Unexpected Configuration in Stereoselectively Synthesis of Some Novel (1Z)-1-(morpholin-1-yl)- N^2 -Arylamidrazones

Mashooq A. Bhat, Khalid A. Al-Rashood and Hatem A. Abdel-Aziz*

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh 11451, Kingdom of Saudi Arabia

Received December 12, 2011: Revised April 08, 2012: Accepted May 12, 2012

Abstract: The nucleophilic substitution reaction of hydrazono-*N*-(aryl)-propanehydrazonyl chlorides **7** with piperidine or morpholine, under the same reaction conditions, resulted in the formation of 1-(piperdin-1-yl / morpholine-1-yl)- N^2 -arylamidrazones **8a-k**, respectively. The X-ray diffraction of piperidin-1-yl- N^2 -arylamidrazone (**8b**) confirmed its *1E*-configuration in agreement with the previously reported, whereas X-ray showed the unexpected *1Z*-configuration of their analogs, morpholin-1-yl- N^2 -arylamidrazone (**8j**). This study established the role of hydrogen bond interaction in the stereochemistry of this class of amidrazones.

Keywords: Amidrazones, hydrogen bond interaction, stereoselectively, x-ray diffraction analyses.

INTRODUCTION

Open-chain or cyclic amidrazones have received much attention as shown by the numerous published studies due to their biological interests. Amidrazones are known to exhibit inhibitory activity against enzymes of arachidonic acid cascade which is responsible for the formation of important metabolites [1]. These substances are considered as potent mediators of inflammatory and allergic reaction in humans [2]. Amidrazones have been found to be effective towards cholinesterase, nucleoside hydrolase and glycosidase [3-5]. Consequently, the efficient construction of these molecules has received significant attention [6, 7]. In the light of pharmacological activity of amidrazones, several reports in the literature have focused on their configuration using Xray diffraction analyses which revealed the role of hydrogen bond interaction in their stereochemistry [8-10].

Recently, we have been reported the synthesis of a new class of benzofuran-based (1Z)-*N*-arylpropanehydrazonoyl chlorides **1** with highly synthetic potency for stereoselective synthesis of (1E)-1-(piperdin-1-yl)- N^2 -arylamidrazones **2** and **3**[9]. X-ray analyses of the latter amidrazones showed a conversion of configuration with respect to **1**. Moreover, Abdel-Aziz *et al.* have reported the (1E)-1-(piperdin-1-yl)-2-(benzathiazol-2-oyl)- N^2 -arylamidrazones **4** with the same configuration of amidrazones **2** and **3** [10]. However, X-ray diffraction analyses of the latter piperidine-based amidrazones identified a different intra- and intermolecular hydrogen bond interaction.

In continuation of our interest in the synthesis of bioactive heterocycles [11-18], here, we deal with the

syntheses of some morpholine-based amidrazones as structural analogs for (1E)-1-(piperdin-1-yl)- N^2 -arylamidrazones **2-4**. Our latter studies prompted us to combine our present study with X-ray diffraction analysis to determine the configuration of the new 1-(morpholin-1-yl)- N^2 -arylamidrazones.

Reaction of acid hydrazides 5 with 2-oxo-Narylpropanehydrazonyl chlorides 6 yielded hydrazono]-N-(aryl)-propanehydrazonyl chlorides 7 [9, 10] (Fig. 1). Next, heating each of the compounds 7, in absolute ethanol, with piperidine or morpholine resulted in the formation of a precipitate, in each case during reflux. Single product was evidenced by TLC analysis of the product [19]. However, ¹H NMR and mass spectra were comparable with desired structures 8a-k [20]. The IR spectra of the latter amidrazones exhibited, in each case, a band in the region of 1700-1680 cm^{-1} due to the carbonyl absorption, 1620-1590 cm⁻¹ due to C=N stretching, whereas the absorption bands of 2 NH functions appeared in the region 3350-2980 cm⁻¹. Their ¹H NMR spectra were characterized by the two D₂O exchangeable signals of 2 NH groups in the region of δ 8.26-9.86 and δ 9.38-11.19. ¹H NMR spectra of piperidine-based amidrazones showed two signals of piperidine moiety in the regions δ 1.54-1.63 and δ 2.98-3.33, whereas, morpholine signals appeared in the region of δ 2.95-3.13 and δ 3.71-3.82 for morpholine-based amidrazones. The ¹³C NMR spectra showed signals of sp³ signals of piperidine carbons in the region δ 25.5-39.9 and morpholine carbons in the region δ 30-39.

