Received: 2 December 2008

Revised: 8 January 2009

Accepted: 14 January 2009

(www.interscience.com) DOI 10.1002/mrc.2410

Complete assignments of ¹H and ¹³C NMR spectral data for 7,7'-dihydroarylnaphthalene lignan lactones

Rosangela da Silva,^a* João Henrique Carvalho Batista,^a Carine da Silva Maringolo^a and Paulo Marcos Donate^b

In this article we present a complete ¹H and ¹³C NMR spectral analysis of three 7,7'-dihydroarylnaphthalene lignan lactones using modern NMR techniques such as COSY, HSQC, HMBC and NOE experiments. Complete assignment and homonuclear hydrogen coupling constant measurements were performed. Copyright © 2009 John Wiley & Sons, Ltd.

Keywords: ¹H NMR; ¹³C NMR; 2D NMR; apopicropodophyllin; 7,7'-dihydronaphthalene lignan lactone

Introduction

Lignan lactones are natural products that display several biological properties and have several kinds of chemical skeletons.^[1] We have synthesized several natural and synthetic products during our studies on the biological properties of these lignans. The structural elucidation of the obtained compounds furnished important NMR data, which contributed to the completion the spectroscopic data found in the literature for several classes of lignan lactone skeletons.^[2–5]

In this article, we describe the spectrometric properties of lignans in which there is a double bond in the C8–C8' position (Fig. 1). Several lignans containing this type of skeleton were obtained by total and partial synthesis, and we have selected three among these substances to carry out a detailed NMR study. Compounds **1** and **2** were obtained by total synthesis^[6] from butenolide 4 (Scheme 1), and β -apopicropodophyllin (**3**) was prepared from the natural picropodophyllin^[7] by partial synthesis (Scheme 2).

Thus, in this article, we present a detailed assignment of the NMR data obtained for such 7,7'-dihydronaphthalene lignan lactones, including the 2D NMR data.

Experimental

Materials

Lignans **1** and **2** were prepared from lactone **4**,^[7] as described in Scheme 1, whereas lignan **3** was obtained by partial synthesis from picropodophyllin,^[7] as shown in Scheme 2.

NMR measurements

All 1-D (¹H and ¹³C) NMR experiments were performed on a Bruker Avance DRX400 spectrometer (400.13 MHz for ¹H and 100.61 MHz for ¹³C) equipped with a direct probe head of 5 mm (DUL 13C-1). 2D and nuclear Overhauser effect (NOE) NMR experiments were accomplished on a Bruker Avance DRX500 spectrometer (500.13 MHz for ¹H and 125.76 MHz for ¹³C) equipped with an inverse probe head of 5 mm (BBI 1H-BB). The ¹H NMR spectra were acquired with an solar water heating (SWH) of 8.28 kHz, TD of 64K, and NS of 16, which provided a digital resolution of ca 0.126 Hz (¹H 30° pulse width = 8.5 μ s). As for the ¹³C NMR spectra, an SWH of 23.98 kHz was employed, with TD of 32K and NS of 1024, giving a digital resolution of ca 0.732 Hz $(^{13}C 30^{\circ} \text{ pulse width} = 14.25 \,\mu\text{s})$. DEPT (512 scans), $^{1}H/^{1}H$ and ${}^{13}C/{}^{1}H$ 2D chemical shift correlation experiments were carried out using standard pulse sequences supplied by the spectrometer manufacturer. Long-range ¹³C/¹H chemical shift correlations were obtained in experiments with delay values optimized for ${}^{2}J(C,H) = 8$ Hz. Experiments were performed at 300 K and the concentrations for all samples were in the range 10–15 mg ml⁻¹ in CDCl₃ or C₆D₆, using TMS as internal reference.

Results and Discussion

In the case of the data initially acquired in CDCl₃, the overlap of several resonances precluded the assignment. Therefore, C_6D_6 was used as solvent for all samples, which provided much clearer spectra for **2**, but not for **1** and **3**. The ¹H NMR signals of **2** were resolved by using C_6D_6 as solvent, which allowed verification of the multiplicities, observation of the chemical shifts, and measurement of the coupling constants.

