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Asymmetric synthesis of the fully functionalized six-membered 

ring of trigoxyphin A 
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Asymmetric synthesis of the fully functionalized six-membered 

ring of trigoxyphin A, a daphnane-type diterpenoid, has been 

accomplished concisely from D-tartrate derivative. Key elements 

of this synthesis involve the tandem ozonization/intramolecular 

HWE reaction to construct the r,t-unsaturated cyclohexenone 

skeleton, the radical cyclization to introduce the C8 chirality and 

sequential Kumada cross-coupling/hydroboration-oxidation to 

introduce the C11 chirality. The target substructure could be 

synthetically achieved in a multi-gram scale. 

The daphnane diterpene orthoesters (DDOs) are a large family 

of natural products isolated from the plant families of 

Thymelaeaceae and Euphorbiaceae. By the end of 2017, about 

260 unique members had been identified.
1,2

 Many DDOs 

exhibit remarkable biological activities, such as activation of 

transient receptor potential vanilloid 1 (TRPV1)
3
, anticancer

4
, 

insecticidal
5
, and acaricidal

6
 activities. These natural products 

embrace a highly functionalized trans,trans-fused 5/7/6 (ABC-

ring) skeleton containing the 9,13,14-orthoester motif at ring C. 

Further studies on the structure-activity relationship (SAR) of 

biologically active DDOs have revealed that the orthoester 

group may act as an essential pharmacohpore.
1a

 Trigoxyphin A 

(1, Fig. 1), a representative member of the DDOs, was isolated 

from twigs of Trigonostemon xyphophylloides (Euphorbiaceae) 

in 2010 by Yue�s group.
2a

 Different from other DDOs identified 

before, trigoxyphin A bears an r-oriented oxygen substitution 

at C12. Cytotoxic experiments have demonstrated that 

trigoxyphin A exhibits high activity against HL60 human 

leukemia cells and moderate activity against A549 human lung 

adenocarcinoma cells with IC50 values of 0.27 M and 7.5M 

respectively. 

 
Fig. 1 Paquette�s protocol to 5/7/6 skeleton and our protocol 

to trigoxyphin A 

 

Captivated by their complex molecular structure and diverse 

biological activities, the synthetic community has devoted 

numerous endeavors into developing creative approaches to 

the DDOs. Besides a number of remarkable strategies to the 

5/7/6 tricyclic skeleton documented,
7
 the first total synthesis 

of resiniferatoxin
8
 was accomplished by Wender�s group in 

1997 via intramolecular 1,3-dipolar cycloaddition and 

zirconium-mediated cyclization to forge the scaffold,
9
 and the 

second total synthesis was achieved by Inoue�s group in 2017
10
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featuring radical-mediated three-component coupling and 7-

endo cyclization. Moreover, C6, C7-epi-yuanhuapin, an epimer 

of yuanhuapin which is a natural analog of resiniferatoxin, was 

synthetically conquered by Wender and co-workers in 2011.
11

 

As for the construction of the six-membered ring of 

resiniferatoxin, Inoue�s RCM/olefin isomerization strategy has 

provided a practical access.
7p,10 

All these remarkable works 

provide viable pathways to the DDOs or the related 

unexplored analogs. 
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Scheme 1. Synthesis of compound 10 

 

Inspired by Paquette�s work (Fig. 1),
12

 which utilized a 

nucleophilic addition/RCM strategy to forge the 5/7/6 skeleton, 

we became fascinated by developing a convergent strategy 

toward DDOs including trigoxyphin A. Synthetically, selective 

formation of 9,13,14-orthoester,
13

 epoxidation and inversion 

of the chirality of 5-OH from the ABC ring skeleton 2, a 

potential synthetic precursor of trigoxyphin A, would furnish 

the target molecule (Fig. 1). Then we conceived a prudent 

protocol through RCM strategy to disassemble compound 2 

into two highly functionalized segments, i.e. the ring A 

substructure and the ring C substructure. Structurally, the ring 

C subunit (compound 3) bears five contiguous stereogenic 

centers, two of which are adjacent to the carbonyl and thus 

facile to experience isomerization. Thus the synthesis of the 

ring C subunit is challenging on account of its highly 

functionalized and labile structure. Hence, compound 4, with a 

fused 5/6 bicyclic scaffold stabilizing its all-cis configuration, 

was selected as the synthetic surrogate of compound 3 in 

accordance with both structural stability and synthetic 

practicality. Herein we present our synthetic endeavors toward 

compound 4.  

Synthesis of 4 commenced with the BF3-mediated 

Mukaiyama aldol reaction (Scheme 1).
14

 Reaction of the known 

compound 5,
15

 with crotonaldehyde, provided compound 6 in 

62% yield (dr 25:1). The resultant hydroxy was then protected 

as an acetal by ethyl vinyl ether and NBS to result in compound 

7. To achieve r,t-unsaturated cyclohexenone from t-keto 

phosphonates,
16

 we exposed 7 to an anion, generated from 

dimethyl methylphosphonate and 
n
BuLi, delivering 8a in 85% 

yield.
17

 Then we set about conducting the tandem 

ozonization/intramolecular HWE reaction. While initial 

optimization of a number of bases, solvents and Lewis 

acid/Lewis base combinations
18

 gave no satisfactory results, 

the weak base Et3N afforded the desired compound 10 in 26% 

yield, along with a number of unidentified compounds. 