The single crystal of **8b** was cultured from EtOH by slow evaporation at room temperature. The X-ray analysis of amidrazone **8b** showed its structure geometry as (1E,2E)configuration (Fig. **2**) which confirms a conversion of configuration with respect to the geometry of their reactants hydrazonyl halides (1E,2Z) [10]. X-ray of the latter amidrazone confirmed both of the stereoselectivity of the reaction and the *E* configuration of amidrazone skeleton (1E

^{*} Address correspondence to this author at the Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh 11451, Kingdom of Saudi Arabia; Tel: +966-1-4677343; Fax: +966-1-4676220; E-mail addresses: hatem_741@yahoo.com

Fig. (1). Structure of hydrazonyl chloride 1 and amidrazones 2-4, 8b, and 8j.

Comp.	Ar	Ar^1	X	
8a		4-Me-C ₆ H ₄ -	CH ₂	
8b		$4-Br-C_6H_4-$	CH_2	
8c	N N	4-Me-C ₆ H ₄ -	0	
8d	s	$4-Br-C_6H_4-$	0	
8e		$4-F-C_{6}H_{4}-$	0	
8f		4-NH ₂ SO ₂ -C ₆ H ₄ -	0	
8g		$2-Cl-C_6H_4-$	CH_2	
8h	Me	3-Cl-C ₆ H ₄ -	CH_2	
8i		$4-NH_2SO_2-C_6H_4-$	CH_2	
8j		2-Cl-C ₆ H ₄ -	0	
8k		$4-\mathrm{NH}_2\mathrm{SO}_2-\mathrm{C}_6\mathrm{H}_4-$	0	

Scheme 1. Synthesis of compounds 8a-k.

Fig. (2). X-ray structure of (1*E*,2*E*)-8b ethanol solvated.

Table 1. Characteristic Bond Lengths [Å], Torsion Angles [°] and Intramolecular H-bond of (1E,2E)-8b.

$\begin{array}{c} Brl_{Br} \\ C15 \\ C14 \\ C13 \\ C12 \\ C17 \\ C10 \\ C18 \\ C2 \\ C22 \\ C21 \\ C20 \\ C$										
	Bond Length [Å]									
Br1-C15	1.902 (1)	N6-C22	1.478 (1)	C15—C16	1.381					
S1—C1	1.732 (1)	C1—C2	1.399	C16—C17	1.384					
S1—C7	1.736 (1)	C1—C6	1.410	C18—C19	1.525 (1)					
O1—C8	1.220 (2)	C2—C3	1.376	C19—C20	1.510(1)					
N1—C6	1.387	C3—C4	1.400	C20—C21	1.525 (1)					
N1-C7	1.298	C4—C5	1.384	C21—C22	1.524 (1)					
N2—N3	1.366	C5—C6	1.400	O2—C23	1.513 (1)					
N2—C8	1.361	C7—C8	1.483	O2 —C24	1.478 (1)					
N3-C10	1.294	C9—C10	1.505 (1)	C23—C24	1.497 (1)					
N4—N5	1.354 (1)	C10-C11	1.479	C24—O2	1.478 (1)					
N4—C11	1.301	C12—C13	1.398	C24—C24	1.176 (1)					
N5-C12	1.392 (1)	C12—C17	1.391	O2—C23	1.513 (1)					
N6-C11	1.412 (1)	C13—C14	1.380	C23—C24	1.497 (1)					
N6-C18	1.469 (1)	C14—C15	1.391							
Torsion Angles [°]										
(1 <i>E</i>) N6–C11–N4–N5 177.20										
(2E) C11–C10–N3–N2			178.99							
Intramolecular H-bond										
D—HA		D—H	HA	DA	<(DHA)					
N5—H5N6		0.961	1.870	2.578	128.27					