^{*} Correspondence to: Rosangela da Silva, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, SP, Brazil. E-mail: rosilva@unifran.br

Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, SP, Brazil

b Departamento de Química da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil

and HMQC spectra for compound 1								
С	$\delta_{\sf C}$ (ppm)	Н	δ_{H} (ppm)	Multiplicity	Coupling constant (Hz)	HMBC	COSY	HSQC
1′	130.1	-	-	-	-	_	_	-
2′	108.5	2′	6.52	br s	-	C-1′,6′,7′	H-7′,6′	H-2′
3′	147.8	-	-	-	-	-	-	-
4′	147.3	-	-	-	-	-	-	-
5′	108.3	5′	6.89	d	$J_{(5',6')} = 8.2$	C-6′,1′,7′	H-6′	H-5′
6′	121.6	6′	6.74	br d	$J_{(6',5')} = 8.2$	C-5′,1′,2′	H-5′,7′	H-6′
7′	42.2	-	4.77	br s	-	C-3,6′,8′,1,	H-7a,7b,9a,	H-7′
						1′,2,8,9	9b,3,2′	
8′	123.4	-	-	-	-	-	-	-
9′	172.1	-	-	-	-	-	-	-
1	128.1	-	-	-	-	-	-	-
2	136.6	-	-	-	-	-	-	-
3	109,4	3	6.70	S	-	C-7′	H-7′,7a,7b,	H-3
4	146.5	-	-	-	-	-	-	-
5	146.9	-	-	-	-	-	-	-
6	107.7	6	6.60	S	-	C7,C1,C2	H-7a,7b,	H-6
7	29.1	7a	3.87	dd	$J_{(7a,7b)} = 22.3$	C-3,8′,1,2,	H-7′,6,3,	H-7
					$J_{(7a,7')} = 4.1$	5,8, 9	9a,9b,7′,6,3,9a,9b	
		7b	3.65	dd	$J_{(7b,7a)} = 22.3$	C-3,8′,1,2,		
					$J_{(7b,7')} = 4.3$	5,8,9		
8	157.0	-	-	-	-	-	-	-
9	71.0	9a	4.90	d	$J_{(9a,9b)} = 17.0$	C-1,2,8,9	H-7′,7a,7b	H-9
		9b	4.83	d	$J_{(9b,9a)} = 17.0$			
10	101.3	10a	5.95	S	-	C-4,5	H-10b	H-10a
		10b	5.92	S			H-10a	H-10b
11	100.9	11a	5.90	S	-	C-3′,4	H-11b	H-11a
		11b	5.83	S			H-11a	H-11b

Table 1 ¹H and ¹³C NMR chamical shifts y_1 (nom) multiplicities and coupling constants $I_{22,225}$ (Hz) ¹H - ¹H and ¹H - ¹³C correlations in HMRC COSY

Scheme 1. Preparation of compounds 1 and 2.

ОСН₃ OCH3 H₃CC H₃CO OCH³ OCH₃ Ac₂O 100°C нó (3) picropodophyllin

Scheme 2.

Most of the ¹HNMR signals for 1-3 are resolved. This allowed us to verify the multiplicities, observe the chemical shifts and measure the coupling constants in most cases. Most ¹³C signals could be assigned through HMQC. For quaternary carbons, comparison with calculated spectra⁹ and analysis of HMBC data were sufficient to complete the assignment.

The position of aromatic ring in the C7' was confirmed by Nuclear Overhauser Effect Difference (NOEDiff) experiments, with irradiation at the frequencies corresponding to H7 and H9. The most important results were the enhancement of the H9 signals when irradiated at the H7 frequency, and the enhancement of

Figure 1. Structures of compounds 1, 2 and 3.

Table 2. ¹H and ¹³C NMR chemical shifts, v (ppm), multiplicities and coupling constants, $J_{(H,H)}$ (Hz), ¹H – ¹H and ¹H – ¹³C correlations in HMBC, COSY and HSQC spectra for compound **2**, in C₆D₆ for ¹H and in CDCl₃ for ¹³C NMR

HMQC
_
H-2′
-
-
H-5′
H-6′
H-7′
-
-
-
-
H-3
-
-
H-6
H-7
-
H-9
H-10a
H-10b
H-11
H-12
F F

the H7 signals when irradiated at the H9 frequency. Results are in agreement with the structures shown in Fig. 1.

The ¹H and ¹³C NMR data of compounds **1**, **2** and β -apopicropodophyllin (**3**) are given in Tables 1, 2 and 3, respectively.

cases. All results were confirmed by spectral simulations.^[8] The position of aromatic ring in the C7' was confirmed by NOEDiff experiments.