Although the combination of Sc(OTf)3 and Et3N (1:2.5) made 

the reaction much cleaner than Et3N alone, compound 10 

could only be delivered in 19% yield, along with the undesired 

compound 11
19

 as the major product  
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Scheme 2. Synthesis of compound 16 
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through Knoevenagel condensation. The chelation of C14-OR, 

Sc(OTf)3 and the aldehyde made TS2 the favorable transient 

state and delivered Knoevenagel condensation product 11. 

With these negative results, we inferred that modification of 

the t-keto phosphonate 8a into the bis(trifluoroethyl) 

phosphonoketone 8b might prompt the elimination step in the 

desired HWE process (Scheme 2).
20

 Accordingly, exposure of 

the aldehyde intermediate, obtained after ozonization, to Et3N 

boosted the desired r,t-unsaturated ketone 10 in 80% yield. 

Notably, synthetic access to compound 8b required quick 

transfer of LiHMDS (keeping at -78
o
C) to the mixed solution of 

the bis(trifluoroethyl) methylphosphonate and compound 7 at 

-78 
o
C.

21
 Further treatment of the acetal 10 with tri-n-butyltin 

hydride in the presence of azobisisobutyronitrile
22

 successfully 

afforded the bicycle 12 and 13 in the ratio of 1.2:1, as 

determined by 
1
H

 
NMR. The stereochemistry of compound 13 

was confirmed by X-ray crystallography.
23 

12 and 13 were 

separated and then subjected to stereochemical inversion at 

C12 to achieve the thermodynamically more stable product 14 

and 15 respectively. Sole utilization of DBU
24

 in THF only led to 

14 and 15 in 33% and 28% yield respectively. Switching from 

THF to MeCN as the solvent resulted in higher yields (56% and 

54% for 14 and 15 respectively). More pleasingly, optimal 

combination of DBU/Sc(OTf)3
25

 (8:1) delivered compounds 14 

and 15 in 74% and 80% yield respectively. Treating 15 under p-

TsOH fulfilled its conversion into 14 in 66% yield.
26

 Wittig 

olefination of 14 afforded compound 16 in 78% yield.  

Both allylic oxidation and isomerization of the exo double 

bond into the endo position in compound 16 failed, which 

made us to resort to alternative tactics to access compound 4. 

Thus, regioselective enolization of the ketone 14 at the less 

 

 
Scheme 3. Synthesis of compound 4 

 

hindered site and further treatment with PhNTf2 furnished the 

triflic enol ester 17 (Scheme 3). Iron-catalyzed Kumada-

coupling between 17 with and MeMgBr in the presence of 

NMP afforded 18,
27

 which then underwent hydroboration-

oxidation to produce the alcohol 19 in 35% yield over 3 steps. 

Notably, the degradative product of PhNTf2
28

 made it tough for 

purification of 17 and 18,
29

 so we could not calculate the exact 

yields until formation of 19. Subsequent Grignard addition and 

Dess-Martin oxidation provided compound 21 smoothly. The 

stereochemistry of compound 21 was confirmed by X-ray 

crystallography. Final elimination of the tertiary hydroxyl with 

Burgess reagent furnished compound 4.
30

 The relative 

configuration of compound 4 was established by NOESY 

correlations of H11/H12, H11/H14, H12/H17, H14/H17 and 

H8/H14. 

Because both the Kumada coupling from 17 to 18 and the 

Grignard addition from 19 to 20 utilized methylmagnesium 

bromide (Scheme 3), we envisioned the synthetic route from 

14 to 20 could be simplified. Pleasingly, treatment of the crude 

compound 17, generated from 14, with excess MeMgBr and 

subsequent addition of catalytic Fe(acac)3 led to the olefin 22 

in 66% yield over two steps (Scheme 4). Then hydroboration-

oxidation reaction successfully gave rise to the alcohol 20 in 65% 

yield.
31

  

 

 
Scheme 4. Alternative synthesis of compound 20  

 

In summary, we have reported a concise and asymmetric 

synthesis toward the fully functionalized six-membered ring of 

trigoxyphin A. Protections of dihydroxyl group (C12, C14) as 

acetals were devised to minimize undesired t-elimination. The 

synthesis features direct introduction of the stereogenic 

centers at C12 and C13 from the cheap starting material, 

generation of the C14 stereogenic center via Mukaiyama aldol 

reaction, construction of r,t-unsaturated cyclohexenone 

through tandem ozonization/intramolecular HWE, and radical 

cyclization and hydroboration-oxidation to introduce the C8 

and C11 stereogenic centers. Further synthetic extension to  

trigoxyphin A and other related daphnane diterpene 

orthoesters (DDOs) is on progress in our laboratory. 
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11 steps
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cheap material

C

Trigonostemon xyphophylloides (Croiz.)

background plant:

 

 

Asymmetric synthesis of the fully functionalized six-membered ring of trigoxyphin A, a 

daphnane-type diterpenoid, has been accomplished concisely from D-tartrate derivative. Key 

elements of this synthesis involve the tandem ozonization/intramolecular HWE reaction to 

construct the α,β-unsaturated cyclohexenone skeleton, the radical cyclization to introduce the C8 

chirality and sequential Kumada cross-coupling/hydroboration-oxidation to introduce the C11 

chirality. The target substructure could be synthetically achieved in a multi-gram scale.  
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