The bond lengths [Å], torsion angles $[\circ]$ and intramolecular H-bond of (1E,2E)-**8b** are well within the range that typically occurred in similar amidrazone derivatives [9,10].

= 177.20° and $2E = 178.99^{\circ}$) [21, 22]. The intramolecular hydrogen bond interaction N5—H5-----N3 played a crucial role in stabilizing the configuration of compound **8b** in solid

state [8]. Selected bond distances, torsion angles [°] and intramolecular H-bond of bis-hydrazone **8b** are illustrated in Table **1**.

Table 2. Characteristic Bond Lengths [Å] and Torsion Angles [°] of (1Z,2E)-8j.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
Bond length [Å]									
Cl1—C29	1.725 (5)	C6—C22	1.441 (5)	C27—C32	1.397 (7)				
O2—C17	1.358 (5)	O8—C25	1.402 (5)	C27—C10	1.377 (6)				
O2—C20	1.404 (4)	O8—C24	1.425 (5)	C25—C26	1.496 (5)				
N3—N28	1.354 (4)	07—C21	1.207 (4)	C32—C31	1.385 (11)				
N3—C22	1.296 (4)	N28—C10	1.403 (5)	C29—C30	1.390 (9)				
N4—C22	1.425 (4)	C16—C17	1.364 (5)	C29—C10	1.377 (6)				
N4—C26	1.458 (4)	C16—C18	1.417 (6)	C14—C15	1.368 (6)				
N4—C23	1.453 (5)	C16—C15	1.398 (6)	C14—C13	1.388 (7)				
N5—N9	1.379 (4)	C17—C12	1.396 (6)	C31—C30	1.336 (11)				
N5-C21	1.359 (5)	C20—C18	1.345 (5)	C12—C13	1.394 (6)				
C6—N9	1.271 (4)	C20—C21	1.469 (5)	C23—C24	1.503 (5)				
C6—C11	1.502 (5)	C18—C19	1.510 (5)						
Torsion angles [°]									
(1Z) N4–C22–N3–N28			-0.7(9)						
(2 <i>E</i>) C22–C6–N9–N5 -178.0(15)									

The bond lengths [Å] and the torsion angles $[\circ]$ of (1Z, 2E)-**8j** are well within the range that typically occurred in similar amidrazone derivatives [9,10].

Fig. (3). X-ray structure of (1Z,2E)-8j.

Interestingly, the X-ray analysis of amidrazone 8j, in contrast to that of compound 8b, showed its structure geometry as (1Z,2E)-configuration (Fig. 3) which confirms a retention of configuration with respect to the geometry of their reactants hydrazonyl chlorides (1E,2Z). Although, the single crystal of 8j was cultured from the same solvent of crystal 8b, EtOH, no intramolecular hydrogen bond

interactions were detected in 8j. Selected bond distances of 2 and torsion angles 1Z and 2E are illustrated in Table 2.

In conclusion, we have uncovered an unexpected 1Zconfiguration of morpholin-1-yl- N^2 -arylamidrazone with respect to that of their analogs, piperidin-1-yl- N^2 arylamidrazone with 1E-configuration.

ACKNOWLEDGEMENT

Declared none.

CONFLICT OF INTEREST

The author(s) confirm that this article content has no conflicts of interest.