Conclusion

The assignment of all hydrogen and carbon signals and the measurement of all ${}^{1}\text{H}/{}^{1}\text{H}$ coupling constants were accomplished for compounds **1**, **2** and **3**. The use of HMQC and COSY allowed determination of most of the chemical shifts and coupling constants. HMBC and spectral simulations solved the more complicated

Acknowledgements

The authors thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenadoria de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

and HMQC spectra for compound 3 , in CDCl ₃								
С	$\delta_{\sf C}$ (ppm)	Н	δ_{H} (ppm)	Multiplicity	Coupling constant (Hz)	HMBC	gCOSY	HMQC
1′	136.9	-	-	-	-	-	-	-
2′	105.6	2′ (1H)	6.41	S	-	C-3′,6′,1′,8′	H-7′	H-2′
3′	153.1	-	-	-	-	-	-	-
4′	147.2	-	-	-	-	-	-	-
5′	153.2	-	-	-	-	-	-	-
6′	105.7	6′ (1H)	6.41	S		C-4′,8′,2′,5′	H-7′	H-6′
7′	42.7	7′ (1H)	4.83	m	-	C-3,6′,2′,8′,	H-3′,6′	H-7′
8′	128.1	-	-	-	-	-	-	-
9′	172.2	-	-	-	-	-	-	-
1	129.6	-	_	-	-	-	-	-
2	123.7	-	-	-	-	-	-	-
3	109.5	3 (1H)	6.62	S	-	C-7′,2,1	H-6	H-3
4	140.6	-	-	-	-	-	-	-
5	147.0	-	-	-	-	-	-	-
6	107.7	6 (1H)	6.70	S	-	C-5,1,2,7	H-3,7,10	H-6
7	29.2	7a (1H)	3.82	dd	$J_{7a7b} = 27.9; J_{7a,7'} = 2.5$	C-2,8′,6	H-9	H-7
		7b (1H)	3.64	dd	$J_{7b7a} = 27.9; J_{7b,7'} = 3.5$			
8	157.3	-	-	-	_	-	-	-
9	71.1	9a (1H)	4.87	m	_	C-8′,1,8,9′	H-7	H-9a
		9b (1H)	4.82	m				H-9b
10	101.3	10a (1H)	5.93	d	$J_{10a,10b} = 4.5$	C-4,5	H-10b	H-10a
		10b (1H)	5.90	d	$J_{10b,10a} = 4.5$		H-10a	H-10b
11	56.1	11 (3H)	3.76	S	_	C-3′	-	H-11
12	60.7	12 (3H)	3.79	S	-	C-4′	-	H-12
13	56.1	13 (3H)	3.76	S	-	C-5′	-	H-13

Table 3 ¹H and ¹³C NMR chemical shifts u (npm) multiplicities and coupling constants l_{min} (Hz) ¹H and ¹H – ¹⁴C correlations in HMRC COSY

References

- [1] D. C. Ayres, J. D. Loike, In Lignans Chemical, Biological and Clinical Proprieties, Cambridge University Press: Cambridge, 1990.
- [2] R. Silva, V. C. G. Heleno, S. Albuquerque, J. K. Bastos, M. L. A. Silva, P. M. Donate, G. V. J. Silva, Magn. Reson. Chem. 2004, 42, 985.
- [3] R. Silva, S. Pedersoli, V. J. Lacerda, P. M. Donate, S. Albuquerque, J. K. Bastos, A. L. S. M. Araújo, M. L. A. Silva, Magn. Reson. Chem. 2005, 43, 966.
- [4] V. C. G. Heleno, R. Silva, S. Pedersoli, S. Albuquerque, J. K. Bastos, M. L. A. Silva, P. M. Donate, G. V. J. Silva, J. L. C. Lopes, Spectrochim. Acta A. 2006, 63, 234.
- [5] R. Silva, M. M. Ruas, P. M. Donate, Magn. Reson. Chem. 2007, 45, 902.
- [6] R. Silva, Tetrahedron Letters. unpublished results.
- D. C. Ayres, Can. J. Chem. 1969, 47, 2075. [7]
- M. G. Constantino, FOMS (First Order Multiplet Simulator), 2002, [8] http://artemis.ffclrp.usp.br/softwareE.htm.