase-transfer conditions. The cyano group of the

products was easily transformed to other functional groups.

The present report illustrates a valuable example of hitherto

difficult highly enantioselective alkylations at a-carbon of

the cyano group under phase-transfer conditions. Further

investigations on the phase-transfer catalyzed asymmetric

alkylations of cyano compounds to produce important

compounds are currently underway.

This work was partially supported by a Grant-in-Aid for

Scientific Research from MEXT, Japan.

Table 1 Screening of chiral phase-transfer catalystsa

Entry PTC Yieldb (%) eec (%)

1 4a 45 71
2 4b 72 94
3 4c 51 92
4 4d 61 70
5 5 69 79

a Reaction conditions: 2a (0.050mmol) and benzyl bromide (0.060mmol)

in the presence of 2 mol% of chiral phase-transfer catalyst (PTC)

in 50% aqueous KOH (0.25 mL)/toluene (0.50 mL) at 0 1C for

24 h. b Yield of isolated products. c Determined by chiral HPLC

analysis.

Table 2 Asymmetric alkylation of a 1-cyanotetrahydro-b-carboline 2aa

Entry RBr Yieldb (%) eec (%)

1 X = H 72 (3a) 94
2 X = Me 60 (3b) 92
3 X = F 88 (3c) 95
4 X = Br 76 (3d) 96

5 78 (3e) 94

6 66 (3f) 90

7 75 (3g) 93

8 61 (3h) 95

9d 86 (3i) 60

a Reaction conditions: 2a (0.050 mmol) and alkyl halide (0.060 mmol)

in the presence of 2 mol% of (S,S)-4b in 50% aqueous KOH (0.25 mL)/

toluene (0.50 mL) at 0 1C for 24 h. b Yield of isolated

products. c Determined by chiral HPLC analysis. d The reaction was

performed at �20 1C.

Table 3 Asymmetric benzylation of 1-cyanotetrahydro-b-carbolines 2a

Entry X R Yieldb (%) eec (%)

1d MeO PhCH2 77 (6a) 92
2 Cl PhCH2 87 (6b) 96
3 H Me 89 (6c) 92
4 H CH2QCHCH2 84 (6d) 94

a Reaction conditions: 2 (0.050 mmol) and benzyl bromide (0.060 mmol)

in the presence of 2 mol% of (S,S)-4b in 50% aqueous KOH

(0.25 mL)/toluene (0.50 mL) at 0 1C for 24 h. b Yield of isolated

products. c Determined by chiral HPLC analysis. d The reaction was

performed at �20 1C.
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Scheme 3 Transformation of the alkylation product 3a.
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