REFERENCES

- Drutkowski, G.; Donner, C.; Schulze, I.; Frohberg, P. Derivatives of arylhydrazonic acids. Part 2: A facile approach to novel 4,5dihydro-1*H*-1,2,4-triazoles via cyclization of amidrazones. *Tetrahedron*, 2002, 58, 5317-5326.
- [2] Heller, A.; Koch, T.; Schmeck, J.; van Ackern, K. Lipid mediators in inflammatory disorders. *Drugs*, **1998**, 55, 487-496.
- [3] Debord, J.; N'Diage, P.; Bollerger, J.C.; Fikri, K.; Penicant, B.; Robert, J. M.; Robert, P.S.; Le-Bant, G. Cholinesterase inhibition by derivatives of 2-amino-4,6-dimethylpyridine. J. Enzym. Inhib., 1997, 12, 13-26.
- [4] Deng, H.; Chan, A.W.Y.; Bagdassarian, C.K.; Estupinan, B.; Ganem.; Callender, R.H.; Schramm, V.L. Trypanosomal nucleoside hydrolase. Resonance Raman spectroscopy of a transition-state inhibitor complex *Biochemistry* **1996**, *35*, 6037-6047.
- [5] El Ashry, E.S.H.; rashed, N.A.; Shobier, H. S. Glycosidase inhibitors and their chemotherapeutic value, part 3. *Pharmazie* 2000, 55, 403-415.
- [6] Graf, H.; Klebe, G. 3-Aroyl-1-aryl-1*H*-[1,2,4]triazolo[3,4-c]-1,2,4triazole, Untersuchung des Bildungswegs durch Röntgenstrukturanalyse und Molecular Modelling. *Chem. Ber.*, 1987, 120, 965-977.
- [7] Harlow, R.L.; Simonsen, S.H. Crystal and molecular structure of. 1,1 ',3, Y-tetraphenyloxaldiamidrazone. J. Cryst. Mol. Struct., 1975, 5, 287-294.
- [8] Frohberg, P.; Wagner, C.; Meier, R.; Sippl, W. Derivatives of arylhydrazonic acids. Part 3: Stereochemical rearrangement of Zoxanilo-N¹-dialkyl-N²-arylamidrazones. *Tetrahedron* 2006, 62, 6050-6060.
- [9] Abdel-Aziz, H.A.; Mekawey, A.A.I. Stereoselective synthesis and antimicrobial activity of benzofuran-based (1E)-1-(piperidin-1-yl)-N²-arylamidrazones. Eur. J. Med. Chem., 2009, 44, 4985-4997.
- [10] Abdel-Aziz, H.A.; Abdel-Wahab B.F.; Badria, F.A. Stereoselective synthesis and antiviral activity of (1*E*,2*Z*,3*E*)-1-(piperidin-1-yl)-1-(arylhydrazono)-2-[(benzoyl/benzothiazol-2-oyl)hydrazono]-4-(aryl1)but-3-enes. Arch. Pharm., 2010, 343, 152-159.
- [11] Farag, A.M.; Dawood, K.M.; Abdel-Aziz, H.A.; Hamdy, N.A. Fakhr, I.M.I. Synthesis of some isoxazole, pyrazole, pyrimidine, pyran and benzo/naphto[b]furan derivatives incorporating thiazolo[3,2-a]benzimidazole nucleus. J. Het. Chem., 2011, 48, 355-360.
- [12] Abdel-Aziz, H.A. Mekawey, A.A.I. Dawood, K.M. Convenient synthesis and antimicrobial evaluation of some novel 2-substituted-3-methylbenzofuran derivatives. *Eur. J. Med. Chem.*, 2009, 44, 3637-3644.
- [13] Abdel-Aziz, H.A.; Gamal-Eldeen, A.M.; Hamdy, N.A.; Fakhr, I.M.I. Immunomodulatory and anti-cancer activity of some novel 2-substituted-6-bromo-3-methylthiazolo[3,2-a]benzimidazole derivatives. Arch. Pharm. 2009, 342, 230-237.
- [14] Abdel-Wahab, B.F.; Abdel-Aziz, H.A.; Ahmed, E.M. Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1*H*-pyrazoles. *Eur. J. Med. Chem.* **2009**, 44, 2632-2635.
- [15] Abdel-Wahab, B.F.; Abdel-Aziz, H.A.; Ahmed, E.M. Synthesis and antimicrobial evaluation of some new 1,3-thiazole, 1,3,4thiadiazole, 1,2,4-triazole and [1,2,4]triazolo[3,4b][1,3,4]thiadiazine derivatives including 5-(benzofuran-2-yl)-1phenyl-pyrazole moiety. *Monatsh. Chem.* **2009**, *140*, 601-605.
- [16] Abdel-Wahab, B.F.; Abdel-Aziz, H.A.; Ahmed, E.M. Convenient synthesis and antimicrobial activity of some new 3-substituted-5-(benzofuran-2-yl)-pyrazole derivatives. *Arch. Pharm.*, **2008**, *341*, 734-739.

