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a b s t r a c t

An intermolecular Morita–Baylis–Hillman (MBH) reaction using dicobalthexacarbonyl complexed acety-
lenic acetals as the electrophile is reported. Employing BF3–OEt2 as the Lewis acid with a sulfide as the
Lewis base MBH adducts were obtained.

� 2011 Elsevier Ltd. All rights reserved.
The Morita–Baylis–Hillman (MBH) reaction is a carbon–carbon
bond forming reaction that exhibits atom economy with genera-
tion of functional groups.1 In the reaction, an activated alkene is
coupled with a carbon electrophile using a nucleophilic catalyst
(Eq. (1)).2 Tertiary amines, trialkylphosphines, sulfides, and Lewis
acids3 have been used to mediate the reaction. The intermolecular
reaction has been developed to accommodate a number of sp2-
hybridized electrophiles including alpha-keto esters, aldehydes,
1,2-diketones, arenes, and vinyl sulfones.2 Activated alkenes used
in the MBH reaction include acrylates, vinyl ketones, sulfones, ni-
triles, sulfoxides, phosphonates, acrolein, thioacrylates, and allenic
esters.2
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Dicobalthexacarbonyl complexed acetylenic acetals have not
been reported as electrophilic partners in the MBH reaction and
we herein report their successful application in the carbon–carbon
ll rights reserved.
bond forming process. The use of transition metal complexed re-
agents as electrophiles in the MBH reaction is not common,4 and
dicobalthexacarbonyl complexed acetylenic acetals appeared to
be ideal candidates for the electrophilic partner in the Morita–
Baylis–Hillman reaction due to their known reactivity under acidic
reaction conditions. Reaction of dicobalthexacarbonyl complexed
alkynes bearing an appropriate leaving group at the propargylic
position undergo reaction with Lewis acids to generate stabilized
cationic intermediates known as Nicholas cations (Eq. (2)), which
have been shown to react with a variety of nucleophiles including
hydrides, amines, azides, fluorides, mercaptans, enols, and
alkenes.5
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Commonly used Lewis acids in the MBH reaction include TiCl4

and BF3–OEt2.3 In conjunction with sulfides as the nucleophilic cat-
alyst, TiCl4 has also been used. However, chlorinated side products
are readily generated.3b,c In both MBH and Nicholas reactions, BF3–
OEt2 has been used as a Lewis acid. The Goodman group used BF3–
OEt2 in conjunction with tetrahydrothiophene to promote an
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Entry R MBH product % yield (2 steps)

1 Me Me

OOEt

R

1 54a

2 Et 2 61b

3 Pr 3 54b

4 Ph 4 65b

5 4-NO2-Ph 5 61b
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6 71a

7 Et 7 66b

8 Pr 8 61b

9 Ph 9 58b
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10 56b

11 Et 11 47b

12 Pr 12 54b

a Decomplexation with NMO.
b Decomplexation with CAN.
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intermolecular MBH reaction between aldehydes and activated al-
kenes.3d Kataoka et al. developed a Lewis-Acid mediated MBH
reaction using a sulfide as the mediator.3e

Our initial plan was to develop an intermolecular MBH reaction
between an enone and a dicobalthexacarbonyl complexed alkyne
bearing a leaving group at the propargylic position. We chose
BF3–OEt2 as the Lewis acid since it is common to both the MBH
and the Nicholas reaction.3d–f,6 Initial optimization studies using
Nicholas cations of dicobalthexacarbonyl complexed propargyl
ethers and different Lewis acids such as TiCl4 or BF3–OEt2 were
met with limited success (Eq. (3)).
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Acetals have previously been utilized in both MBH reactions
and reactions of dicobalthexacarbonyl complexed alkynes there-
fore they were selected as the electrophilic partner. Increased acti-
vation of the propargylic carbon by the use of an acetal in place of
an ether successfully led to MBH coupling products (Eq. (4)).3f
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Reactions performed with tetrahydrothiophene as the nucleophile
and BF3–OEt2 were the most promising. In the optimization process,
it was found that a 2:1 excess of the dicobalthexacarbonyl com-
plexed acetylenic acetal to the activated alkene achieved highest
yields (Eq. (4)). With an equal ratio of the dicobalthexacarbonyl com-
plexed acetylenic acetal to activated alkene or if an excess of
activated alkene was used, the yields decreased. A series of intermo-
lecular MBH adducts was synthesized (Table 1, Eq. (5)) using com-
mercially available propargylic acetals or propargylic acetals
synthesized under Sonogashira coupling conditions.7 Use of propiol-
aldehyde diethyl acetals resulted in low isolated yields of
anticipated coupling product in addition to significant starting
material decomposition under the Lewis acidic conditions.

Other Lewis acids such as BaCl2, SmI2, AlCl3, AgNO3, and SnCl4

were screened and resulted in little or no formation of the desired
MBH product. Reaction of the uncomplexed 2-butynal-diethylacetal
with pent-1-ene-3-one under the same reaction conditions yielded
only 50% of the MBH adduct 6. The reaction produced more
byproducts thus reinforcing the effectiveness of the complexed al-
kyne. Uncomplexed 2-octynal underwent reaction with pent-1-
ene-3-one under the same reaction conditions to give alkyne 13
in 75% yield as the free alcohol rather than the propargylic ether.
These conditions give rise to the coupling product in much shorter
reaction time than the corresponding base-catalyzed process.8

Initial carbon–carbon bond formation leaves the cobalt complex
coordinated to the alkyne. Oxidation using either N-methylmor-
pholine-N-oxide (NMO) or ceric ammonium nitrate (CAN) liberates
the free alkyne. While the metal can be decomplexed directly in
the initial reaction flask, yields were higher when filtration of the
reaction through Celite� to remove some of the cobalt residues
was conducted after the Lewis acid-mediated MBH reaction but
prior to decomplexation.9

Alternative activated alkenes including 4-nitrophenyl vinyl
ketone and thioacrylic acid-S-ethyl ester did not work under Lewis
acidic conditions. In addition, beta-substituted activated alkenes
such as 3-penten-2-one and cyclohexenone were inert to the reac-
tion conditions. Attempts to develop an intramolecular reaction
using enone 14 were not successful. With either an acetate or
alkoxy leaving group, there was either no reaction or decomposi-
tion of starting material under Lewis acidic or phosphine-mediated
conditions.

In summary, an intermolecular MBH reaction with activated
alkenes has been developed using the dicobalthexacarbonyl com-
plexed acetylenic acetal as the electrophile. The use of cationic
intermediates stabilized by an adjacent dicobalthexacarbonyl com-
plexed alkyne represents an alternative class of electrophiles in the
MBH reaction.
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JAB = 9.0, J = 6.0, 1H, CH3CHHOCH), 3.57 (ABq, JAB = 9.0, J = 6.0, 1H, CH3CHHOCH),
2.25 (td, J = 7.2, 1.8, 3H, CH3CH2CH2C„C), 1.55 (tq, J = 7.2, 7.2, 2H,
CH3CH2CH2C„C), 1.24 (t, J = 7.2, CH3CH2OCH), 0.99 (t, J = 7.2,
CH3CH2CH2C„C). IR (cm�1): 3582, 2965, 2203, 1665, 1087, 756. MS [CI, m/z
(rel intensity)]: 255 (M++1), 227, 105, 77.
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