- [17] Abdel-Aziz, H.A.; Hamdy, N.A.; Farag, A.M.; Fakhr, I.M.I. Synthesis and reactions of 3-methylthiazolo[3,2-a]benzimidazole-2-carboxylic acid hydrazide: Synthesis of some new pyrazole, 1,3thiazoline, 1,2,4-triazole and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine derivatives pendant to thiazolo[3,2-a]benzimidazole moiety. J. Chin. Chem. Soc., 2007, 54, 1573-1582.
- [18] Dawood, K.M.; Farag, A.M.; Abdel-Aziz, H.A. A convenient access to functionalized pyrazole, pyrazolyl-azole, and pyrazolo[3,4-d]pyridazine derivatives. J. Chin. Chem. Soc., 2006, 53, 873-880.
- [19] Synthesis of 1-(piperdin-1-yl / morpholine-1-yl)-N²-arylamidrazones 8a-k. To a solution of hydrazono-N-(aryl)-propanehydrazonyl chlorides 7 (1 mmol) in ethanol (50 mL), piperidine or morpholine (2 mmol) was added. The reaction mixture was heated 45 min at 100 °C then left to cool at room temperature overnight. The precipitated product was filtered off, washed with ethanol and dried, recrystallized from ethanol to afford the amidrazones 8a-k in 65-78% yield.
 [20] (1E.2E)-1-(Piperidin-1-yl)-1-((4-methylphenyl))hydrazono]-2-

(1E,2E)-1-(Piperidin-1-yl)-1-[(4-methylphenyl)hydrazono]-2-[benzothiazol-2-oyl)hydrazono]propane (8a). Mp 178-180 °C; IR (KBr) v 3140, 3060 (2NH), 1700 (C=O), 1620 (C=N) cm⁻¹; ¹H NMR (DMSO-d₆) δ 1.62 (s, 3CH₂, piperidino), 2.1 (s, 3H, CH₃), 2.6 (s, 3H, CH₃), 3.03 (s, 2CH₂, piperidino), 7.05-7.16 (m, 8H, Ar-H), 9.30 (s, 1H, =NNH, D₂O exch.), 9.7 (s, 1H, CONH, D₂O exch.); ESI MS m/z 434.5 [M⁺]. (1E,2E)-1-(Piperidin-1-yl)-1-[(4bromophenyl)hydrazono]-2-[benzothiazol-2-

oyl)hydrazono]propane (8b). Mp 148-150 °C; IR (KBr) v 3350, 3000 (2NH), 1700 (C=O), 1590 (C=N) cm⁻¹; ¹H NMR (DMSO-d₆) δ 1.59 (s, 3CH₂, piperidino), 2.26 (s, 3H, CH₃), 3.05 (s, 2CH₂, piperidino), 6.92- 8.27 (m, 8H, Ar-H), 9.41(s, 1H, =NNH, D₂O exch.), 10.80 (s, 1H, CONH, D₂O exch.); ¹³C NMR (DMSO-d₆) δ 15.7, 18.4, 22.2, 23.9, 25.1, 25.5 (piperidine) 39.2, 39.9 (piperidine) 43.7, 48.9, 49.1, 56.0, 108.4, 113.8, 115.4, 122.9, 124.1, 127.1, 131.5, 136.0, 145.6, 146.3, 152.6; ESI MS m/z 499.2 [M⁺]. (1Z,2E)-1-(Morpholin-1-yl)-1-[(4-methylphenyl)hydrazono]-2-[benzothiazol-2-oyl)hydrazono]propane (8c). Mp 238-240 °C; IR (KBr) v 3000, 2900 (2NH), 1740 (C=O), 1640 (C=N) cm⁻¹; ¹H NMR (DMSO-d₆) δ 1.0 (s, 3H, CH₃), 2.23 (s, 3H, CH₃), 3.09 (s, 2CH₂, morpholino), 3.79 (s, 2CH₂, morpholino), 7.00-7.20 (m, 8H, Ar-H), 9.57 (s, 1H, =NNH, D₂O exch.), 10.28 (s, 1H, CONH, D₂O exch.); ESI MS m/z (%) 436.9 [M⁺]. (1Z,2E)-1-(Morpholin-1-yl)-1-[(4-bromophenyl)hydrazono]-2-[benzothiazol-2-

(1) hydrazono]propane (8d). Mp 188-190 °C; IR (KBr) ν 3000, 2960 (2NH), 1700 (C=O), 1600 (C=N) cm⁻¹; ¹H NMR (DMSO-d₆) δ 2.3 (s, 3H, CH₃), 3.06 (s, 2CH₂, morpholino), 3.78 (s, 2CH₂, morpholino), 7.29-8.2 (m, 8H, Ar-H), 9.68 (s, 1H, =NNH, , D₂O exch.), 10.12 (s, 1H, CONH, D₂O exch.); ESI MS *m/z* 501.0 [M⁺]. (1Z,2E)-1-(Morpholin-1-yl)-1-[(4-flourophenyl)hydrazono]-2-

[benzothiazol-2-oyl)hydrazono]propane (**8e**). Mp 210-212 °C; IR (KBr) v 3100, 3060 (2NH), 1710 (C=O), 1620 (C=N) cm⁻¹; ¹H NMR (DMSO-d₆) δ 2.3 (s, 3H, CH₃), 2.95 (s, 2CH₂, morpholino), 3.71 (s, 2CH₂, morpholino), 7.02-8.27 (m, 8H, Ar-H), 9.60 (s, 1H, =NNH, D₂O exch.), 10.80 (s, 1H, CONH, D₂O exch.); ¹³C NMR (DMSO-d₆) δ 30.64, 38.9, 39.9, 121.5, 147.3, 150.2, 167.6, 2.6.5; ESI MS m/z 440.9 [M⁺]. (1Z,2E)-1-(Mopholin-1-yl)-1-[(4sulphonamidophenyl)hydrazono]-2-[benzothiazol-2-

oyl)hydrazono]propane (8f). (1E,2E)-1-(Piperidin-1-yl)-1-[(2-chlorophenyl)hydrazono]-2-[3-methylbenzofuran-2-

oyl)hydrazono]propane (**8g**). Mp 195-197 °C; IR (KBr) v 3300, 3000 (2NH), 1680 (C=O), 1590 (C=N) cm⁻¹; ¹H NMR (DMSO-d₆) δ 1.63 (s, 3CH₂, piperidino), 2.29 (s, 3H, CH₃), 2.58 (s, 3H, CH₃), 2.98 (s, 2CH₂, piperidino), 7.31-7.80 (m, 8H, Ar-H), 9.37 (s, 1H, =NNH, D₂O exch.), 10.61 (s, 1H, CONH, D₂O exch.); ESI MS m/z 451.7 [M⁺]. (*1E*,2*E*)-*1*-(*Piperidin-1-yl*)-*1*-[(3chlorophenyl)hydrazono]-2-[3-methylbenzofuran-2-

oyl)hydrazono]propane (**8h**). Mp 233-235°C; IR (KBr) v 3020, 2980 (2NH), 1690 (C=O), 1600 (C=N) cm⁻¹; ¹H NMR (DMSO-d₆) δ 1.54 (s, 3CH₂, piperidino), 2.24 (s, 3H, CH₃), 2.62 (s, 3H, CH₃), 3.33 (s, 2CH₂, piperidino), 6.66-7.83 (m, 8H, Ar-H), 8.91 (s, 1H, =NNH, D₂O exch.), 10.80 (s, 1H, CONH, D₂O exch.); ESI MS m/z 449.7 [M⁺]. (*1E*,2*E*)-*1*-(*Piperidin*-*1*-*y*)-*1*-[(4-sulphonamidophenyl)hydrazono]-2-[3-methylbenzofuran-2-

oyl)hydrazono]propane (**8i**). Mp 220-222 °C; IR (KBr) v 3040, 3000 (2NH), 1700 (C=O), 1590 (C=N) cm⁻¹; MS *m/z* 497.3 [M⁺+1]. Mp 228-230; °C; IR (KBr) v 3300, 3100 (2NH), 1690 (C=O), 1600

MS *m*/*z* 497.1 [M⁺].

(C=N) cm⁻¹; ¹H NMR (DMSO-d₆) δ 2.36 (s, 3H, CH₃), 3.13 (s, 2CH₂, morpholino), 3.82 (s, 2CH₂, morpholino), 7.13 (s, 2H, SO₂NH₂), 7.42-8.30 (m, 8H, Ar-H), 9.86 (s, 1H, =NNH, , D₂O exch.), 11.19 (s, 1H, CONH, D₂O exch.); ESI MS *m/z* 501.7 [M⁺]. (*1Z*,*2E*)-*1*-(*Morpholin-1-yl*)-*1*-[*2*-chlorophenyl)hydrazono]-2-[*3*-methylbenzofuran-2-oyl)hydrazono]propane (**8**). Mp 222-225°C; IR (KBr) v 3360, 3280 (2NH), 1680 (C=O), 1590 (C=N) cm⁻¹; ESI MS *m/z* 453.9 [M⁺]. (*1Z*,*2E*)-*1*-(*Morpholin-1-yl*)-*1*-[*4*-sulphonamidophenyl)hydrazono]-2-[*3*-methylbenzofuran-2-oyl)hydrazono]-2-[*3*-methylbenzofuran-2-(*x*, 1H, KBr) v 3400, 3280 (2NH), 1680 (C=O), 1600 (C=N) cm⁻¹; ¹H NMR (DMSO-d₀) δ 2.0 (s, 3H, CH₃), 3.0 (s, 2CH₂, morpholino), 3.7 (s, 2CH₂, morpholino), 6.52 (s, 2H, SO₂NH₂), 7.01-7.62 (m, 8H, Ar-H), 8.26 (s, 1H, =NNH, D₂O exch.), 9.38 (s, 1H, CONH, D₂O exch.); ESI

- [21] The X-ray diffraction measurements of compound **8b** was made using Bruker (2009). APEX2 and SAINT (Bruker AXS Inc., Madison, Wisconsin, USA), at wavelength $\lambda = 1.54184$ Å. The Xray diffraction measurements of compound **8j** was made using maXus (Bruker Nonius, Delft, The Netherlands and MacScience, Yokohama, Japan), at wavelength $\lambda = 0.71073$ Å.
- [22] Crystallographic data for the structures 8b and 8j have been deposited with the Cambridge Crystallographic Data Center (CCDC) under the numbers 833322 and 835060, respectively. Copies of the data can be obtained, free of charge, on application to CCDC 12 Union Road, Cambridge CB2 1EZ, UK [Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk].