# Einfaches System, vielfältige Strukturen: Eine Neuuntersuchung der (Amin)halogenidosilber(I)-Komplexe

A Simple System with many Structural Variants: A Reexamination of (Amine)halogenidosilver(I) Complexes

Christoph Wölper<sup>a</sup>, María Dolores Polo Bastardés<sup>a</sup>, Ina Dix<sup>b</sup>, Daniel Kratzert<sup>b</sup>, and Peter G. Jones<sup>a</sup>

<sup>a</sup> Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

<sup>b</sup> Institut für Anorganische Chemie, Üniversität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany

Reprint requests to Prof. Dr. P. G. Jones. E-mail: p.jones@tu-bs.de

Z. Naturforsch. 2010, 65b, 647-673; received April 8, 2010

Professor Hubert Schmidbaur nachträglich zum 75. Geburtstag gewidmet

We report the structures of nineteen new amine silver halide complexes, some of them featuring previously unknown structure types, stoichiometries (such as  $L_4Ag_5X_5$ ) and coordination numbers. Known structures have been included and analysed for non-classical hydrogen bonds. We have identified three important factors for the formation of certain structure types. First, Ag–X bonds that form a central framework, typically staircase-shaped. Secondly, hydrogen bonds or other secondary interactions competing with these leading to a weakening or disappearance of some of the central Ag–X bonds. Finally, the polarity of the substituent at nitrogen and the silver halides influence the stoichiometry of the complex.

Key words: Silver, Halides, Hydrogen Bonds, Amines

### Einleitung

Aufgrund seiner flexiblen Koordinationseigenschaften ist Silber vermehrt in das Interesse von Strukturuntersuchungen gerückt. Insbesondere im Bereich des "Crystal Engineering" findet Silber große Beachtung [z.B. 1,2], obwohl die sehr flexible Geometrie dabei Vorteile wie auch Nachteile bietet. Um gezielt komplexe Kristallstrukturen zu synthetisieren, ist es sinnvoll, detaillierte Untersuchungen an einfachen Modellsystemen vorzunehmen, um generelle Aufbauprinzipien besser verstehen zu können. Ein derartiges System sind Silberhalogenide mit einfachen Stickstoffbasen. Trotz der enormen Fülle an bekannten Aminen ist die Zahl der kristallographisch untersuchten Silberhalogenid-Komplexe gering (Tabelle 1). Bei ersten Reihenuntersuchungen Mitte der 1980er waren Healey et al. federführend [3-6]. Sie fanden, dass die hauptsächlich verwendeten Pyridin-Derivate bevorzugt eine treppenförmige Polymerstruktur mit einem Verhältnis 1:1 Amin zu Silberhalogenid bilden. Ebenfalls gefunden wurden röhrenförmige Polymere, verzerrt würfelförmige Tetramere und Dimere. Healey et al. erklärten diese Strukturen als Fragmente der ursprünglichen Silberhalogenidstruktur. Seitdem sind nur wenige neue Strukturen hinzugekommen [7,8], darunter zwei von uns (9 und 12, s.u.) in einer vorläufigen Veröffentlichung [9]. Eine Untersuchung der in den 1980er Jahren gerade erst ins Interesse der Kristallographen rückenden, nicht-klassischen ("schwachen" [10]) Wasserstoffbrücken, z. B. CH··· $\pi$ ,  $CH \cdots X$  und  $CH \cdots Ag$ , wurde verständlicherweise damals nicht vorgenommen und soll hier nachgeholt werden. Da bis auf wenige sekundäre Amine mit N-H-Funktionen nur Pyridin-Derivate verwendet wurden, war es bislang nur sehr eingeschränkt möglich zu sagen, welchen Einfluss klassische Wasserstoffbrücken auf die Packungen haben. Unsere Untersuchungen an entsprechenden Goldkomplexen zeigten, dass viele Amine mit N-H-Funktionen stabile Komplexe mit Wasserstoffbrücken der Form N-H····Cl-Au bilden [11-16]. Ziel unserer Untersuchungen war es

0932–0776 / 10 / 0600–0647 \$ 06.00 © 2010 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

|                       | Silberchlorid                    | Silberbromid                     | Silberiodid                     | Tabelle 1. Übersicht über die                  |
|-----------------------|----------------------------------|----------------------------------|---------------------------------|------------------------------------------------|
| Pyridin               |                                  | T(1:1) KALNUG [3]                | T(1:1) KALPAO [3]               | neuen und bekannten Amin-                      |
| 2-Picolin             |                                  | D(2:1) DEDNOP [5]                | T(1:1) CIXXEM [6]               | silberhalogenid-Komplexe mit                   |
| 3-Picolin             | M(3:1) LAJZUS [8]                | R(1:1) DEDNUV [5]                | T(1:1) CIXXIQ [6]               | einzähnigen Aminliganden <sup>a</sup> .        |
| 4-Picolin             |                                  | T(1:1) DEDPAD [5]                | T(1:1) 1                        |                                                |
| 2,3-Lutidin           |                                  | $T(1:1)^{b}$                     |                                 |                                                |
| 2,4-Lutidin           | T(1:1) 2                         |                                  | T(1:1) <b>3</b>                 |                                                |
| 3,4-Lutidin           | K(2:1) <b>4</b>                  |                                  | T(1:1) 5                        |                                                |
| 3,5-Lutidin           | T(1:1) 6                         |                                  |                                 |                                                |
| 2,4,6-Kollidin        | T <sub>1</sub> (1:1) KALPES [3]  | T <sub>1</sub> (1:1) KALPIW [3]  | T <sub>1</sub> (1:1) KALPOC [3] |                                                |
| Chinolin              | S <sub>2</sub> (1:1) CEGTEN [20] | S <sub>2</sub> (1:1) CEGTIR [20] | T(1:1) CIXXOW [6]               | <sup>a</sup> T. Treppenpolymer, D. Dimer       |
| 3-Methylisochinolin   | D(2:1) NEFVEA [7]                |                                  |                                 | M: Monomer R: Röhrenpolymer                    |
| Chinaldin             | T <sub>3</sub> (1:1) KALPUI [3]  | T <sub>3</sub> (1:1) KALREU [3]  |                                 | K: Kettenpolymer, S: Strangpolymer,            |
| Benzylamin            | M(1:1) 7                         | M(1:1) 8                         |                                 | W <sup>·</sup> würfelförmiges Tetramer         |
| Cyclohexylamin        | M(4:3) 9                         | S(1:1) 11                        |                                 | L (= laver): Schichtstruktur                   |
|                       | M(2:1) 10                        |                                  |                                 | Strukturen mit gleichem tiefgestell-           |
| Piperidin             | K(2:1) GEFDIE [4]                | W <sub>1</sub> (1:1) KALRIY [3]  | W <sub>1</sub> (1:1) PIPAGI [3] | tem Index sind isotyp. Das Verhält-            |
|                       | M(3:1) JEYDUN [21]               |                                  |                                 | nis Ligand: Silberhalogenid wird in            |
| 4-Methylpiperidin     | W(4:5) 12                        | S(2:3) 13                        |                                 | Klammern angegeben. Zeichenketten              |
| Morpholin             | K <sub>4</sub> (2:1) <b>14</b>   | K <sub>4</sub> (2:1) <b>15</b>   | T(1:1) MORAGI [19]              | entsprechen den CSD-Refcodes [28].             |
| Diethylamin           | R(1:1) KALSAR [3]                | R(1:1) KALSEV [3]                | R(1:1) KALSIZ [3]               | Die Strukturen von 9 und 12 wurden             |
| 2,2,6,6-Tetramethylpi | peridin                          |                                  | W(1:1)KALRUK [3]                | bereits vorläufig veröffentlicht [9];          |
| Phenylethylamin       | M(1:1) 16                        | L <sub>5</sub> (1:1) <b>17</b>   | L <sub>5</sub> (1:1) 18         | <sup>b</sup> Daten in nicht-veröffentlichbarer |
| Pyrrolidin            | S/M(1:1) 19                      |                                  |                                 | Qualität.                                      |

daher, eine breitere Datenbasis zu schaffen, um auf dieser Grundlage in Kombination mit neuen Erkenntnissen über Wechselwirkungen ein tieferes Verständnis der Strukturchemie des Silbers zu erhalten. Besondere Beachtung sollten die Verbindungen des Silberchlorids finden, da diese aufgrund ihrer durch extrem leichten Aminverlust verursachten Instabilität Healey *et al.* ohne moderne Tieftemperaturmesstechnik in den 1980er Jahren nur sehr eingeschränkt zugänglich waren.

### **Ergebnisse und Diskussion**

### Strukturvielfalt

Wie Tabelle 1 zu entnehmen ist, zeigen die Silberkomplexe eine Reihe verschiedener Strukturtypen. Die Strukturen eines Typs weisen insbesondere in Bezug auf das zentrale Silberhalogenidgerüst große Ähnlichkeit auf. Zum Teil sind homologe Strukturen auch isotyp. Im Folgenden sollen diese verschiedenen Typen näher beschrieben werden; ferner soll erklärt werden, unter welchen Bedingungen es zu ihrer Ausbildung kommt. Im Rahmen dieser Untersuchungen konnte ein bis dato unbekannter Strukturtyp, ein Schichtpolymer (17, 18), entdeckt werden, sowie drei Strukturen mit ungewöhnlichen Stöchiometrien Amin: Silber (4:3 in 9, 4:5 in 12, 2:3 in 13). Bei 12 und 13 konnte erstmals bei dieser Verbindungsklasse ein Überschuss des Silberhalogenids beobachtet werden.

#### Treppenförmige Polymerstrukturen

Das Grundgerüst des Treppenpolymers sind zwei zick-zack-förmige Ketten aus Silber und Halogeniden. Diese Ketten sind durch Ag-X-Bindungen zu einer durch ihre Zick-zack-Form einer Treppe ähnelnden, in Projektion leiterartigen Anordnung verbunden (eine Aneinanderreihung paralleler Vierringe sieht in Projektion wie ein "Ladderan" aus). Silber ist dabei von drei Halogeniden koordiniert und umgekehrt. Das Amin:Silberhalogenid-Verhältnis beträgt in allen Fällen 1:1. Beim Silber wird die Koordinationssphäre durch den Stickstoff des Liganden, bei dem es sich mit einer Ausnahme um einen heterocyclischen Aromaten handelt, vervollständigt. Die Koordinationszahl des Silbers beträgt also 4 bei verzerrt tetraedrischer Geometrie, die des Halogenids 3 (Abb. 1). Bei den Chlor- und Bromverbindungen sind die "Sprossen"-Bindungen signifikant länger als die der Ketten ("Holme" der Leiter – die allerdings im Gegensatz zu normalen Holmen nicht linear sind!). Innerhalb aller Vierringe kommt es zwangsläufig zu



Abb. 1. Grundgerüst des treppenförmigen Polymers (aus Koordinaten von Bromo(pyridin)silber(I) erstellt).

Tabelle 2. Bindungslängen, -winkel und weitere Strukturparameter der Treppenpolymere<sup>a,b</sup>.

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                          | 8.,                  |                       | 1                      | 11 1 2         |                    |      |       |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|-----------------------|------------------------|----------------|--------------------|------|-------|----|
| Silberchlorid (X = C1)         2.4-Lutidin 2         2.7990(12)         101.56(4)         105,6(4)         106,23(2)         89.8         90.2           2.7341(13)         77,93(3)         106,80(3)         105.4(2)         12.2,5(1)         83.0         97.0           2.7541(13)         77,93(3)         105,6(2)         107.74(2)         85.9         94,1           2.5644(8)         72.76(2)         107.74(2)         85.9         94,1           2.591(1)         74.7(3)         91,7(3)         89.6         90.4           2.59(1)         74.7(3)         91,7(3)         89.6         90.4           2.69(2)         86.5(6)         109.8(7)         103.1(5)         89.6         90.4           2.67(2)         70.1(5)         93.4(6)         103.1(5)         89.6         90.4           2.67(1)         67.45(3)         107.9(4)         124.2         2.67(1)         70.5(4)         10.102         121.9         59.3         120.7           2.69(2)         73.54(5)         92.98(6)         105.4(5)         92.98(6)         100.7         107.7(3)         81.9         98.1           2.699(2)         73.54(5)         92.98(6)         109.4(7)         106.04(7)         107.7(3)         81.9 </th <th></th> <th>Amin</th> <th>Ag–X</th> <th>Ag–X–Ag</th> <th>X–Ag–X</th> <th>au</th> <th>δ</th> <th>ε</th> <th>Tı</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Amin                 | Ag–X                  | Ag–X–Ag                | X–Ag–X         | au                 | δ    | ε     | Tı |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silberchlorid ( $X = Cl$ ) | 2,4-Lutidin 2        | 2,7999(12)            | 101,56(4)              | 101,56(4)      | 106,23(2)          | 89,8 | 90,2  | а  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                      | 2,5029(12)            | 74,31(3)               | 100,69(4)      |                    |      |       |    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,7341(13)            | 77,93(3)               | 106,80(3)      |                    |      |       |    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 3,5-Lutidin 6        | 2,7092(8)             | 124,08(3)              | 115,64(2)      | 132,25(1)          | 83,0 | 97,0  | С  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,5634(8)             | 71,26(2)               | 107,24(2)      |                    |      |       |    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,5849(8)             | 72,76(2)               | 107,72(2)      |                    |      |       |    |
| $ \begin{array}{c} 2.59(1) & 74,7(3) \\ 2.60(1) & 88,3(3) & 105,3(3) \\ 2.67(2) & 70,1(5) & 93,4(6) \\ 2.67(2) & 86,5(6) & 109,8(7) \\ 2.69(2) & 86,5(6) & 109,8(7) \\ 2.69(2) & 86,5(6) & 109,8(7) \\ 2.69(2) & 86,5(6) & 109,8(7) \\ 2.627(1) & 67,45(3) & 107,50(4) \\ 2.772(1) & 72,50(4) & 112,54(4) \\ 2.772(1) & 72,50(4) & 112,54(4) \\ 2.772(1) & 72,50(4) & 112,54(4) \\ 2.637(6) & 70,1(1) & 111,0(2) \\ 2.637(6) & 70,1(1) & 111,0(2) \\ 2.637(6) & 70,1(1) & 111,0(2) \\ 2.637(6) & 70,1(1) & 111,0(2) \\ 2.69(2) & 73,54(5) & 92,98(6) \\ 2.726(2) & 87,02(6) & 106,46(6) \\ 2.726(2) & 87,02(6) & 106,46(6) \\ 2.726(2) & 87,02(6) & 106,46(6) \\ 2.726(2) & 87,02(6) & 106,46(6) \\ 2.726(2) & 87,02(6) & 106,46(6) \\ 2.726(2) & 87,02(6) & 106,46(6) \\ 2.726(2) & 87,02(6) & 106,46(6) \\ 2.726(2) & 87,02(6) & 106,46(6) \\ 2.726(2) & 87,02(6) & 106,46(6) \\ 2.726(2) & 87,02(6) & 106,46(6) \\ 2.726(2) & 87,02(6) & 106,46(6) \\ 2.850(4)^6 & 108,28(9)^6 & 111,1(1)^6 & 127,3^6 \\ 2.896(3)^6 & 68,20(8)^6 & 111,1(1)^6 & 127,3^6 \\ 2.896(3)^6 & 68,20(8)^6 & 111,1(1)^6 & 127,3^6 \\ 2.896(3)^6 & 68,20(8)^6 & 115,2(1)^6 \\ 2.888(1) & 67,79(4) & 112,27(5) \\ 2.888(1) & 67,79(4) & 112,27(5) \\ 2.888(1) & 67,79(4) & 112,07(5) \\ 2.888(2) & 65,03(3) & 115,16(4) \\ 4.9Picolin & 2.895(3) & 109,32(6) & 109,32(6) & 128,0 & 51,1 & 128,9 \\ 2.812(2) & 65,33(3) & 115,15(4) \\ 4.9Picolin 1 & 2.9131(4) & 102,545(11) & 102,90(1) & 53,1 & 126,9 \\ 2.815(2) & 65,37(3) & 115,94(6) \\ 2.835(1) & 65,17(3) & 115,94(6) \\ 2.835(1) & 65,17(3) & 115,94(6) \\ 2.835(1) & 65,17(3) & 115,94(6) \\ 2.835(1) & 65,17(3) & 115,94(6) \\ 2.835(1) & 65,17(3) & 115,94(6) \\ 2.835(1) & 65,17(3) & 115,94(6) \\ 2.837(1) & 62,737(7) & 113,598(7) \\ 2.8781(3) & 66,403(7) & 117,299(7) \\ 2.4,6-Kollidim & iory zum Bromocumplex \\ Pinolin & 2.995(3) & 102,73(9) & 104,57(7) \\ 2.905(3) & 72,44(7) & 114,77(7) \\ 2.905(3) & 72,44(7) & 114,77(7) \\ 2.905(3) & 72,44(7) & 117,249(7) \\ 2.905(3) & 72,44(7) & 117,249(7) \\ 2.905(3) & 72,44(7) & 117,249(7) \\ 2.905(3) & 72,44(7) & 117,249(7) \\ 2.905(3) & 72,44(7) & 117,249(7) \\ 2.905(3) & 72,44(7) & 117,2$ |                            | 2,4,6-Kollidin       | 2,74(1)               | 106,6(3)               | 106,6(3)       | 107,7(2)           | 85,9 | 94,1  | а  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,59(1)               | 74,7(3)                | 91,7(3)        |                    |      |       |    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,60(1)               | 88,3(3)                | 105,3(3)       |                    |      |       |    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | Chinaldin            | 2,78(2)               | 101,0(8)               | 101,0(8)       | 103,1              | 89,6 | 90,4  | а  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,67(2)               | 70,1(5)                | 93,4(6)        |                    |      |       |    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,69(2)               | 86,5(6)                | 109,8(7)       |                    |      |       |    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silberbromid ( $X = Br$ )  | Pyridin              | 2,818(1)              | 103,31(5)              | 103,31(5)      | 113,1              | 55,8 | 124,2 | а  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | -                    | 2,627(1)              | 67,45(3)               | 107,50(4)      |                    |      |       |    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,772(1)              | 72,50(4)               | 112,54(4)      |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 4-Picolin            | 2,861(5)              | 110,0(2)               | 110,0(2)       | 121,9              | 59,3 | 120,7 | с  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,637(6)              | 69,0(1)                | 109,9(2)       |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,637(6)              | 70,1(1)                | 111,0(2)       |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 2,4,6-Kollidin       | 2,830(2)              | 106,04(7)              | 106,04(7)      | 107,7(3)           | 81,9 | 98,1  | а  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,699(2)              | 73,54(5)               | 92,98(6)       |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,726(2)              | 87,02(6)               | 106,46(6)      |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Chinaldin            | 2,830(2)              | 106,04(7)              | 106,04(7)      | 107,7(3)           | 81,9 | 98,1  | а  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,699(2)              | 73,54(5)               | 92,98(6)       |                    |      |       |    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,726(2)              | 87,02(6)               | 106,46(6)      |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Silberiodid $(X = I)$      | Pyridin              | 2,798(3)/             | 109,03(9)/             | 106,2(1)/      | 125,6/             | 58,3 | 121,7 | с  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | •                    | 2,968(3) <sup>b</sup> | 108,28(9) <sup>b</sup> | $111,1(1)^{b}$ | 127,3 <sup>b</sup> |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,850(4)/             | 64,11(8)/              | 111,9(1)/      |                    |      |       |    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,809(3) <sup>b</sup> | 61,46(7) <sup>b</sup>  | $111,8(1)^{b}$ |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,914(3)/             | 68,10(9)/              | 119,2(1)/      |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,865(3) <sup>b</sup> | 68,20(8) <sup>b</sup>  | $115,2(1)^{b}$ |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 2-Picolin            | 2,850(2)              | 104,79(7)              | 104,79(7)      | 117,6              | 66,0 | 114,0 | с  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,880(1)              | 67,79(4)               | 112,05(5)      |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,888(2)              | 67,89(4)               | 112,27(5)      |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 3-Picolin            | 2,895(3)              | 109,32(6)              | 109,32(6)      | 128,0              | 51,1 | 128,9 | b  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,829(2)              | 65,05(3)               | 114,46(4)      |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,851(2)              | 65,33(3)               | 115,15(4)      |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 4-Picolin 1          | 2,9131(4)             | 102,545(11)            | 102,545(11)    | 130,90(1)          | 53,1 | 126,9 | а  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,8122(4)             | 63,428(9)              | 115,402(13)    |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,8653(4)             | 64,065(9)              | 117,096(13)    |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 2,4-Lutidin 3        | 2,8996(8)             | 101,80(2)              | 101,80(2)      | 118,04(2)          | 68,7 | 111,3 | С  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 2,8365(17)            | 64,54(3)               | 114,35(5)      |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                      | 2,8875(18)            | 65,17(3)               | 115,94(6)      |                    |      |       |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 3,4-Lutidin <b>5</b> | 2,9005(3)             | 105,172(9)             | 105,172(9)     | 144,53(1)          | 57,8 | 122,2 | а  |
| 2,8781(3)       66,403(7)       117,249(7)         2,4,6-Kollidin       isotyp zum Bromokomplex         Chinolin       2,956(3)       102,73(9)       102,73(9)         2,797(3)       62,95(6)       107,56(7)         2,005(3)       72,44(7)       117,05(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                      | 2,8127(3)             | 62,753(7)              | 113,598(7)     |                    |      |       |    |
| 2,4,6-Kollidin         isotyp zum Bromokomplex           Chinolin         2,956(3)         102,73(9)         102,73(9)         114,9         75,2         104,8           2,797(3)         62,95(6)         107,56(7)         2005(3)         72,44(7)         117,05(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                      | 2,8781(3)             | 66,403(7)              | 117,249(7)     |                    |      |       |    |
| Chinolin         2,956(3)         102,73(9)         102,73(9)         114,9         75,2         104,8           2,797(3)         62,95(6)         107,56(7)         117,05(7)         117,05(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | 2,4,6-Kollidin       | isotyp zum Br         | romokomplex            |                |                    |      |       |    |
| 2,797(3) $62,95(6)$ $107,56(7)2,905(3)$ $72,44(7)$ $117,05(7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | Chinolin             | 2,956(3)              | 102,73(9)              | 102,73(9)      | 114,9              | 75,2 | 104,8 | с  |
| 2,005(3) $72,44(7)$ $117,05(7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                      | 2,797(3)              | 62,95(6)               | 107,56(7)      |                    |      |       |    |
| 2,703(3) /2,44(7) 117,03(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                      | 2,905(3)              | 72,44(7)               | 117,05(7)      |                    |      |       |    |
| Morpholin 2,908(6) 106,0(2) 106,0(2) 116,1 84,1 95,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Morpholin            | 2,908(6)              | 106,0(2)               | 106,0(2)       | 116,1              | 84,1 | 95,9  | b  |
| 2,824(6) 70,1(2) 109,5(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | -                    | 2,824(6)              | 70,1(2)                | 109,5(2)       |                    |      |       |    |
| 2,844(6) 70,4(2) 110,1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                      | 2,844(6)              | 70,4(2)                | 110,1(2)       |                    |      |       |    |

<sup>a</sup> Abstände werden durchgehend in Å, Winkel in Grad angegeben; <sup>b</sup> die Bindungslänge in der jeweils ersten Zeile ist die Länge der "Leitersprosse". Bindungswinkel in der ersten Zeile sind die Winkel in der Kette. Werte  $\tau$  ohne Standardabweichungen sind aus den in der CSD deponierten Koordinaten berechnet. Die Daten der bereits bekannten Strukturen sind aus den in Tab. 1 zitierten Veröffentlichungen entnommen. Tr: Translationsrichtung des Polymers; <sup>b</sup> Werte der zweiten unabhängigen Formeleinheit in der asymmetrischen Einheit.

|                                  | Nr.   | $DH \cdots A$      | Symmetrieoperator            | $H{\cdots}A$ | $H \cdots R$ | $DH \cdots A$ | $H \cdots MR$ |
|----------------------------------|-------|--------------------|------------------------------|--------------|--------------|---------------|---------------|
| Chloro(2,4-lutidin)silber(I) (2) | T-1   | C6–H6···Cl         | x-1/2, -y+1/2, -z+1          | 2,87         |              | 136,8         |               |
|                                  | T-2   | C8–H8b····Cl       | -x+1, y+1/2, -z+1/2          | 2,86         |              | 161,2         |               |
| Chloro(3,5-lutidin)silber(I) (6) | T-3   | $C7-H7c\cdots Cl$  | -x+1/2, -y+1/2, -z+1         | 2,99         |              | 162,3         |               |
|                                  | T-4   | C7–H7a···M1        | -x, y, z-1/2                 | 3,03         | 2,900(14)    | 125,4         | 73,5          |
| Chloro(2,4,6-kollidin)silber(I)  | T-5   | $C2-H3\cdots Cl1$  | x - 1, y, z                  | 2,87         |              | 159,5         |               |
|                                  | T-6   | C5-H6···Cl1        | x-1, -y+1/2, z-1/2           | 2,93         |              | 161,0         |               |
| Chloro(chinaldin)silber(I)       | T-7   | C3-H4···Cl1        | -x+1, y+1/2, -z+1/2          | 2,91         |              | 127,0         |               |
| Bromo(chinaldin)silber(I)        | T-8   | C3-H4···Br1        | -x+1, y+1/2, -z+1/2          | 3,01         |              | 136,2         |               |
|                                  | T-9   | C9–H9···Br1        | -x+1, -y, -z                 | 3,03         |              | 141,5         |               |
| Iodo(pyridin)silber(I)           | T-10  | $C1-H1\cdots M2$   | -x+1/2, y-1/2, -z+1/2        | 3,27         | 3,23         | 119,7         | 81,1          |
|                                  | T-11  | $C5-H5\cdots M2$   | -x+3/2, $y-1/2$ , $-z+1/2$   | 3,01         | 2,87         | 127,5         | 72,5          |
|                                  | T-12  | $C6-H6\cdots M1$   | -x+1, -y, -z                 | 3,29         | 2,86         | 114,2         | 60,3          |
|                                  | T-13  | $C7-H7\cdots M1$   | -x+1, -y, -z                 | 3,13         | 2,95         | 112,5         | 70,2          |
|                                  | T-14  | C9–H9···M1         | -x+1, -y, -z+1               | 3,40         | 2,94         | 110,2         | 60,1          |
|                                  | T-15  | C10-H10···M1       | -x+1, -y, -z+1               | 3,40         | 3,17         | 98,1          | 69,1          |
|                                  | M1: R | ingmittelpunkt von | N1 und C1-C5, M2: Ringmittel | punkt von    | N2 undC6-C   | 10            |               |
| Iodo(3-picolin)silber(I)         | T-16  | $C3-H5\cdots M1$   | x, y - 1, z                  | 3,04         | 2,83         | 147,4         | 68,5          |
|                                  | T-17  | $C5-H3\cdots M1$   | -x+1/2, y+1/2, -z+3/2        | 3,57         | 2,81         | 125,1         | 51,9          |
|                                  | T-18  | $C6-H4\cdots M1$   | -x+1/2, y+1/2, -z+3/2        | 3,53         | 2,87         | 127,8         | 54,6          |
| Iodo(2,4-lutidin)silber(I) (3)   | T-19  | C8–H8c··· M1       | x, y, z+1                    | 2,84         | 2,78(4)      | 131,6         | 77,8          |
| Iodo(3,4-lutidin)silber(I) (5)   | T-20  | C8–H8c··· M1       | x + 1, y, z                  | 2,98         | 2,751(11)    | 120,0         | 67,6          |
| Iodo(morpholin)silber(I)         | T-21  | $C1-H1\cdots I1$   | -x+1/2, y+1/2, -z            | 3,10         |              | 126,9         |               |
|                                  | T-22  | C3-H6…I1           | -x+1/2, y-1/2, -z+1          | 3,18         |              | 175,0         |               |
|                                  | T-23  | $N1-H9\cdots O1$   | x, y+1, z                    | 2,04         |              | 175,6         |               |

Tabelle 3. Wechselwirkungen der Treppenpolymere<sup>a</sup>.

<sup>a</sup> M: Ringmittelpunkt (bei mehr als einem Ring bei der entsprechenden Struktur genau definiert), R: Ringebene.

kurzen Ag····Ag-Kontakten von knapp über 3 Å; dieses gilt auch bei Vierringen der anderen Strukturtypen, wo aber nicht mehr explizit darauf hingewiesen wird. Die Bindungswinkel innerhalb der Ketten liegen zwischen  $101^{\circ}$  und  $110^{\circ}$  und sind am Silber und Halogenid symmetriebedingt identisch, solange es nur zwei Ag-X-Bindungen pro Zelltranslation gibt (die Dreiecke Ag-X-Ag' und X-Ag'-X', wo die Striche der nächsten AgX-Einheit in der Kette entsprechen, sind kongruent); Ausnahmen bilden Verbindung 6 (s. u.) sowie das Iodo(pyridin)silber(I) [3], da hier zwei unabhängige Formeleinheiten die asymmetrische Einheit bilden (geometrische Daten zu den Treppenstrukturen siehe Tabelle 2). Die Interplanarwinkel  $\tau$  zwischen den benachbarten Flächen der Treppe decken einen Bereich von 102° bis 145° ab. Aus der Diskrepanz zwischen  $\tau$  und den Bindungswinkeln in der Kette wird deutlich, dass es sich bei den Flächen nicht um Rechtecke handeln kann. Die Abweichung von der rechteckigen Form nimmt mit der Ordnungszahl des Halogenids zu, wie aus den Bindungswinkeln zu den "Sprossen" der Leiter zu entnehmen und in Abb. 2 dargestellt ist. Fortgesetzt werden die Polymere über Inversion im Fall von monoklinen Raumgruppen ( $P2_1/c$  bzw.  $P2_1/n$ ) und  $2_1$ -Schrauben bei orthorhombischen ( $P2_12_12_1$ ). Eine Aus-



Abb. 2. Ansicht entlang der Treppe: Chloro(2,4,6-kollidin)silber(I) (oben), 1 (unten).

nahme bildet hier das Iodo(3-picolin)silber(I) [3], da hier bei monokliner Struktur das Polymer durch eine  $2_1$ -Schraubenachse erzeugt wird und nicht durch Inversion. Ursache dieser Besonderheit ist die CH $\cdots \pi$ -Wechselwirkungen *T-16* [17] (Tabelle 3). Die für ihre Existenz notwendige Anordnung (Abb. 3 unten) der Picolinringe ist nur durch eine  $2_1$ -Schraubenachse, nicht jedoch durch ein Inversionszentrum zu verwirk-



Abb. 3. Wechselwirkungen in Iodo(3-picolin)silber(I) entlang der  $2_1$ -Schraubenachse.

lichen. Ebenfalls über eine 2<sub>1</sub>-Schraubenachse kommen die Wechselwirkungen *T-17* und *T-18* (Abb. 3 oben, Daten in Tabelle 3) zwischen zwei Treppen zustande. Eine weitere Struktur, die Abweichungen zeigt, ist die von Iodo(pyridin)silber(I) [3] mit zwei Formeleinheiten in der asymmetrischen Einheit. Auch hier ist die Ursache in Wechselwirkungen zwischen den Ringen zu sehen. Die CH···· $\pi$ -Wechselwirkungen zwischen den Pyridinringen können nur durch die alternierenden I–Ag(Sprosse)–N–C Torsionswinkel (7,2° bzw. –56,2°) um die Ag–N-Bindungen der beiden unabhängigen Liganden zustande kommen (Abb. 4).

Die Anordnung der Stränge ist üblicherweise annähernd hexagonal und nach Kitaigorodski [18] durch das Streben nach dichtester Packung zu erklären. Beschrieben werden kann die Anordnung der Stränge durch die Winkel  $\delta$  und  $\varepsilon$  in der von vier benachbarten Polymeren gebildete Raute. Als Eckpunkte der Raute wurden die Positionen der die Treppe generierenden Symmetrieelemente verwendet und  $\delta$  und  $\varepsilon$ dann trigonometrisch aus den Zellkonstanten berech-



Abb. 4. Wechselwirkungen in Iodo(pyridin)silber(I) zwischen den unabhängigen Molekülen.

net. Für eine exakt hexagonale Anordnung sollte  $\delta = 60^{\circ}$  und  $\varepsilon = 120^{\circ}$  sein. Die für die einzelnen Strukturen tatsächlich gefunden Werte sind der Tabelle 2 zu entnehmen. Auffällige Abweichungen von den Idealwerten sind nur dann zu finden, wenn in der Ring in *ortho*-Position einen Substituenten trägt, und sind somit auf sterische Gründe zurückzuführen. Aufgrund der länger werdenden Ag–*X*-Bindungen werden die Abweichungen von den Chloro- zu den Iodoverbindungen geringer; ausgenommen sind dabei isotype Verbindungen der Homologen.

Mit zwei Ausnahmen reihen sich die neu erhaltenen Treppenstrukturen ohne besondere Auffälligkeiten in die bereits vorhandenen ein. Verbindung **3** kristallisiert in der bislang noch nicht aufgetretenen Raumgruppe  $Pna2_1$ . Auf die Struktur hat dieses Detail jedoch



Abb. 5. Wechselwirkungen in der wellenförmigen Struktur von  $\mathbf{6}$ .

|        | Amin                        | Ag–X                                          | Ag–X–Ag                                                     | X–Ag–X                                                       | Ag–X–Ag–X               | Tr | Tabelle 4. Bindungslängen, -winkel und                       |
|--------|-----------------------------|-----------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-------------------------|----|--------------------------------------------------------------|
| X = Cl | 3,4-Lutidin <b>4</b><br>(K) | 2,6122(6)<br>2,6151(6)                        | 102,51(2)                                                   | 129,709(18)                                                  | 0,076(12)<br>179,26(11) | b  | weitere Strukturparameter der Ketten-<br>und Röhrenpolymere. |
|        | Piperidin<br>(K)            | 2,524(3)<br>2,667(3)                          | 102,62(9)                                                   | 107,33(8)                                                    | 0,5<br>177,9            | b  |                                                              |
|        | Morpholin 14<br>(K)         | 2,6396(4)<br>2,6796(4)                        | 114,348(13)                                                 | 103,709(9)                                                   | 35,792(16)<br>90,80(2)  | b  |                                                              |
| X = Br | 3-Picolin<br>(R)            | 2,690(1)<br>2,735(2)<br>2,822(1) <sup>a</sup> | 107,14(4)<br>66,47(3) <sup>a</sup><br>94,80(4) <sup>a</sup> | 105,85(4)<br>96,90(4) <sup>a</sup><br>127,95(5) <sup>a</sup> | 0,6<br>179,3            | С  |                                                              |
|        | Morpholin 15<br>(K)         | 2,7279(3)<br>2,7762(3)                        | 115,624(8)                                                  | 101,625(8)                                                   | 37,319(9)<br>87,23(1)   | b  | <sup>a</sup> Daten zur Bindung zwischen den beiden Ketten.   |

keinen Einfluss, da hier wie auch bei den anderen orthorhombischen Strukturen das Polymer durch eine  $2_1$ -Schraubenachse aufgebaut wird. Deutliche Abweichungen zeigen sich jedoch bei **6**. Hier ist sowohl die Gestalt als auch die das Polymer erzeugende Symmetrieoperation abweichend. Die Leiteranordnung der Silber- und Chloratome ist wellenförmig und wird über eine *c*-Gleitspiegelebene und eine 2-zählige Achse generiert, wodurch sich eine Translation erst nach vier Treppenstufen statt wie sonst zwei ergibt. Die Wellenform bildet sich durch die CH $\cdots$  $\pi$ -Wechselwirkung *T-4* zwischen zwei benachbarten Liganden (Abb. 5).

Generell sind in den Treppenstrukturen wenige und dann auch nur schwach ausgeprägte sekundäre Wechselwirkungen zu finden. Die stärksten unter ihnen sind CH··· $\pi$ -Wechselwirkungen (*T-19*, *T-20*, nicht abgebildet) zwischen den Liganden parallel zum Strang. In einigen der Fälle, bei denen schwache Wechselwirkungen zwischen den Treppen auftreten, zeigt sich eine größere Abweichung von der dichtesten Packung, so dass nicht nur sterische Effekte, sondern auch



Abb. 6. Wechselwirkungen (klassische H-Brücken) in Iodo-(morpholin)silber(I).

schwache nicht-klassische Wasserstoffbrücken die Packung beeinflussen könnten. Gesondert zu erwähnen ist die Struktur von Iodo(morpholin)silber(I) [19], da es sich hier um ein sekundäres Amin handelt und somit ein Donor für klassische Wasserstoffbrücken zur Verfügung steht (Abb. 6).

### Röhren- und kettenförmige Polymere

Ketten- und Röhrenpolymere können zusammengefasst werden, da ihre grundsätzliche Morphologie ähnlich ist (Tabellen 4 und 5). Ersetzt man bei einem Kettenpolymer einen der Aminliganden durch eine Ag–X-Bindung zu einer weiteren Kette mit nur einem Aminliganden, erhält man ein Röhrenpolymer. In den Kettenpolymeren ist also ein Amin:Silberhalogenid-Verhältnis von 2:1 zu finden, in den Röhrenpolymeren eines von 1:1. Die Koordinationszahl des Silbers ist in allen Fällen 4 bei verzerrt tetraedrischer Umgebung. Abgesehen von den Diethylaminverbindungen, die wegen ihrer Unordnung nicht im Detail diskutiert werden, ist Bromo(3-picolin)silber(I) die einzige Struktur, die als Röhrenpolymer vorliegt.

In den kettenförmigen Polymeren ist die Koordinationszahl des Silbers vier, wovon zwei Liganden Amine sind und zwei Halogenide. Die Koordinationszahl der Halogenide beträgt zwei. Durch die zusätzliche Ag–*X*-Bindung in den Röhrenstrukturen erhöht sich die Koordinationszahl des Halogens hier auf drei. Die des Silbers bleibt vier, hier jedoch aus einem Amin und drei Halogeniden resultierend. Alle Röhren- und Kettenpolymere sind durch sekundäre Wechselwirkungen stabilisiert. Bei den drei Diethylaminkomplexen [3] können die Aussagen nur sehr vage sein, da insbesondere im Iodo-Komplex die Position des Silbers und des Halogenids schwer ungeordnet ist. Die Anordnung der Liganden legt aber nahe, entlang der Röhre klassi-

Tabelle 5. Wechselwirkungen der Ketten- und Röhrenpolymere<sup>a</sup>.

|                                     | Nr.  | DH···A             | Symmetrieoperator    | $H{\cdots}A$   | $H{\cdots}R$ | $DH\!\cdots\!A$ | $H \cdots MR$ |
|-------------------------------------|------|--------------------|----------------------|----------------|--------------|-----------------|---------------|
| Chlorobis(3,4-lutidin)silber(I) (4) | K-1  | C12–H12···· Ag     | -x+1, y+1/2, -z+3/2  | 2,99           |              | 160,2           |               |
|                                     | K-2  | C18–H18b····Ag     | -x+1, -y+1, -z+1     | 2,96           |              | 143,0           |               |
|                                     | K-3  | C22–H22··· Ag      | -x+1, y+1/2, -z+3/2  | 3,01           |              | 152,4           |               |
|                                     | K-4  | C17-H17cM2         | -x+1, y+1/2, -z+3/2  | 2,95           | 2,910(16)    | 120,1           | 80,7          |
|                                     | K-5  | C27-H27cM1         | -x+1, y+1/2, -z+3/2  | 3,00           | 2,819(16)    | 111,9           | 69,8          |
| Chlorobis(morpholin)silber(I) (14)  | K-6  | N11–H11····Cl      | x, y - 1, z          | 2,54(2)        |              | 162,2(18)       |               |
|                                     | K-7  | N21-H21···O14      | x, -y, z-1/2         | 2,41(2)        |              | 154,4(19)       |               |
|                                     | K-8  | C15–H15a···Cl      | -x+1/2, -y+1/2, -z+1 | 2,91           |              | 133,6           |               |
|                                     | K-9  | C26–H26b····O24    | -x, -y+1, -z         | 2,63           |              | 164,1           |               |
| Chlorobis(piperidin)silber(I)       | K-10 | $N1-H1\cdots Cl1$  | x, y+1, z            | 2,43           |              | 161,1           |               |
|                                     | K-11 | N1-H12···Cl1       | x, y+1, z            | 2,61           |              | 134,8           |               |
| Bromo(3-picolin)silber(I)           | R-1  | C1–H1···Ag1        | x, -y + 1/2, z - 1/2 | 2,99           |              | 164,5           |               |
|                                     | R-2  | C6–H7···Br1        |                      | 3,04           |              | 132,9           |               |
|                                     | R-3  | C3-H3···M1         | x, -y + 1/2, z - 1/2 | 2,87           | 2,85         | 134,7           | 82,9          |
| Bromobis(morpholin)silber(I) (15)   | K-12 | N11-H11O24         | x, -y, z-1/2         | 2.41(3)        |              | 156(3)          |               |
|                                     | K-13 | $N21-H21\cdots Br$ | x, y - 1, z          | 2.61(3)        |              | 170(2)          |               |
|                                     | K-14 | C12-H12B····O14    | -x, -y+1, -z         | 2.60           |              | 163.9           |               |
|                                     | K-15 | C23–H23A····Br     | -x+1/2, -y+1/2, -z+1 | 2.95           |              | 136.4           |               |
|                                     |      |                    |                      | $M\!\cdots\!M$ | $R \cdots R$ | R/R             | d             |
| Bromo(3-picolin)silber(I)           | R-4  | $M1 \cdots M1$     | -x+1, -y, -z         | 3,588          | 3,34         | 0               | 1,30          |

<sup>a</sup> R/R: Interplanarwinkel der Ringe, d: Parallelverschiebung der Ringe.



Abb. 7. Wechselwirkungen in Bromo(3-picolin)silber(I).

sche Wasserstoffbrücken zwischen den NH-Gruppen der Diethylamine und den Halogeniden zu vermuten. Bei der Struktur von Bromo(3-picolin)silber(I) [5] sind die für die Ausbildung der Röhrenstruktur verantwortlichen Wechselwirkungen eindeutig zu identifizieren. Es handelt sich in Ermangelung von klassischen Donoren um die CH···Ag- und CH··· $\pi$ -Kontakte R-1 bis R-3 entlang der Röhren (Abb. 7), sowie die  $\pi \cdots \pi$ -Wechselwirkung *R*-4 (nicht abgebildet) zwischen ihnen. Auch in der Kettenstruktur von 4 sind es CH···Ag- und CH··· $\pi$ -Wechselwirkungen (K-1, K-3, K-4, K-5), die für die Stabilisierung des Polymers sorgen (Abb. 8). Ebenso ist hier zwischen den Ketten eine Wechselwirkung auszumachen, die CH $\cdots$ Ag-Brücke K-2. Die Wechselwirkungen im Chlorobis(piperidin)silber(I) [4] beschränken sich auf



Abb. 8. Wechselwirkungen in 4.

die klassischen Wasserstoffbrücken K-10 und K-11 (Abb. 9). Zwischen den Ketten sind hier keine Interaktionen zu finden. Die beiden isotypen Ketten mit Morpholinliganden in **14** und **15** sind von unterschiedlicher Gestalt, da die Torsion um die Silberhalogenidbindungen nicht wie bei den anderen Strukturen alternierend 0° und 180° beträgt, sondern *ca.* 35° und 91° bzw. 37° und 87°. Dadurch ergibt sich eine helicale Form der Kette. Stabilisiert wird diese Form durch eine klassische Wasserstoffbrücke (*K*-6 in Abb. 10 bzw. *K*-13). Zwei weitere (*K*-7, *K*-8 bzw. *K*-12, *K*-15; erstere

Tabelle 6. Bindungslängen und -winkel an den Silberatomen



Abb. 9. Wechselwirkungen (klassische H-Brücken) in Chlorobis(piperidin)silber(I).



Abb. 10. Wechselwirkungen in der Kette bei den isotypen Strukturen 14 und 15 (Wechselwirkungen aus 14 beschriftet).



Abb. 11. Wechselwirkungen zwischen den Ketten bei 14 und 15 (Blickrichtung parallel zur Kette, Wechselwirkungen aus 14 beschriftet, klassische Wasserstoffbrücken dick, nicht-klassische dünn gestrichelt, *K*-6 ist verdeckt).

jeweils klassisch) verbinden die Ketten in *a*-Richtung zur Schicht. Durch eine nicht-klassische Brücke (*K-9* bzw. *K-14*) werden die Schichten untereinander verbunden (Abb. 11).

### Strangförmige Polymere

Der Strukturtyp "strangförmige Polymere" wird von folgenden Verbindungen vertreten: den isotypen Kom-

| in <b>11</b> <sup>a</sup> .              | 0 0       |                            |            |
|------------------------------------------|-----------|----------------------------|------------|
| Ag1-Br1                                  | 2,6978(8) | Br2#4-Ag2-Br2#3            | 105,16(4)  |
| Ag1–Br2                                  | 2,7160(8) | N20-Ag3-N10                | 158,38(19) |
| Ag2–Br1                                  | 2,6896(8) | N10-Ag3-Br1 <sup>#2</sup>  | 83,71(15)  |
| Ag2–Br2 <sup>#4</sup>                    | 2,7071(8) | N20-Ag3-Br1#               | 103,11(16) |
| Ag3-N10                                  | 2,218(6)  | N10-Ag3-Br2                | 97,72(13)  |
| Ag3-N20                                  | 2,200(6)  | N20-Ag3-Br2                | 102,83(14) |
| Ag3–Br2                                  | 2,9547(8) | Br2-Ag3-Br1#2              | 89,11(2)   |
| Ag4–Br3                                  | 2,7096(8) | Br4-Ag4-Br4 <sup>#6</sup>  | 103,64(4)  |
| Ag4–Br4                                  | 2,6932(8) | Br4–Ag4–Br3                | 116,02(2)  |
| Ag5–Br3                                  | 2,7076(8) | Br4 <sup>#6</sup> -Ag4-Br3 | 106,97(2)  |
| Ag5–Br4 <sup>#3</sup>                    | 2,6941(8) | Br3-Ag4-Br3 <sup>#6</sup>  | 107,55(4)  |
| Ag6-N30                                  | 2,205(6)  | Br4#3-Ag5-Br4#5            | 103,59(4)  |
| Ag6-N40                                  | 2,198(6)  | Br4#3-Ag5-Br3              | 116,01(2)  |
| Ag6–Br4                                  | 3,0212(9) | Br4 <sup>#5</sup> -Ag5-Br3 | 106,95(2)  |
| Br1 <sup>#1</sup> -Ag1-Br1               | 106,22(4) | Br3-Ag5-Br3 <sup>#6</sup>  | 107,67(4)  |
| Br1 <sup>#1</sup> -Ag1-Br2 <sup>#1</sup> | 102,74(2) | N40-Ag6-N30                | 160,2(2)   |
| Br1-Ag1-Br2#1                            | 120,88(2) | N30-Ag6-Br3 <sup>#7</sup>  | 92,27(14)  |
| Br2#1-Ag1-Br2                            | 104,67(4) | N40-Ag6-Br3#7              | 106,68(14) |
| Br1 <sup>#1</sup> -Ag2-Br1               | 106.68(4) | N30–Ag6–Br4                | 98,78(16)  |

102,45(2)

Br1#1-Ag2-Br2#4

N40-Ag6-Br4

86,37(15)



Abb. 12. Grundgerüst von Chloro(chinolin)silber(I), einem Vertreter der rotationssymmetrischen Strangpolymere (Ag1 und Ag3 liegen auf der zweizähligen Achse parallel zu b). Der topologisch äquivalente Strang von Verbindung **11** wird in Abb. 16 dargestellt.

plexen (Chinolin)AgX mit X = Cl, Br [20]; Verbindung 11 (Tabelle 6), mit zwei unabhängigen Formeleinheiten, die jeweils einen topologisch gleichen Strang bilden; sowie die komplizierteren Verbindungen 13 und 19 (Tabellen 7,8). Er zeichnet sich dadurch aus, dass die inneren Silberatome eines Strangs nur von Halogeniden, die peripheren Silberatome von Halogeniden und Aminen koordiniert sind (Tabelle 9). Die ersten drei der o.g. Strangstrukturen weisen zweizählige Rotationssymmetrie sowie eine 1:1-Zusammensetzung auf (Abb. 12). In einem Strang liegen zwei der drei unabhängigen Silberatome auf zweizähligen Achsen. Die Koordinationszahl des Silbers beträgt in allen Fällen vier bei z.T. extrem verzerrt tetraedrischer Geometrie; einige Bindungen sind sehr lang (Ag–Br > 3.0 Å) und eher als Kontakt

Tabelle 7. Bindungslängen und -winkel an den Silberatomen in  $13^{a}$ .

| Ag1-Br1                                  | 2,658(2)  | Ag5–Br5                  | 2,777(2)  |
|------------------------------------------|-----------|--------------------------|-----------|
| Ag1-Br3 <sup>#1</sup>                    | 2,678(2)  | Ag5–Br4                  | 3,013(2)  |
| Ag1-Br9 <sup>#1</sup>                    | 2,802(2)  | Ag6–N6                   | 2,275(14) |
| Ag1–Br4                                  | 2,997(2)  | Ag6–Br9                  | 2,682(2)  |
| Ag2–Br2                                  | 2,678(2)  | Ag6–Br6                  | 2,698(2)  |
| Ag2–Br7                                  | 2.812(2)  | Ag6-Br5                  | 2.986(3)  |
| Ag2-Br1                                  | 2.874(2)  | Ag7–N7                   | 2.307(15  |
| Ag2–Br4                                  | 2.889(2)  | Ag7–Br7                  | 2.652(2)  |
| Ag3–Br2                                  | 2,622(2)  | Ag7–Br3 <sup>#1</sup>    | 2,714(2)  |
| Ag3–Br6                                  | 2,664(2)  | Ag7–Br6 <sup>#1</sup>    | 2,797(2)  |
| Ag3–Br3                                  | 2.871(2)  | Ag8–N8                   | 2.318(14  |
| Ag3–Br8                                  | 2.885(2)  | Ag8–Br1                  | 2.682(2)  |
| Ag4–N4                                   | 2.283(15) | Ag8–Br8                  | 2.689(2)  |
| Ag4–Br4                                  | 2,708(2)  | Ag8–Br4                  | 2.822(2)  |
| Ag4–Br7                                  | 2.715(2)  | Ag9–N9                   | 2.320(16  |
| Ag4–Br3 <sup>#1</sup>                    | 3.123(3)  | Ag9–Br9                  | 2.674(2)  |
| Ag5–N5                                   | 2.307(15) | Ag9–Br2                  | 2.724(2)  |
| Ag5–Br8                                  | 2,629(2)  | Ag9–Br5                  | 2,727(2)  |
| Br1-Ag1-Br3#1                            | 154,23(8) | N5-Ag5-Br4               | 92,1(4)   |
| Br1-Ag1-Br9 <sup>#1</sup>                | 98,60(7)  | Br8-Ag5-Br4              | 93,02(6)  |
| Br3 <sup>#1</sup> -Ag1-Br9 <sup>#1</sup> | 106,12(7) | Br5-Ag5-Br4              | 86,43(6)  |
| Br1-Ag1-Br4                              | 90,69(7)  | N6-Ag6-Br9               | 131,0(4)  |
| Br3 <sup>#1</sup> -Ag1-Br4               | 91,30(7)  | N6-Ag6-Br6               | 108,0(4)  |
| Br9#1-Ag1-Br4                            | 101,76(6) | Br9-Ag6-Br6              | 112,67(7) |
| Br2-Ag2-Br7                              | 107,94(7) | N6-Ag6-Br5               | 95,6(4)   |
| Br2-Ag2-Br1                              | 97,13(7)  | Br9-Ag6-Br5              | 108,17(7  |
| Br7-Ag2-Br1                              | 96,85(7)  | Br6-Ag6-Br5              | 92,96(7)  |
| Br2-Ag2-Br4                              | 145,92(7) | N7-Ag7-Br7               | 121,7(4)  |
| Br7-Ag2-Br4                              | 104,60(6) | N7-Ag7-Br3 <sup>#1</sup> | 120,4(4)  |
| Br1-Ag2-Br4                              | 88,74(6)  | Br7-Ag7-Br3#1            | 100,47(7  |
| Br2-Ag3-Br6                              | 158,07(8) | N7-Ag7-Br6 <sup>#1</sup> | 92,5(4)   |
| Br2-Ag3-Br3                              | 100,26(7) | Br7-Ag7-Br6#1            | 123,93(8) |
| Br6-Ag3-Br3                              | 96,13(6)  | Br3#1-Ag7-Br6#1          | 96,73(6)  |
| Br2-Ag3-Br8                              | 94,85(6)  | N8-Ag8-Br1               | 111,5(4)  |
| Br6-Ag3-Br8                              | 92,54(6)  | N8-Ag8-Br8               | 116,0(4)  |
| Br3-Ag3-Br8                              | 111,61(7) | Br1-Ag8-Br8              | 127,20(7  |
| N4-Ag4-Br4                               | 119,2(4)  | N8-Ag8-Br4               | 103,4(5)  |
| N4-Ag4-Br7                               | 128,0(4)  | Br1-Ag8-Br4              | 94,12(7   |
| Br4-Ag4-Br7                              | 112,60(7) | Br8-Ag8-Br4              | 96,17(6   |
| Br4-Ag4-Br3#1                            | 88,08(7)  | N9-Ag9-Br9               | 116,9(4)  |
| N4-Ag4-Br3#1                             | 96,1(4)   | N9-Ag9-Br2               | 108,9(5)  |
| Br7-Ag4-Br3#1                            | 89,65(7)  | Br9-Ag9-Br2              | 111,66(8) |
| N5-Ag5-Br8                               | 139,2(4)  | N9-Ag9-Br5               | 103,8(5)  |
| N5-Ag5-Br5                               | 95,2(4)   | Br9-Ag9-Br5              | 116,54(7) |
| Br8–Ag5–Br5                              | 125,47(7) | Br2-Ag9-Br5              | 96,94(7)  |
| a C                                      | #1        | (2 - 1/2) = +1/2         |           |

<sup>a</sup> Symmetrieoperation:  $^{\#1} -x + 3/2, y - 1/2, -z + 1/2.$ 

einzustufen, und die N-Ag-N-Winkel bei **11** sind sehr groß (etwa 160°). In den rotationssymmetrischen Strukturen sind die peripheren Silberatome von zwei Aminen und zwei Halogeniden umgeben, in Struktur **13** ( $L_2$ Ag<sub>3</sub>Br<sub>3</sub> mit L = 4-Methylpiperidin) ist es ein Amin und drei Halogenide. Auffällig an dieser Struktur ist, dass der Anteil des Silberhalogenids größer ist als der des Amins. Aufgrund des komplexen Aufbaus dieser Struktur (asymmetrische Einheit s. Abb. 13, Strang s. Abb. 14) bedarf es hier einer

Tabelle 8. Bindungslängen und -winkel an den Silberatomen in  $19^{a}$ .

| Ag1–N1     | 2,167(2)  | N2-Ag2-Cl2    | 166,30(6) |
|------------|-----------|---------------|-----------|
| Ag1-Cl1    | 2,3909(8) | N2-Ag2-Cl3#1  | 95,99(7)  |
| Ag2–N2     | 2,202(2)  | Cl2-Ag2-Cl3#1 | 96,55(2)  |
| Ag2-Cl2    | 2,4571(7) | N3-Ag3-Cl2    | 98,65(7)  |
| Ag2-Cl3#1  | 2,8837(8) | N3-Ag3-Cl3    | 134,26(7) |
| Ag3–N3     | 2,271(3)  | N3-Ag3-Cl3#2  | 105,08(7) |
| Ag3-Cl3    | 2,5468(8) | Cl3-Ag3-Cl2   | 106,94(2) |
| Ag3-Cl3#2  | 2,6867(8) | Cl3#2-Ag3-Cl2 | 116,22(2) |
| Ag3-Cl2    | 2,7152(7) | Cl3-Ag3-Cl3#2 | 96,80(2)  |
| N1-Ag1-Cl1 | 165,96(6) |               |           |

<sup>a</sup> Symmetrie operationen: <sup>#1</sup> -x+1, -y+2, -z+1; <sup>#2</sup> -x+2, -y+2, -z+1.



Abb. 13. Asymmetrische Einheit (Ag/Br-Gerüst, Amin-Stickstoffe) von **13**.



Abb. 14. Klassische H-Brücken im Strang (parallel zu *b*) von 13 ("querstehende" *L*AgBr-Einheiten an Ag4, Ag5, Ag6 sind weggelassen). Symmetrieäquivalente Atome sind mit einem Strich gekennzeichnet.

näheren Erläuterung. Drei periphere *L*AgBr-Einheiten [N(x)Ag(x)Br(x) mit x = 7, 8, 9] entsprechen einer gleitspiegelartigen Anordnung, die von drei weiteren, zentralen AgBr-Einheiten [Ag(x)Br(x) mit x = 1, 2, 3] verknüpft werden. Die Bromatome Br1–3 ragen dabei zu einer Seite aus dem Strangfragment heraus. Auf der ihnen gegenüberliegenden Seite befinden sich

Tabelle 9. Wechselwirkungen der Strangpolymeren.

|                                     | Nr.   | DH···A                             | Symmetrieoperator          | $H{\cdots}A$       | $H{\cdots}R$      | $DH\!\cdots\!A$ | $H{\cdots}MR$ |
|-------------------------------------|-------|------------------------------------|----------------------------|--------------------|-------------------|-----------------|---------------|
| Chloro(chinolin)silber(I)           | S-1   | C3-H3···Cl2                        | -x+2, -y, -z+1             | 2,86               |                   | 154,9           |               |
| [Bromo(chinolin)silber(I)           | S-2   | C19–H15…Cl1                        | x+1/2, -y+3/2, z+1/2       | 2,86               |                   | 160,5           |               |
| isostrukturell]                     | S-3   | C14–H11··· M3                      | -x+3/2, y+1/2, -z+1/2      | 2,75               | 2,69              | 172,9           | 77,8          |
|                                     | S-4   | C14-H11··· M2                      | -x+3/2, y+1/2, -z+1/2      | 3,24               | 2,69              | 129,0           | 56,0          |
|                                     | S-5   | C15-H12··· M2                      | -x+3/2, y+1/2, -z+1/2      | 3,26               | 3,15              | 124,9           | 75,0          |
|                                     | S-6   | C16-H13··· M5                      | -x+3/2, y-1/2, -z+1/2      | 2,92               | 2,84              | 140,2           | 76,8          |
| Bromo(cyclohexylamin)silber(I) (11) | S-7   | N10–H10a $\cdots$ Br1 <sup>a</sup> | x, y + 1, z                | 3,01(6)            |                   | 122(5)          |               |
|                                     | S-8   | N10-H10b···Br1                     |                            | 2,65(3)            |                   | 154(5)          |               |
|                                     | S-9   | N20-H20a···Br3                     | x - 1, y + 1, z            | 2,78(3)            |                   | 163(5)          |               |
|                                     | S-10  | N30-H30a···Br2                     | -x+1, y, -z+1/2            | 2,78(4)            |                   | 157(5)          |               |
|                                     | S-11  | N40-H40a···Br4                     | x, y+1, z                  | 2,65(4)            |                   | 156(5)          |               |
|                                     | S-12  | C16–H16b···Br1                     |                            | 2,99               |                   | 140,8           |               |
|                                     | S-13  | $C21-H21\cdots Br4$                | x - 1, y + 1, z            | 2,98               |                   | 146,9           |               |
|                                     | S-14  | C26–H26a···Br3                     | x - 1, y + 2, z            | 3,01               |                   | 137,2           |               |
|                                     | S-15  | $C32-H32b\cdots Br2$               | -x+1, y-1, -z+1/2          | 3,00               |                   | 133,6           |               |
|                                     | S-16  | C46–H46b····Br4                    | x, y+1, z                  | 2,96               |                   | 139,4           |               |
| Trisbromobis(4-methylpiperidin)-    | S-17  | N4–H4····Br1                       | x - 1, y, z                | 2,66               |                   | 172,3           |               |
| trisilber(I) (13)                   | S-18  | $N5-H5\cdots Br2$                  | x - 1, y, z                | 3,03               |                   | 140,2           |               |
|                                     | S-19  | N6–H6···Br3                        | x - 1, y, z                | 2,97               |                   | 141,2           |               |
|                                     | S-20  | N7–H7···Br8                        | -x+3/2, y-1/2, -z+1/2      | 2,59               |                   | 161,6           |               |
|                                     | S-21  | N8–H8····Br9                       | -x+3/2, y-1/2, -z+1/2      | 2,66               |                   | 151,2           |               |
|                                     | S-22  | N9–H9···Br7                        | , . , , ,                  | 2,54               |                   | 162,5           |               |
|                                     | S-23  | C46–H46b····Br5                    |                            | 3,01               |                   | 131,1           |               |
|                                     | S-24  | $C52-H52b\cdots Br4$               |                            | 3,01               |                   | 137,1           |               |
|                                     | S-25  | C56–H56a···Br6                     |                            | 3,04               |                   | 130,6           |               |
| Chloro(pyrrolidin)silber(I) (19)    | S-26  | N1-H1···Cl1                        | -x+1, -y+2, -z             | 2,54(3)            |                   | 154(3)          |               |
|                                     | S-27  | $N2-H2\cdots Cl2$                  | -x+1, -y+2, -z+1           | 2,51(3)            |                   | 161(3)          |               |
|                                     | S-28  | N2–H2··· Ag2                       | -x+1, -y+2, -z+1           | 3,10(3)            |                   | 127(3)          |               |
|                                     | S-29  | N3-H3···Cl1                        | x + 1, y, z                | 2,67(3)            |                   | 159(3)          |               |
|                                     | S-30  | C1-H1b····Cl3                      | -x+1, -y+2, -z+1           | 2,98               |                   | 123,3           |               |
|                                     | S-31  | C4–H4a··· Ag3                      | x - 1, y, z                | 3,00               |                   | 166,1           |               |
|                                     | S-32  | C4–H4a····Cl2                      | x - 1, y, z                | 2,94               |                   | 124,2           |               |
|                                     | S-33  | C4–H4a····Cl3                      | -x+1, -y+2, -z+1           | 2,93               |                   | 132,5           |               |
|                                     | S-34  | C7−H7a···Cl1                       | -x+1, -y+1, -z+1           | 2,96               |                   | 145,8           |               |
|                                     | S-35  | C12–H12a··· Ag1                    | x + 1, y, z                | 2,97               |                   | 137,2           |               |
|                                     |       |                                    | -                          | $M \cdots M$       | $R\!\cdots\!R$    | R/R             | d             |
| Chloro(chinolin)silber(I)           | S-36  | $M1 \cdots M4$                     | x+1/2, -y+3/2, z+1/2       | 3,65               | 3,51 <sup>b</sup> | 6,6             | 1,0           |
| [Bromo(chinolin)silber(I)           |       | $M4 \cdots M1$                     | . , , , , , , , ,          | ·                  | 3,58 <sup>b</sup> |                 | 0,7           |
| isostrukturell]                     | S-37  | $M1 \cdots M5$                     | -x+2, y, -z+1/2            | 4,02               | 3,85 <sup>b</sup> | 7,4             | 1,16          |
|                                     |       | M5…M1                              | ,                          |                    | 3,80 <sup>b</sup> |                 | 1,32          |
|                                     | S-38  | $M2 \cdots M2$                     | -x+2, -v+1, -z+1           | 3.61               | 3.44              | 0               | 1.1           |
|                                     | S-39  | M2··· M3                           | -x+2, -y+1, -z+1           | 3,72               | 3,44              | 0               | 1,4           |
|                                     | M1: 0 | C19-C23, C23': M2                  | : N1. C9. C1–C4: M3: C4–C9 | M4: N2, C18        | . C10–C           | 13: M5: C       | C13-C18       |
|                                     |       | $Ag \cdots Ag(Cl)$                 | , , ,                      | $Ag \cdots Ag(Cl)$ |                   | ,               |               |
| Chloro(pyrrolidin)silber(I)         | S-40  | Ag1··· Ag2                         | •                          | 3,0545(6)          |                   |                 |               |
|                                     | S-41  | $Ag2 \cdots Ag2$                   | -x+1, -y+2, -z+1           | 3,2364(6)          |                   |                 |               |
|                                     | S-42  | Ag2···Ag3                          |                            | 3,1096(6)          |                   |                 |               |
|                                     | S-43  | Ag2····Cl3                         | -x+1, -y+2, -z+1           | 2,8837(8)          |                   |                 |               |

<sup>a</sup> Für eine klassische Wasserstoffbrücke sehr schwach. Der analoge Abstand für H40b ist noch größer, so dass hier davon auszugehen ist, dass dieser klassische Donor ohne Akzeptor verbleibt; <sup>b</sup> bei nicht exakt parallelen Ebenen wurde der mittlere Abstand der Atome zur Ebene des Wechselwirkungspartners benutzt.

drei weitere *L*AgBr-Einheiten [N(x)Ag(x)Br(x) mit x = 4, 5, 6], die mit der Ag–Br-Bindung senkrecht zum Strang angeordnet sind.

Wie auch schon bei den Ketten- und Röhrenpolymeren sind die Strangpolymere durch Wechselwirkungen stabilisiert. In **13** sind es klassische Wasserstoffbrücken entlang des Strangs (*S*-20, *S*-21, *S*-22 in Abb. 14) zwischen den gleitspiegelähnlich angeordneten *L*AgBr-Einheiten, sowie zwischen den Strängen in *a*-Richtung von den NH-Gruppen der



Abb. 15. Wechselwirkungen zwischen den Strängen von 13.



Abb. 16. Klassische H-Brücken im Strang (parallel zu b) von **11**.

"querstehenden" LAgBr-Einheiten zu den Bromatomen der AgBr-Einheiten (S-17, S-18, S-19 in Abb. 15). Die hexagonale Anordnung der Stränge wird dadurch in Richtung der Wechselwirkungen gestaucht ( $\delta$  ca. 32°;  $\varepsilon$  ca. 148°), und es bildet sich eine Schichtanordnung parallel zur ab-Ebene. Die beiden unabhängigen Stränge in 11 (mit insgesamt vier unabhängigen LAgBr-Einheiten) sind ebenfalls durch NH····Br-Wechselwirkungen stabilisiert (S-7, S-8 in Abb. 16, S-11) und in a-Richtung durch entsprechende Brücken verknüpft (S-9, S-10, in Abb. 17). Beide Stränge sind topologisch gleich; nach Inversion eines Strangs sind die Nicht-Wasserstoff-Atome der beiden Stränge mit einem quadratischen Mittelwert der Abweichungen von 0,15 Å aufeinander abbildbar. Aufgrund des verglichen mit 13 weniger isotropen Querschnitts der Stränge ist hier die Anordnung der Poly-



Abb. 17. Wechselwirkungen zwischen den Strängen von 11.



Abb. 18. Wechselwirkungen in Chloro(chinolin)silber(I) in c-Richtung (die nicht-koordinierten Chinoline sind ungeordnet).

mere annähernd rechteckig ( $\varepsilon$  entspricht der Zellkonstante  $\beta = 91,702^{\circ}$ ).

Die Strukturen von Chloro(chinolin)silber(I) [14] und Bromo(chinolin)silber(I) [20] weisen eine Besonderheit auf: hier ist ein über ein Inversionszentrum fehlgeordnetes, nicht koordiniertes Amin zwischen den Strängen eingelagert. Im Strang ist das Verhältnis von Amin zu Silberhalogenid 1:1, insgesamt ist es 1:1,5. Die Stränge in diesen beiden Strukturen sind von  $\pi \cdots \pi$ -Wechselwirkungen zwischen den Liganden begleitet (S-38). Die Verknüpfung zur Schicht erfolgt über nicht-klassische Wasserstoffbrücken (S-1 in Abb. 18). Die Schichten wiederum sind durch CH··· $\pi$ -Wechselwirkungen zwischen den Liganden miteinander verbunden (S-3, S-5, S-6 in Abb. 19). Betrachtet man die Anordnung der Stränge, wird klar, warum ein weiteres Amin mitkristallisiert. Das Arrangement der Polymere ist etwa hexagonal ( $\varepsilon$  entspricht der Gitterkonstante  $\beta = 122,11^{\circ}$ ). Durch die Planarität der Liganden entsteht zwischen den dicht gepackten Strängen eine Lücke, die von den freien Aminen be-



Abb. 19. Wechselwirkungen in Chloro(chinolin)silber(I) in *a*-Richtung (die nicht-koordinierten Chinoline sind ungeordnet).



Abb. 20. Wechselwirkungen im Strang (parallel zu a) in **19** (Wasserstoffbrücken dick, andere Kontakte dünn, Ag...Cl im Achtring offen gestrichelt; Amine nur als NH dargestellt).



Abb. 21. Wechselwirkungen zwischen den Strängen von **19** (Wasserstoffbrücken zwischen den Strängen offen gestrichelt; Amine nur als NH dargestellt).

setzt wird. Diese tragen ebenfalls durch CH···X- und  $\pi \cdots \pi$ -Wechselwirkungen (*S*-2, *S*-36, *S*-37 in Abb. 19) zur Verknüpfung der Schichten untereinander bei.

Eine Sonderstellung bei den Strangpolymeren nimmt Verbindung **19** ein, da hier der Strang von monomeren *L*AgCl-Einheiten begleitet wird. Die asym-

Tabelle 10. Bindungslängen und -winkel der Silberatome in den Schichtstrukturen<sup>a</sup>.

| Bromo(phenylethylamin)silber(I) (17)  |                                                                                                   |                        |            |  |  |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------|------------------------|------------|--|--|--|--|--|
| Ag–N                                  | 2,266(2)                                                                                          | Ag–Br                  | 2,8165(3)  |  |  |  |  |  |
| Ag-Br <sup>#1</sup>                   | 2,6183(3)                                                                                         | Ag–Br <sup>#2</sup>    | 2,8846(3)  |  |  |  |  |  |
| N–Ag–Br <sup>#1</sup>                 | 139,14(6)                                                                                         | N–Ag–Br                | 99,82(6)   |  |  |  |  |  |
| Br#1–Ag–Br                            | 103,586(9)                                                                                        | N–Ag–Br <sup>#2</sup>  | 92,89(5)   |  |  |  |  |  |
| Br <sup>#1</sup> -Ag-Br <sup>#2</sup> | 107,857(11)                                                                                       | Br–Ag–Br <sup>#2</sup> | 112,850(9) |  |  |  |  |  |
| Ic                                    | odo(phenylethylan                                                                                 | nin)silber(I) (18)     |            |  |  |  |  |  |
| Ag–N                                  | 2,295(2)                                                                                          | Ag–I                   | 2,8971(3)  |  |  |  |  |  |
| Ag–I <sup>#1</sup>                    | 2,7742(3)                                                                                         | Ag–I <sup>#2</sup>     | 2,9435(3)  |  |  |  |  |  |
| N-Ag-I <sup>#1</sup>                  | 134,65(6)                                                                                         | N–Ag–I                 | 101,29(6)  |  |  |  |  |  |
| I <sup>#1</sup> -Ag-I                 | 103,755(8)                                                                                        | N-Ag-I <sup>#2</sup>   | 96,42(6)   |  |  |  |  |  |
| I#1-Ag-I#2                            | 104,994(9)                                                                                        | I–Ag–I <sup>#2</sup>   | 116,745(8) |  |  |  |  |  |
| <sup>a</sup> Symmetrieopera           | <sup>a</sup> Symmetrieoperationen: $^{\#1} - x + 1$ , $y + 1/2$ , $-z + 1/2$ ; $^{\#2} - x + 1$ . |                        |            |  |  |  |  |  |

-y+1, -z+1.

metrische Einheit besteht aus drei unabhängigen Formeleinheiten LAgCl. Auffällig ist hier, dass die Koordinationszahlen aller drei Silberatome verschieden sind. Ag1 ist linear von einem Amin und einem Chlorid koordiniert, Ag2 ebenfalls, jedoch mit einem zusätzlichen Kontakt zu einem Chloridliganden. Ag3 ist verzerrt tetragonal von einem Amin- und drei Chloridliganden umgeben. Der Strang setzt sich aus aneinandergereihten Vier- und Achtringen zusammen; die Vierringe werden von Ag3 und Cl3 über ein Inversionszentrum, die Achtringe ebenfalls über Inversion von Ag3 und Cl3 sowie Ag2 und Cl2 gebildet. Einer der Ag····Cl-Abstände in diesem Ring ist mit 2,88 Å so lang, dass er als Kontakt einzustufen ist (S-43). Die Konformation des Achtrings wird durch die Ag···Ag-Kontakte S-41 und S-42 sowie die Wasserstoffbrücke S-27 bestimmt (Abb. 20). Für die Verknüpfung der Stränge zur Schicht sorgen die begleitenden LAgCl-Einheiten (N1, Ag1, Cl1). Diese sind durch die Wasserstoffbrücke S-29 und den Ag... Ag Kontakte S-40 (Abb. 20) an den Strang angeknüpft und durch S-26 an ein begleitendes Monomer des Nachbarstrangs (Abb. 21). Unterstützend stabilisieren verschiedene nicht-klassische Wasserstoffbrücken die Stränge und ihre Verknüpfung zur Schicht (siehe Tabelle 9). Es ist lediglich eine Wasserstoffbrücke zu finden, die sich zwischen diesen Schichten befindet (S-34 in Tabelle 9).

#### Polymere Schichtstrukturen

Die isotypen Schichtpolymere **17** und **18** (Tabellen 10, 11) sind aus inversionssymmetrischen Vierringen und Achtringen aus Silber und dem Halogenid aufgebaut (Abb. 22) und parallel zur *bc*-Ebene angeordnet. Die Koordinationszahl des Silbers ist vier (drei

| Tabelle 11. wechselwirkungen in Schlenistiukturen. |     |                 |                      |              |              |               |               |  |  |
|----------------------------------------------------|-----|-----------------|----------------------|--------------|--------------|---------------|---------------|--|--|
|                                                    | Nr. | $DH \cdots A$   | Symmetrieoperator    | $H \cdots A$ | $H \cdots R$ | $DH \cdots A$ | $H \cdots MR$ |  |  |
| Bromo(phenylethylamin)silber(I) (17)               | L-1 | N-H01···Br      | x, -y+3/2, z+1/2     | 2,82(3)      |              | 172(2)        |               |  |  |
|                                                    | L-2 | N-H02···Br      | x, y + 1, z          | 3,02(3)      |              | 119(2)        |               |  |  |
|                                                    | L-3 | C7–H7a···M1     | x, -y + 3/2, z + 1/2 | 2,77         | 2,752(3)     | 160,4         | 83,9          |  |  |
| Iodo(phenylethylamin)silber(I) (18)                | L-4 | $N-H02\cdots I$ | x, -y + 3/2, z + 1/2 | 3,11(3)      |              | 165(3)        |               |  |  |
|                                                    | L-5 | C7–H7a···M1     | x, -y + 3/2, z + 1/2 | 2,81         | 2,770(3)     | 161,6         | 80,1          |  |  |

Tabelle 11. Wechselwirkungen in Schichtstrukturen



Abb. 22. Grundgerüst der Schichtstrukturen von 17 und 18.



Abb. 23. Wechselwirkungen in 17 und 18.

Halogenide, ein Amin, verzerrt tetraedrisch angeordnet), die des Halogenids drei (drei Silber). Die Amine ragen dabei nach oben und unten aus der Schicht heraus, so dass ihre Oberfläche von den unpolaren Resten gebildet wird. Die Schichten weisen durch verschiedene klassische und nicht-klassische Wasserstoffbrücken auf (*L-1*, *L-2*, *L-3* in Abb. 23 bzw. *L-4*, *L-5*). Zwischen den Schichten – in den hydrophoben Bereichen – sind jedoch keine signifikanten Kontakte zu finden. Ein bemerkenswertes Detail dieser Strukturen ist, dass durch die aliphatische Kette zwischen Aminogruppe und Phenylring ein tunnelförmiger Hohlraum mit einem Querschnitt von etwa 1,3 Å mal 2 Å zwischen dem polaren Silberhalogenidkern und der unpoTabelle 12. Bindungslängen und -winkel an den Silberatomen in  $12^a$ .

| Ag1-Cl1         | 2,6151(8)  | Ag1–Cl2       | 2,7851(4)   |
|-----------------|------------|---------------|-------------|
| Ag2-N11         | 2,2132(14) | Ag2–Cl2       | 2,4268(4)   |
| Ag2Cl1#4        | 2,8564(4)  | Ag2-Cl2#3     | 2,8765(5)   |
| Cl1-Ag1-Cl2     | 99,174(10) | Cl2#1-Ag1-Cl2 | 88,545(3)   |
| Cl2#2-Ag1-Cl2   | 161,65(2)  | N11-Ag2-Cl2   | 159,07(4)   |
| N11-Ag2-Cl1#4   | 89,06(4)   | Cl2-Ag2-Cl1#4 | 101,388(14) |
| N11-Ag2-Cl2#3   | 104,03(4)  | Cl2-Ag2-Cl2#3 | 93,922(18)  |
| Cl1#4-Ag2-Cl2#3 | 91,228(13) | -             |             |

<sup>a</sup> Symmetrieoperationen: <sup>#1</sup> y, -x + 1/2, z; <sup>#2</sup> -x + 1/2, -y + 1/2, z; <sup>#3</sup> -y + 1/2, x, z; <sup>#4</sup> x, y, z + 1.



Abb. 24. Hohlräume zwischen Kern und Oberfläche der Schichten von 17 und 18.

laren aus den Phenylringen gebildeten Oberfläche der Schicht entsteht (Abb. 24). Daraus ergibt sich eine geringe Dichte (2,22 g/cm<sup>3</sup> bei 17, 2,39 g/cm<sup>3</sup> bei 18) verglichen mit z. B. einer dicht gepackten Struktur mit Silberiodid (2,72 g/cm<sup>3</sup> bei 1). Ein direkter Vergleich ist strenggenommen bei der Bromverbindung nicht möglich, da alle dicht gepackten Strukturen bei Zimmertemperatur gemessen wurden (z. B. 2,36 g/cm<sup>3</sup> bei Bromo(4-picolin)silber(I)).

### (verzerrt) Würfelförmige Tetramere (Cubane)

Bei den würfelförmigen Tetrameren können zwei verschiedenen Ausprägungen unterschieden werden. Die eine, dreimal anzutreffende Variante hat kristallographische 222-Punktsymmetrie, die zweite erst ein-

| Tabelle 13. | Wechselwir | kungen in de | n Tetrameren. |
|-------------|------------|--------------|---------------|
|             |            |              |               |

|                                     | Nr. | $DH \cdots A$     | Symmetrieoperator | $H{\cdots}A$ | DH… A  |
|-------------------------------------|-----|-------------------|-------------------|--------------|--------|
| Pentachlorotetra(4-methylpiperidin) | W-1 | N11-H11····Cl2    | -y+1/2, x, z+1    | 2,66(2)      | 150(2) |
| pentasilber(I) (12)                 |     |                   |                   |              |        |
| Bromo(piperidin)silber(I)           | W-2 | $N1-H1\cdots Br1$ | x, -y+1, -z+1/2   | 2,89         | 137,1  |
| Iodo(piperidin)silber(I)            | W-3 | $N1-H1\cdots I1$  | x, -y+1, -z+1/2   | 3,08         | 33,6   |



Abb. 25. Iodo(piperidin)silber(I) und Bromo(piperidin)silber(I): Verknüpfung der Tetramere durch klassische Wasserstoffbrücken.



Abb. 26. Schematische Darstellung der Schichtabfolge in der Packung von Iodo(2,2,6,6-tetramethylpiperidin)silber(I), von oben nach unten jeweils eine (in grau dargestellte) Schicht hinzugefügt.

mal entdeckte hat 4-zählige Punktsymmetrie (**12**, Tabellen 12, 13). Die Koordinationszahl des Halogenids beträgt 3 (drei Silberatome), die des Silbers 4 (drei Halogenide, ein Amin, verzerrt tetraedrisch). Auch hier sind die Strukturen, mit einer Ausnahme, wieder durch sekundäre Wechselwirkungen stabilisiert. Die isotypen Tetramere von Bromo(piperidin)silber(I) [3] und Iodo(piperidin)silber(I) [3] sind durch NH···X-Brücken zu einem Strang verknüpft (*W*-2 in Abb. 25 bzw. *W*-3). Die Anordnung dieser Stränge ist annähernd hexagonal ( $\delta$  ca. 54°;  $\varepsilon$  ca. 126°). Die Tetramere werden hier durch zweizählige Drehachsen erzeugt. In der Struktur von Iodo(2,2,6,6-tetramethylpiperidin)silber(I) [3] können die NH···X-Brücken zwischen den Tetrameren aufgrund der extremen sterischen Hinderung nicht



Abb. 27. Klassische H-Brücken in 12.

zustande kommen. Triebkraft für die Bildung dieser Anordnung scheint einzig die Aggregation von den polaren Bestandteilen der Moleküle (Ag, I, N) in einer unpolaren Umgebung (CH-Rest). Parallel zur (110)-Ebene sind Tetramere dicht gepackt ( $\delta$  = 59,5°;  $\varepsilon = 120,5^{\circ}$ ). Eine kubisch-flächenzentrierte oder hexagonal-dichteste Packung ist jedoch nicht zu beobachten. In Abb. 26 ist die Abfolge der Schichten schematisch dargestellt. Eine deckungsgleiche Wiederholung erfolgt erst bei der fünften Schicht. In der 4zähligen Variante des Würfeltetramers 12 ist wieder eine Verbindung über klassische Wasserstoffbrücken zum Strang zu finden (W-1 in Abb. 27). Wie auch beim Bromo-Komplex dieses Amins (13) ist hier der Anteil des Silberhalogenids größer als der des Amins (4:5). Die einzelnen Würfel werden neben den Wasserstoffbrücken noch durch eine AgCl-Einheit (Ag1, Cl1) verbunden, die kein Amin trägt; die Zusammensetzung von 12 ist somit  $L_4Ag_5Cl_5$ . Beide Atome dieser Einheit liegen auf einer 4-zähligen Achse und haben bei quadratisch-pyramidaler Umgebung die ungewöhnliche Koordinationszahl fünf. Im Vergleich zu den Würfelstrukturen der Piperidin-Komplexe fällt auf, dass hier die Stränge im kristallographischen Sinne polar sind. Der hohe Silberhalogenidanteil in 12 (und auch in 13) lässt sich durch den größeren sterischen Anspruch durch die Methylgruppe des Liganden erklären. Mit der zusätzlichen Methylgruppe ist der Ligand zu groß, um eine Anordnung um ein einfaches Tetramer wie bei den Halogeno(piperidin)silber(I)-Komplexen zu erreichen. Durch das Aufweiten des Silberhalogenidkerns ist in der Peripherie genug Platz, um den sterisch anspruchsvolleren Liganden unterzubringen. Selbige Überlegungen gelten auch für das Strangpolymer von 13.

Tabelle 14. Wechselwirkungen in den Dimeren.

|                                      | Nr.  | DH···A              | Symmetrieoperator             | $H{\cdots}A$ | $H\!\cdots\!R$ | $DH\!\cdots\!A$ | $H \cdots MR$ |
|--------------------------------------|------|---------------------|-------------------------------|--------------|----------------|-----------------|---------------|
| Chloro(3-methylisochinolin)silber(I) | D-1  | C5-H3···Cl1         | -x+2, y-1, -z+3/2             | 2,81         |                | 169,2           |               |
|                                      | D-2  | C6–H4···Cl1         | x, -y, z - 1/2                | 2,87         |                | 176,7           |               |
|                                      | D-3  | C9-H6···Cl1         | -x+2, y, -z+3/2               | 2,78         |                | 136,2           |               |
|                                      | D-4  | C11-H10···Cl1       |                               | 2,85         |                | 135,4           |               |
|                                      | D-5  | C13-H11Cl1          | -x+2, -y+1, -z+2              | 2,83         |                | 159,5           |               |
|                                      | D-6  | $C4-H2\cdots M1$    | x, y - 1, z                   | 2,77         | 2,70           | 145,1           | 76,9          |
|                                      | D-7  | C2-H1··· M2         | x, y - 1, z                   | 2,86         | 2,83           | 150,7           | 82,1          |
|                                      |      | M1: N1, C11,        | C12, C17-19; M2: C12-1        | 7; M3: N2    | , C1–C3,       | C8, C9          |               |
| Bromo(2-picolin)silber(I)            | D-8  | C2-H2···Br1         | -x+1, -y+1, -z+1              | 3,04         |                | 155,3           |               |
|                                      | D-9  | C4-H5···Br1         | <i>x</i> , <i>y</i> , $z - 1$ | 3,05         |                | 154,6           |               |
|                                      | D-10 | C6–H7···Br1         |                               | 2,98         |                | 132,9           |               |
|                                      | D-11 | $C12-H14\cdots Br1$ | 1-x, 1-y, 1-z                 | 3,08         |                | 131,6           |               |
|                                      |      |                     |                               | $M{\cdots}M$ | $R \cdots R$   | R/R             | d             |
| Chloro(3-methylisochinolin)silber(I) | D-12 | M3··· M3            | -x+2, y, -z+3/2               | 3,58         | 3,544          | 1,8             | 0,50          |
|                                      | M3:  | N2, C1–C3, C8, C9   |                               |              |                |                 |               |
| Bromo(2-picolin)silber(I)            | D-13 | $M1 \cdots M1$      | 1-x, 1-y, -z                  | 3,83         | 3,586          | 0               | 1,33          |

#### Dimere

Die Dimere, ein Strukturtyp mit nur zwei Vertretern, sind aus einem Silberhalogenid und zwei Aminen in der asymmetrischen Einheit zusammengesetzt und weisen einen zentralen  $Ag_2X_2$ -Vier-



Abb. 28. Wechselwirkungen im Dimer von Bromobis(2-picolin)silber(I).



Abb. 29. Wechselwirkungen zwischen den Dimeren von Bromobis(2-picolin)silber(I).



Abb. 30. Wechselwirkungen im Dimer von Chlorobis(3-methylisochinolin)silber(I).

ring auf, erzeugt durch Inversion bei Bromobis(3picolin)silber(I) [5] bzw. eine 2-zählige Achse bei Chlorobis(3-methylchinolin)silber(I) [7]. Das Silber ist von zwei Aminen und zwei Halogeniden verzerrt tetraedrisch koordiniert; das Halogenid hat zwei Silberatome als nächste Nachbarn. Die Dimere sind durch verschiedene nicht-klassische Wechselwirkungen stabilisiert. Bei den Wechselwirkungen handelt es sich um CH···X-, CH··· $\pi$ - und  $\pi$ ··· $\pi$ -Kontakte. Details zu diesen können der Tabelle 14 und den Abb. 28 bis 31 entnommen werden. Die für den Packungsaufbau von Chlorobis(3-methylchinolin)silber(I) wichtigsten Wechselwirkungen sind  $CH \cdots \pi$ -Kontakte (D-6, D-7) zwischen den Liganden, die die Dimere zu Strängen parallel zu b verbinden, welche dann näherungsweise hexagonal angeordnet sind (E entspricht der Gitterkonstante  $\beta = 126,328^{\circ}$ ). Bei den Dimeren von Bromobis(3-picolin)silber(I) gibt es keine derartige Vorzugsrichtung der Wechselwirkungen.



Abb. 31. Wechselwirkungen zwischen den Dimeren von Chlorobis(3-methylisochinolin)silber(I).

#### Monomere

Mit Ausnahme von Chlorotris(3-picolin)silber(I)[8] handelt es sich bei allen monomer im Kristall vor-



Abb. 32. Wechselwirkungen in Chlorotris(3-picolin)silber(I).

Tabelle 15. Bingungsparameter in den Monomeren<sup>a</sup>.

| Chloro(benzylamin)si           | lber(I) (7)          |                             |            |
|--------------------------------|----------------------|-----------------------------|------------|
| A ~ N                          | 21642(12)            | $A \sim C^{1}$              | 2 2726(1)  |
| Ag-IN                          | 2,1042(12)           | Ag-Cl                       | 2,3720(4)  |
| N-Ag-Cl                        | 169,90(4)            |                             |            |
| Bromo(benzylamin)si            | lber(I) ( <b>8</b> ) |                             |            |
| Ag–N                           | 2,220(3)             | Ag–Br                       | 2,5481(5)  |
| Ag–Br <sup>#1</sup> (M-34)     | 2,9735(6)            |                             |            |
| N–Ag–Br                        | 163,41(9)            | N–Ag–Br <sup>#1</sup>       | 92,79(9)   |
| Br–Ag–Br <sup>#1</sup>         | 103,234(19)          |                             |            |
| Trichlorotetra(cyclohe         | xylamin)trisil       | ber(I) (9)                  |            |
| Ag11-N40                       | 2,183(3)             | Ag11-Cl11                   | 2,3805(10) |
| Ag11–Cl22 <sup>#2</sup> (M-29) | 2,9088(11)           | Ag12-N50                    | 2,169(4)   |
| Ag12-Cl12                      | 2,3941(10)           | Ag13-N30                    | 2,190(3)   |
| Ag13-Cl13                      | 2,4125(10)           | Ag13–Cl21 (M-30)            | 2,7826(11) |
| Ag14-N20                       | 2,160(3)             | Ag14-Cl14                   | 2,3815(10) |
| Ag21-N80                       | 2,249(4)             | Ag21-N70                    | 2,295(3)   |
| Ag21-Cl21                      | 2,6101(11)           | Ag21–Cl12 (M-31)            | 2,8622(11) |
| Ag22-N60                       | 2,337(3)             | Ag22-Cl22                   | 2,4750(11) |
| N40-Ag11-Cl11                  | 166,87(9)            | N40-Ag11-Cl22 <sup>#2</sup> | 83,94(9)   |
| N50-Ag12-Cl12                  | 168,75(11)           | N30-Ag13-Cl13               | 160,14(10) |
| N30-Ag13-Cl21                  | 95,74(10)            | N20-Ag14-Cl14               | 168,29(10) |
| N80-Ag21-N70                   | 130,09(12)           | N80-Ag21-Cl21               | 128,58(9)  |
| N70-Ag21-Cl21                  | 99,61(9)             | N80-Ag21-Cl12               | 89,11(10)  |
| N70-Ag21-Cl12                  | 96,18(9)             | Cl21-Ag21-Cl12              | 98,95(3)   |
| N10-Ag22-N60                   | 102,36(12)           | N10-Ag22-Cl22               | 134,11(9)  |
| N60-Ag22-Cl22                  | 121,67(9)            | -                           |            |
| Chlorobis(cyclohexyla          | umin)silber(I)       | (10)                        |            |
| Ag-N10                         | 2,2592(12)           | Ag-Cl                       | 2,4652(5)  |
| N10#1-Ag-N10                   | 111,02(6)            | N10-Ag-Cl                   | 124,49(3)  |
| Chloro(phenylethylam           | in)silber(I) (1      | 6)                          |            |
| Ag–N                           | 2,185(2)             | Ag–Cl                       | 2,4302(7)  |
| N–Ag–Cl                        | 173,87(6)            |                             |            |

<sup>a</sup> Symmetrieoperationen: <sup>#1</sup> x + 1, y, z; <sup>#2</sup> x, y - 1, z.

liegenden Substanzen um Komplexe von primären und sekundären Aminen. Die Verhältnisse von Amin zu Silberhalogenid reichen von 1:1 über 2:1 bis 3:1, wobei erwartungsgemäß eine lineare, trigonalplanare bzw. tetraedrische Umgebung des Silberatoms zu beobachten ist. In einigen Strukturen liegen Silber und Halogenid auf speziellen Lagen. Die Strukturen mit monomer vorliegenden Komplexen sind stark von Wasserstoffbrücken geprägt. Eine Sonderstellung hat das Chlorotris(3-picolin)silber(I), da dies die einzige Monomerstruktur ohne klassische Wasserstoffbrücken ist. Hier verknüpfen CH····Cl-Kontakte (M-1 in Abb. 32) die strangartig angeordneten Monomere zu einem dreidimensionalen Netzwerk. Innerhalb dieser Stränge sind keine H····Cl-Abstände unterhalb der Summe der Van-der-Waals-Radien zu finden. Ein 3,08 Å langer H...Cl-Kontakt ist jedoch erwähnenswert, da der dazugehörige C-H···Cl-Winkel mit 178,5° fast linear ist. Im zweiten bekannten 3:1-Komplex Chlorotris(piperidin)silber(I) [21] werden die Moleküle durch eine Kombination aus einem

| Tabelle 16. | Wechsel | wirkungen | der | Monomere. |
|-------------|---------|-----------|-----|-----------|
|-------------|---------|-----------|-----|-----------|

|                                                | Nr.  | DH···A           | Symmetrieoperator   | $H{\cdots}A$ | DH···A    |
|------------------------------------------------|------|------------------|---------------------|--------------|-----------|
| Chlorotris(3-picolin)silber(I)                 | M-1  | C3-H2···Cl1      | x-1/3, y+1/3, z-2/3 | 2,792        | 170,3     |
| Chloro(benzylamin)silber(I) (7)                | M-2  | N-H01···Cl       | -x+1, y-1, -z+1/2   | 2,46(2)      | 177,0(17) |
|                                                | M-3  | $N-H02\cdots Cl$ | -x+1, -y+1, -z      | 2,62(2)      | 160,6(18) |
| Trichlorotetra(cyclohexylamin)trisilber(I) (9) | M-4  | N10-H10bCl21     |                     | 2,62(2)      | 160(4)    |
| ··· · · · · · · · · · · · · · · · · ·          | M-5  | N20-H20a··· Cl13 |                     | 2,53(2)      | 164(4)    |
|                                                | M-6  | N20-H20bCl11     | x, y + 1, z         | 2,583(17)    | 176(4)    |
|                                                | M-7  | N30-H30a··· Cl12 |                     | 2,431(19)    | 167(4)    |
|                                                | M-8  | N30-H30bCl14     |                     | 2,51(2)      | 167(4)    |
|                                                | M-9  | N40-H40a···Cl12  |                     | 2,51(2)      | 162(4)    |
|                                                | M-10 | N40-H40bCl14     | x, y - 1, z         | 2,489(17)    | 178(4)    |
|                                                | M-11 | N50-H50a··· Cl13 |                     | 2,526(18)    | 171(4)    |
|                                                | M-12 | N50-H50bCl11     |                     | 2,54(2)      | 163(4)    |
|                                                | M-13 | N60-H60a···Cl13  | x - 1, y, z         | 2,64(2)      | 160(4)    |
|                                                | M-14 | N60-H60bCl11     | x - 1, y + 1, z     | 2,73(2)      | 156(4)    |
|                                                | M-15 | N70-H70a···Cl14  |                     | 2,65(2)      | 164(4)    |
|                                                | M-16 | N70-H70bCl13     | x - 1, y, z         | 2,65(2)      | 161(4)    |
|                                                | M-17 | N80-H80a··· Cl11 | x - 1, y, z         | 2,84(2)      | 161(3)    |
|                                                | M-18 | N80-H80bCl22     | x, y - 1, z         | 2,73(2)      | 157(4)    |
|                                                | M-19 | C56-H56bCl22     | x, y - 1, z         | 2,75         | 158,1     |
| Chlorobis(cyclohexylamin)silber(I) (10)        | M-20 | N10-H10a···Cl    | x, y + 1, z         | 2,58(2)      | 158,7(19) |
|                                                | M-21 | N10-H10b···Cl    | x+1/2, y+1/2, z     | 2,50(2)      | 172,6(18) |
| Chlorotris(piperidin)silber(I)                 | M-22 | N1-H1···Cl1      | x + 1, y, z         | 3,097        | 113,7     |
|                                                | M-23 | N2-H8···Cl1      | x + 1, y, z         | 3,082        | 105,8     |
| Chloro(phenylethylamin)silber(I) (16)          | M-24 | N10-H10bCl21     |                     | 2,62(2)      | 160(4)    |
|                                                | M-25 | N20-H20a··· Cl13 |                     | 2,53(2)      | 164(4)    |
|                                                | M-26 | N20-H20bCl11     | x, y + 1, z         | 2,583(17)    | 176(4)    |
| Bromo(benzylamin)silber(I) (8)                 | M-27 | N-H01···Br       | -x+1, y-1/2, -z+1/2 | 2,82(5)      | 160(5)    |
|                                                | M-28 | N-H02···Br       | -x+1, y+1/2, -z+1/2 | 2,76(5)      | 167(4)    |



Abb. 33. Klassische H-Brücken in Chlorotris(piperidin)-silber(I).

Ag...X-Kontakt [22] und drei schwachen Wasserstoffbrücken zu Strängen verbunden (M-22, M-23, M-33 in Abb. 33). Im 2:1 Cyclohexylaminsilberchlorid-Komplex **10** (Tabellen 15, 16) ist die Anordnung der Monomere schichtartig parallel zur *ab*-Ebene. Das Silberchlorid liegt auf einer 2-zähligen Achse, so dass die beiden Aminliganden symmetrieäquivalent sind. Einer der beiden Aminwasserstoffe interagiert mit dem Chloratom des Nachbarmoleküls (M-20 in Abb. 34),



Abb. 34. Klassische H-Brücken in 10 (Amine auf NH<sub>2</sub>-Gruppen reduziert).

so dass ein Strang gebildet wird; das zweite bildet eine Wasserstoffbrücke zum Nachbarstrang (M-2I ebenfalls in Abb. 34) und erzeugt so die Schichtanordnung. Der zweite Cyclohexylaminsilberchlorid-Komplex **9** weist die ungewöhnliche Stöchiometrie 4:3 auf, mit einer sehr großen asymmetrischen Einheit aus sechs unabhängigen Ag-Komplexen. In vier dieser Komplexe trägt das Silberchlorid einen Aminliganden, in zwei Komplexen sind es zwei Liganden. Die Moleküle mit nur einem Amin (an Ag 11, 12, 13, 14) sind antiparallel angeordnet und durch NH…Cl-Brücken verbunden (M-5 bis M-12). Diese Verbrückungen setzen sich über Translation in b-Richtung fort, so dass ein Strang entsteht; im Gegensatz zu den bereits disku-



Abb. 35. Wasserstoffbrückenmuster bei antiparalleler Molekülanordnung in 8, 9 und 16 (Amine auf NH<sub>2</sub>-Gruppen reduziert, Abbildung aus Daten von 16 erstellt).



Abb. 36. Vollständiger Strang in **9** (Amine auf NH<sub>2</sub>-Gruppen reduziert). Dick gestrichelt: Wasserstoffbrücken, dünn gestrichelt: Ag $\cdots$ Cl-Kontakte. Auf Grund der Vielzahl der Wechselwirkungen wurde das "*M*-" bei der Kennung weggelassen.



Abb. 37. Wechselwirkungen zwischen den Strängen in 9 (Amine auf NH<sub>2</sub>-Gruppen reduziert, dick gestrichelt: Wasserstoffbrücken im Strang, dünn gestrichelt: Ag $\cdots$ Cl-Kontakte, offen gestrichelt: Wasserstoffbrücken zwischen den Strängen).

tierten Strangstrukturen entstehen hier die Stränge ausschließlich über H-Brücken. Dieses Muster ist auch in weiteren Strukturen zu finden und verallgemeinert in Abb. 35 zu sehen. Die Moleküle mit zwei Aminliganden (an Ag 21, 22) sind durch Ag…Cl- und NH…Cl-Kontakte (M-29, M-30 mit annäherndem Bindungscharakter, M-31, M-32, M-15) an diesen Strang gebunden (Abb. 36), durch die Kontakte M-4 und M-18 aneinander gebunden und sorgen durch Wasserstoffbrücken (M-13, M-14, M-16, M-17) für eine Anbindung an den Nachbarstrang (Abb. 37).

Die Strukturen mit einem Verhältnis Amin zu Silberhalogenid von 1:1 zeichnen sich durch Ag $\cdots X$ -Kontakte aus (Tabelle 17). In **8** führen Ag $\cdots$ Br-

Tabelle 17. Ag $\cdots X$  Bindungs-/Kontaktlängen und -winkel in den Monomerstrukturen.

| Ag-X      | Ag-X-Ag           | X - Ag - X                            | τ          |
|-----------|-------------------|---------------------------------------|------------|
|           | Chloro(ben        | zylamin)silber(I) (7) <sup>a</sup>    |            |
| 3,1826(4) | 99,09(1)          | 99,09(1)                              | 79,93(1)   |
| 2,3726(4) | 58,40(1)          | 89,00(1)                              |            |
| 3,2348(4) | 91,00(1)          | 121,60(1)                             |            |
|           | Chloro(phenyl     | ethylamin)silber(I) (16) <sup>a</sup> |            |
| 2,4302(7) | 116,50(3)         | 116,50(3)                             | 63,08(2)   |
| 2,9851(7) | 93,26(2)          | 85,67(2)                              |            |
| 3,0302(7) | 94,38(2)          | 86,68(2)                              |            |
| Nr.       | Kontakt           | Symmetrieoperator                     | Ag-X       |
|           | Trichlorotetra(cy | clohexylamin)trisilber(I) (9          | 9)         |
| M-29      | Ag11····Cl22      | x, y - 1, z                           | 2,9088(11) |
| M-30      | Ag13····Cl21      |                                       | 2,7826(11) |
| M-31      | Ag21····Cl12      |                                       | 2,8622(11) |
| M-32      | Ag22····Cl14      |                                       | 3,0724(11) |
|           | Chlorotri         | s(piperidin)silber(I)                 |            |
| M-33      | Ag1…Cl1           | x + 1, y, z                           | 3,039      |
|           | Bromo(ber         | nzylamin)silber(I) (8)                |            |
| M-34      | Ag···Br           | x + 1, y, z                           | 2.9735(6)  |
| M-35      | $Ag \cdots Br$    | -x, y-1/2, -z+1/2                     | 3,2667(7)  |

<sup>&</sup>lt;sup>a</sup> Wechselwirkungen entsprechen der Treppenpolymerstruktur; Daten sind analog zu Tabelle 2 tabelliert.



Abb. 38. Kettenbildung durch  $Ag \cdots Br$ -Kontake in 8 (Amine auf  $NH_2$ -Gruppen reduziert).

Kontakte (M-34) zu einer kettenartigen Verknüpfung der Moleküle (Abb. 38). Die Ag...Br-Abstände (M-35in Tabelle 17) zwischen den Ketten liegen im Grenzbereich dessen, was man nach den gewählten Kriterien noch als Kontakt bezeichnen würde. Deutlich wichtiger für die Verknüpfung der Ketten sind die NH...Br-Brücken M-27 und M-28. Sie bilden das gleiche Muster, wie schon in 9 zu beobachten war (Abb. 35). Die Strukturen von 7 und 16 ähneln sich in der Anordnung



Abb. 39. Wasserstoffbrückenmuster aus zwei sich durchdringenden Netzwerken in 7 (ein Netzwerk in dünnen Linien, das andere in dicken; Phenylringe weggelassen).

ihrer Ag····Cl-Kontakte (Tabelle 17). Die Anordnung dieser Kontakte, wenn sie als Bindungen angesehen werden, ergibt das typische treppenförmige Polymer (s. auch nächster Abschnitt), das bei 7 durch Inversion und bei **16** durch eine  $2_1$ -Schraubenachse erzeugt wird. Insbesondere bei 7 sind die Kontakte aber sehr schwach. Die Unterschiede der beiden Strukturen liegen in den Mustern der Wasserstoffbrücken. In **16** ist abermals das in Abb. 35 dargestellte Arrangement zu beobachten, im Gegensatz zu **7**, wo eine der beiden Wasserstoffbrücken innerhalb der Treppe zu finden ist. Daraus resultiert das in Abb. 39 zu sehende Muster aus zwei unabhängigen, sich durchdringenden Netzwerken von NH…Cl-Kontakten.

### Strukturbeeinflussende Faktoren

Wie Healey *et al.* [5] bereits beschrieben haben, sind die Ag–X-Bindungen ein wichtiger strukturbestimmender Faktor, und somit sind in vielen Strukturgrundgerüsten Fragmente der Silberhalogenidteilstruktur zu erkennen. Diese Bindungen stehen in direkter Konkurrenz zu klassischen Wasserstoffbrücken. Anhand der Strukturen der primären Amine mit aromatischem Rest lässt sich dies sehr gut erkennen. Alle diese Strukturen können von einem in Abb. 40 dargestellten Grundgerüst abgeleitet werden, aus dem einzelne Ag–X-Bindungen zu Kontakten abgeschwächt werden oder ganz entfallen, da eine Stabilisierung



Abb. 40. Grundgerüst der Strukturen der primären Amine mit aromatischem Rest und die daraus abgeleiteten Strukturen. Oben links: idealisiertes Grundgerüst; unten links: Kettenstruktur von 8; oben rechts: Schichtstruktur von 17 und 18; unten rechts: Treppenstruktur von 7 und 16. dann über Wasserstoffbrücken erfolgt. Da im Grundgerüst am Silber mit fünf eine hohe Koordinationszahl vorliegt, wird dieses bei Liganden, die keine Wechselwirkungen zeigen, nicht gefunden, sondern die dicht gepackte, treppenförmige Polymerstruktur mit der sterisch günstigeren Koordinationszahl von vier am Silber. Abweichungen von dieser Treppenstruktur sind durch nicht-klassische Wechselwirkungen zu erklären. Treten viele und/oder starke nichtklassische Wechselwirkungen auf, führt dies ebenfalls zu einer Auflösung des Grundgerüsts. Hier bleiben dann einige der Ag–X-Bindungen erhalten, aber es treten keine Schwächungen zu Kontakten auf.

Die Koordinationszahlen in den verschiedenen Strukturen reichen am Silber von zwei bis fünf, bei einem bis fünf Halogeniden und keinem bis drei Aminen in der Koordinationssphäre. Die Halogenidatome sind von einem bis fünf Silberatomen umgeben. Die Amin: Silberhalogenid-Verhältnisse reichen von 3:1 bis 2:3. Auffällig ist, dass Aminüberschüsse besonders bei den stark ionischen Silberhalogeniden zu finden ist. Die meisten Fälle und die höchsten Aminüberschüsse treten beim Silberchlorid auf; beim Silberbromid sind nur vereinzelte Fälle zu finden; beim am stärksten kovalenten Silberiodid gar keine. Bei den Silberchloridkomplexen von Cyclohexylamin und Piperidin sind Strukturen für verschiedene Verhältnisse bekannt. Dies ist dadurch zu erklären, dass in Lösung Komplexe mit verschiedenen Ligandenzahlen vorliegen [25, 26], und je nach Kristallisationsbedingungen die eine oder die andere Struktur gebildet wird. Der Ligandenüberschuss resultiert aus dem Bestreben nach Trennung von polaren und unpolaren Teilen der Komplexe; dementsprechend sind bei Aminen mit besonders unpolaren Resten (z. B. Cyclohexylamin, Piperidin) mit besonders polaren Silberhalogeniden (AgCl) bevorzugt Aminüberschüssen zu finden. Die Silberhalogenidüberschüsse haben sterische Gründe (siehe oben). Als ersten strukturbeeinflussenden Faktor lassen sich die Ag-X-Bindungen identifizieren. Sie sind auch der Grund für die geringe Stabilität der Kristalle außerhalb der Mutterlauge. Durch die hohe Gitterenergie insbesondere des Silberchlorids zerfallen die Komplexe z. T. binnen Sekunden (Kristalle von 19 konnte nur mit Hilfe spezieller Tieftemperaturtechnik auf das Diffraktometer transferiert werden) bei Raumtemperatur in die Edukte. Der zweite Faktor, der Einfluss auf die Struktur hat, ist die Art und Stärke der sekundären Wechselwirkungen. Generell gilt: je stärker die Wechselwirkungen, desto weniger Ag-X-Bindungen treten

auf, d. h. desto geringer ist die Ähnlichkeit mit dem ursprünglichen kubischen Silberhalogenidgitter. Die Strukturen der primären Amine zeigen jedoch, dass nicht nur die Wechselwirkungen ausschlaggebend sein können, da trotz gleicher Wechselwirkungsmuster verschieden Strukturen zu finden sind. Als dritter Faktor kommt die Polarität der Aminreste hinzu. Je unpolarer die Reste und je polarer das Silberhalogenid, desto wahrscheinlicher wird ein Überschuss an Amin in der Kristallstruktur. Des Weiteren scheint bei heterocyclischen Aromaten einem Methylsubstituenten in *meta*-Position eine besondere Bedeutung zuzukommen, da diese Amine in allen Fällen von der typischen Treppenstruktur abweichen.

### Schlussbemerkung

Die deutlich erweiterte Datenbasis ermöglicht ein besseres Verständnis der Strukturvielfalt von Aminsilberhalogenid-Komplexen. Eine konkrete Strukturvorhersage ist jedoch immer noch nicht möglich, wohl aber konnten die wichtigsten Einflussfaktoren bestimmt werden, so dass in eingeschränktem Maße Aussagen über den allgemeinen Strukturaufbau getroffen werden können (z. B. wahrscheinliche Koordinationszahl des Silbers und Anzahl der Halogenidund Aminliganden). Um allgemeinere Aussagen treffen zu können, haben wir ebenfalls Untersuchungen an Silberdisulfonylamiden mit Aminliganden durchgeführt [23]. Die Veröffentlichung dieser Ergebnisse ist in Vorbereitung.

### **Experimenteller Teil**

### Synthese der Kristalle

Mit einer Ausnahme wurden alle beschriebenen Komplexe nach derselben Methode synthetisiert. Es wurden 200 mg des Silberhalogenids in 5 mL des Amins gegeben und 16 h bei Raumtemperatur gerührt. Die entstandene Lösung wurde auf 20 Glühröhrchen verteilt und in je 10 der Röhrchen mit Diethylether bzw. Petrolether überschichtet. Während des Kristallwachstums wurden die Proben dunkel und bei Raumtemperatur gelagert. Binnen ein bis drei Tagen konnten diffraktionstaugliche Kristalle erhalten werden, die außerhalb der Mutterlauge zum Teil nur wenige Sekunden stabil waren, im Kaltgasstrom des Diffraktometers jedoch keine weiteren Anzeichen von Zersetzung zeigten. Aufgrund dieser Instabilität war es nicht möglich, aussagekräftige Elementaranalysen zu erhalten. Mit Cyclohexylamin erhält man nicht wie oben beschrieben eine Lösung, sondern es bleibt ein Bodensatz zurück. Trennt man diesen ab, löst ihn in Tetrahydrofuran und verfährt mit dieser Lösung wie oben beschrieben,



Abb. 41. Asymmetrische Einheit von 1.



Abb. 42. Asymmetrische Einheit von 2.



Abb. 43. Asymmetrische Einheit von 3.



Abb. 44. Asymmetrische Einheit von 4.



Abb. 45. Asymmetrische Einheit von 5.



Abb. 46. Asymmetrische Einheit von 6.



Abb. 47. Asymmetrische Einheit von 7.



Abb. 48. Asymmetrische Einheit von 8.



Abb. 49. Asymmetrische Einheit von 9.



Abb. 50. Formeleinheit von **10** (asymmetrische Einheit mit dicken Bindungsstrichen).



Abb. 51. Asymmetrische Einheit von 11.



Abb. 52. Formeleinheit von **12** (asymmetrische Einheit mit dicken Bindungsstrichen).



Abb. 53. Asymmetrische Einheit von 13.



Abb. 54. Asymmetrische Einheit von 14.



Abb. 55. Asymmetrische Einheit von 15.



Abb. 56. Asymmetrische Einheit von 16.



Abb. 57. Asymmetrische Einheit von 17.



Abb. 58. Asymmetrische Einheit von 18.

Tabelle 18. Fällungsmittel, die zu den vermessenen Kristallen führten.

| Substanz                                           | Fällungsmittel |
|----------------------------------------------------|----------------|
| Iodo(4-picolin)silber(I) (1)                       | Petrolether    |
| Chloro(2,4-lutidin)silber(I) (2)                   | Dichlormethan  |
| Iodo(2,4-lutidin)silber(I) (3)                     | Petrolether    |
| Chlorobis(3,4-lutidin)silber(I) (4)                | Diethylether   |
| Iodo(3,4-lutidin)silber(I) (5)                     | Petrolether    |
| Chloro(3,5-lutidin)silber(I) (6)                   | Petrolether    |
| Chloro(benzylamin)silber(I) (7)                    | Petrolether    |
| Bromo(benzylamin)silber(I) (8)                     | Petrolether    |
| Trischlorotetrakis(cyclohexylamin)trisilber(I) (9) | Petrolether    |
| Chlorobis(cyclohexylamin)silber(I) (10)            | Petrolether    |
| Bromo(cyclohexylamin)silber(I) (11)                | Petrolether    |
| Tetrakischloropentakis(4-methylpiperidin)penta-    | Diethylether   |
| silber(I) (12)                                     |                |
| Bisbromotris(4-methylpiperidin)silber(I) (13)      | Diethylether   |
| Chlorobis(morpholin)silber(I) (14)                 | Diethylether   |
| Bromobis(morpholin)silber(I) (15)                  | Petrolether    |
| Chloro(phenylethylamin)silber(I) (16)              | Petrolether    |
| Bromo(phenylethylamin)silber(I) (17)               | Petrolether    |
| Iodo(phenylethylamin)silber(I) (18)                | Petrolether    |
| Chloro(pyrrolidin)silber(I) (19)                   | Diethvlether   |



Abb. 59. Asymmetrische Einheit von 19.

erhält man Kristalle. Rührt man die ursprüngliche Reaktionslösung 16 h erhält man 9, rührt man sie für 3 Tage erhält man 10. Tabelle 18 ist zu entnehmen, welche Fällungsmittel für die einzelnen Verbindungen zu den vermessenen Kristallen führten.

#### Röntgenstrukturanalysen

Die Kristalle wurden in Inertöl auf Glasfäden montiert und so schnell wie möglich in den Kaltgasstrom des Diffraktometers verbracht, um eine Zersetzung zu vermeiden. Es wurde auf einem Bruker SMART 1000 CCD Diffraktometer bei 133 K mit Mo $K_{\alpha}$ -Strahlung gemessen. Eine Absorptionkorrektur erfolgte nach der Multi-Scan Methode mit dem Programm SADABS. Die Strukturmodelle wurden anisotrop gegen  $F^2$  mit dem Programm SHELXL-97 [27] verfeinert. Die Wasserstoffatome wurden, mit Ausnahme der NH-Wasserstoffe, per Reiter-Modell bzw. als starre Methylgruppe verfeinert. Die Daten zu den Strukturbestimmungen sind Tabelle 19 zu entnehmen und Ellipsoidbilder der asymmetrischen Einheiten (alle mit 50 % Aufenthaltswahrscheinlichkeit) sind in den Abb. 41–59 zu finden. Abweichungen vom beschriebenen Vorgehen sind im Folgenden beschrieben.

CCDC 757407 (1), 757408 (2), 757409 (3), 757410 (4), 757411 (5), 757412 (6), 757413 (7), 757414 (8), 265958 (9), 757415 (10), 757416 (11), 265959 (12), 757417 (13), 757418 (14), 757419 (15), 757420 (16), 757421 (17), 757422 (18), 769842 (19) enthalten die beim Cambridge Crystallographic Data Centre hinterlegten Kristallstrukturdaten. Anforderung: www.ccdc.cam.ac.uk/data\_request/cif.

#### Experimentelle Ausnahmen/Besonderheiten

Die Struktur von **13** wurde mit einer CuK $\alpha$ -Strahlungsquelle auf einem Bruker SMART 6000 CCD Diffraktometer gemessen. Die Struktur von **19** wurde auf einem Bruker SMART APEX II Diffraktometer bestimmt. Es war aufgrund geringer Stabilität nötig, die Kristalle im Kaltgasstrom einer X-TEMP2-Anlage aus der Mutterlauge zu entnehmen und unter Kaltgas im Inertöl zu präparieren [29].

#### Verzwillingte Kristalle

Die vermessenen Kristalle von 1, 2 und 8 waren racemisch verzwillingt. Der Kristall von 4 war nicht-meroedrisch über eine  $180^{\circ}$ -Rotation um [201] verzwillingt. Der Kristall von 16 war nicht-meroedrisch über eine  $180^{\circ}$ -Rotation um die *c*-Achse verzwillingt. Bei 4 und 16 wurde das Programm TWINABS der Fa. Bruker für die Absorptionskorrektur verwendet.

#### Besonderheiten bei der Absorptionskorrektur

Bei 7 und 17 zeigten die Kristalle schön gewachsene Flächen, so dass eine Absorptionskorrektur durch Indizierung der Flächen und Integration vorgenommen wurde.

#### Besonderheiten bei der Verfeinerung

In einigen Fällen wurden Restraints verwendet, um eine stabilere Verfeinerung zu gewährleisten. Bei **3**, **11**, **16** und **19** war es nötig, die N–H-Bindungslängen mit Hilfe des SADI-Befehls aneinander anzugleichen. Bei **3** war dies für die Bindungen zu den Methylkohlenstoffatomen der Fall. Hier war es ebenfalls notwendig, die Atome des Aminliganden durch den FLAT-Befehl in einer Ebene festzuhalten. Bei **8** wurden die Positionen der NH-Wasserstoffatome frei verfeinert, ihre *U*-Werte mussten jedoch festgehalten werden. Aufgrund von Problemen bei der anisotropen Verfeinerung der Kohlenstoff- und Stickstoffatome von **13** musste für sie der DELU-Befehl (Angleichung der *U*-Komponenten entlang gemeinsamer Bindung) verwendet werden. Für die

# Tabelle 19. Kristallstrukturdaten für 1–19.

|                                                       | 1                                  | 2                              | 3                              | 4                              |
|-------------------------------------------------------|------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Summenformel                                          | C <sub>6</sub> H <sub>7</sub> AgIN | C7H9AgClN                      | C7H9AgIN                       | C14H18AgClN2                   |
| Mr                                                    | 327,90                             | 250,47                         | 341,92                         | 357,62                         |
| Kristallgröße [mm <sup>3</sup> ]                      | $0,30 \times 0,11 \times 0,09$     | $0.38 \times 0.08 \times 0.07$ | $0,22 \times 0,05 \times 0,05$ | $0.27 \times 0.15 \times 0.14$ |
| <i>T</i> [K]                                          | 133(2)                             | 133(2)                         | 133(2)                         | 133(2)                         |
| Kristallsystem                                        | orthorhombisch                     | orthorhombisch                 | orthorhombisch                 | monoklin                       |
| Raumgruppe                                            | $P2_{1}2_{1}2_{1}$                 | $P2_{1}2_{1}2_{1}$             | $Pna2_1$                       | $P2_1/c$                       |
| <i>a</i> [Å]                                          | 4,4293(3)                          | 4,0598(10)                     | 11,7547(9)                     | 10,5136(8)                     |
| b Å                                                   | 9,5095(7)                          | 14,261(4)                      | 17,2068(14)                    | 7,3795(6)                      |
|                                                       | 19.0331(14)                        | 14.307(4)                      | 4.4421(4)                      | 18.5925(16)                    |
| $\alpha$ [°]                                          | 90                                 | 90                             | 90                             | 90                             |
| β <sup>[°]</sup>                                      | 90                                 | 90                             | 90                             | 18,5925(16)                    |
| γ[°]                                                  | 90                                 | 90                             | 90                             | 90                             |
| V [Å <sup>3</sup> ]                                   | 801.68(10)                         | 828.3(4)                       | 898,46(13)                     | 1442,1(2)                      |
| Z                                                     | 4                                  | 4                              | 4                              | 4                              |
| $D_{\rm hor} \left[ \rm g  \rm cm^{-3} \right]$       | 2.72                               | 2.01                           | 2.53                           | 1.65                           |
| $\mu(M_0K_{\alpha})$ [mm <sup>-1</sup> ]              | 6.3                                | 2.7                            | 5.6                            | 1.6                            |
| Durchlässigkeiten                                     | 0.6019 - 0.2540                    | 0.8347 - 0.4607                | 0.7668 - 0.3914                | 0.8105 - 0.6546                |
| F(000) [e]                                            | 600                                | 488                            | 632                            | 720                            |
| hkl-Bereich                                           | $\pm 6 \pm 13 \pm 27$              | +5 +20 +20                     | +16 +24 +6                     | +15 +10 +26                    |
| 20mm [°]                                              | $\pm 0, \pm 10, \pm 27$            | $\pm 0, \pm 20, \pm 20$        | $\pm 10, \pm 21, \pm 0$        | 61                             |
| Gemessene Reflexe                                     | 16675                              | 16178                          | 18685                          | 6537 <sup>a</sup>              |
| Unabh Reflexe                                         | 2456                               | 2426                           | 2763                           | 0557                           |
| R:                                                    | 0.0671                             | 0.0834                         | 0.0915                         |                                |
| Verfeinerte Param                                     | 84                                 | 94                             | 94                             | 168                            |
| $R(F)^{b}$ $[F > 4\sigma(F)]$                         | 0.0232                             | 0.0412                         | 0.0449                         | 0.0368                         |
| $wR(F^2)^{b}$ (alle Reflexe)                          | 0.0533                             | 0.0807                         | 0.1102                         | 0,0998                         |
| r (Flack)                                             | 0.14(3)                            | 0.18(6)                        | 0.21(9)                        | 0,0778                         |
| $G_{OE}(F^2)^{c}$                                     | 1.05                               | 1.04                           | 1.07                           | 1.05                           |
| $\Delta q_{\rm c}$ (max / min) [ $e^{\lambda - 31}$ ] | 0.86 / 0.63                        | 1 30 / 0.62                    | 1,07                           | 1,05                           |
| $\Delta p_{\text{fin}}$ (max / mm) [e A ]             | 0,807-0,05                         | 1,507-0,02                     | 1,757-1,05                     | 1,017=0,50                     |
|                                                       | 5                                  | 6                              | 7                              | 8                              |
| Summenformel                                          | C <sub>7</sub> H <sub>9</sub> AgIN | C7H9AgClN                      | C7H9AgClN                      | C7H9AgBrN                      |
| M <sub>r</sub>                                        | 341,92                             | 250,47                         | 250,47                         | 294,93                         |
| Kristallgröße [mm <sup>3</sup> ]                      | $0,27 \times 0,16 \times 0,13$     | $0,27 \times 0,09 \times 0,07$ | $0,21 \times 0,16 \times 0,11$ | $0,15 \times 0,08 \times 0,03$ |
| <i>T</i> [K]                                          | 133(2)                             | 133(2)                         | 133(2)                         | 133(2)                         |
| Kristallsystem                                        | monoklin                           | monoklin                       | monoklin                       | orthorhombisch                 |
| Raumgruppe                                            | $P2_1/c$                           | C2/c                           | C2/c                           | $P2_12_12_1$                   |
| a [A]                                                 | 4,5202(4)                          | 13,6109(7)                     | 31,988(2)                      | 4,3363(6)                      |
| <i>b</i> [Å]                                          | 10,4992(10)                        | 15,3796(7)                     | 4,3033(2)                      | 5,8657(8)                      |
| <i>c</i> [Å]                                          | 19,0080(16)                        | 8,1799(4)                      | 11,7302(6)                     | 32,596(4)                      |
| α [°]                                                 | 90                                 | 90                             | 90                             | 90                             |
| β [°]                                                 | 94,837(4)                          | 103,4700(10)                   | 99,948(4)                      | 90                             |
| γ[°]                                                  | 90                                 | 90                             | 90                             | 90                             |
| $V [A^3]$                                             | 898,88(14)                         | 1665,20(14)                    | 1590,45(15)                    | 829,10(19)                     |
| Z                                                     | 4                                  | 8                              | 8                              | 4                              |
| $D_{\rm ber} [{\rm gcm^{-3}}]$                        | 2,53                               | 2,0                            | 2,09                           | 2,36                           |
| $\mu(\text{Mo}K_{\alpha}) \text{ [mm}^{-1}\text{]}$   | 5,6                                | 2,7                            | 2,8                            | 7,2                            |
| Durchlässigkeiten                                     | 0,5294-0,3732                      | 0,8355-0,6521                  | 0,7579-0,6368                  | 0,8136-0,3194                  |
| <i>F</i> (000) [e]                                    | 632                                | 976                            | 976                            | 560                            |
| hkl-Bereich                                           | $\pm 6, \pm 14, \pm 27$            | $\pm 19, \pm 21, \pm 11$       | $\pm 45, \pm 6, \pm 16$        | $\pm 6, \pm 8, \pm 46$         |
| $2\theta_{\rm max}$ [°]                               | 61                                 | 60                             | 61                             | 61                             |
| Gemessene Reflexe                                     | 19021                              | 15626                          | 12276                          | 17505                          |
| Unabh. Reflexe                                        | 2755                               | 2433                           | 2416                           | 2527                           |
| R <sub>int</sub>                                      | 0,0254                             | 0,0372                         | 0,0318                         | 0,0467                         |
| Verfeinerte Param.                                    | 93                                 | 93                             | 99                             | 98                             |
| $R(F)^{\rm b}[F \ge 4\sigma(F)]$                      | 0,0180                             | 0,0296                         | 0,0169                         | 0,0325                         |
| $wR(F^2)^{b}$ (alle Reflexe)                          |                                    |                                | 0.0450                         | 0.0567                         |
| ( <b>F1</b> 1)                                        | 0,0401                             | 0,0713                         | 0,0450                         | 0,0307                         |
| x (Flack)                                             | 0,0401                             | 0,0713                         | -                              | 0,363(13)                      |
| x (Flack)<br>GoF $(F^2)^c$                            | 0,0401<br>-<br>1,06                | 0,0713<br>-<br>1,04            | -<br>1,08                      | 0,363(13)<br>1,20              |

## Tabelle 19 (Fortsetzung).

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summenformel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C24H52Ag3Cl3N4                                                                                                                                                                                                                                                                                                                                                                                            | C12H26AgClN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>6</sub> H <sub>13</sub> AgBrN                                                                                                                                                                                                                                                                                                                                                 | C24H52Ag5Cl5N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <i>M</i> <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1653,31                                                                                                                                                                                                                                                                                                                                                                                                   | 341,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 286,95                                                                                                                                                                                                                                                                                                                                                                               | 1113,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Kristallgröße [mm <sup>3</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.46 \times 0.20 \times 0.09$                                                                                                                                                                                                                                                                                                                                                                            | $0,35 \times 0,15 \times 0,09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0,21 \times 0,12 \times 0,07$                                                                                                                                                                                                                                                                                                                                                       | $0.37 \times 0.15 \times 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 133(2)                                                                                                                                                                                                                                                                                                                                                                                                    | 133(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 133(2)                                                                                                                                                                                                                                                                                                                                                                               | 133(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Kristallsystem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | triklin                                                                                                                                                                                                                                                                                                                                                                                                   | monoklin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | monoklin                                                                                                                                                                                                                                                                                                                                                                             | tetragonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Raumgruppe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PĪ                                                                                                                                                                                                                                                                                                                                                                                                        | $C^{2/c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P2/c                                                                                                                                                                                                                                                                                                                                                                                 | P4/n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a [Å]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 2950(12)                                                                                                                                                                                                                                                                                                                                                                                               | 8 9677(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 163585(18)                                                                                                                                                                                                                                                                                                                                                                           | 17 2444(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $h[\Lambda]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 6318(14)                                                                                                                                                                                                                                                                                                                                                                                               | 6 5449(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 5300(8)                                                                                                                                                                                                                                                                                                                                                                            | 17,2444(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26 616(3)                                                                                                                                                                                                                                                                                                                                                                                                 | 25 642(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 288(4)                                                                                                                                                                                                                                                                                                                                                                            | 6 0965(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| α [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93 265(4)                                                                                                                                                                                                                                                                                                                                                                                                 | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                                                                                   | 0,0000(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| α[]<br>β[°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91,424(4)                                                                                                                                                                                                                                                                                                                                                                                                 | 95 992(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91.702(4)                                                                                                                                                                                                                                                                                                                                                                            | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90,007(4)                                                                                                                                                                                                                                                                                                                                                                                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7 L J<br>V [Å3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2140.2(()                                                                                                                                                                                                                                                                                                                                                                                                 | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90<br>2447 5(7)                                                                                                                                                                                                                                                                                                                                                                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V [A <sup>+</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3140,2(6)                                                                                                                                                                                                                                                                                                                                                                                                 | 1490,8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3447,5(7)                                                                                                                                                                                                                                                                                                                                                                            | 1812,91(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\mathcal{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $D_{\text{ber}}[g\text{cm}^{-1}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,75                                                                                                                                                                                                                                                                                                                                                                                                      | 1,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,21                                                                                                                                                                                                                                                                                                                                                                                 | 2,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mu(MoK_{\alpha})$ [mm <sup>-1</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,1                                                                                                                                                                                                                                                                                                                                                                                                       | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,9                                                                                                                                                                                                                                                                                                                                                                                  | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Durchlässigkeiten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,8316-0,5722                                                                                                                                                                                                                                                                                                                                                                                             | 0,8765-0,6209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,6439-0,4581                                                                                                                                                                                                                                                                                                                                                                        | 0,7116-0,3990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| F(000) [e]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1664                                                                                                                                                                                                                                                                                                                                                                                                      | 704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2208                                                                                                                                                                                                                                                                                                                                                                                 | 1088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| hkl-Bereich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\pm 14, \pm 16, +37$                                                                                                                                                                                                                                                                                                                                                                                     | $\pm 12, \pm 9, \pm 36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\pm 21, \pm 8, \pm 43$                                                                                                                                                                                                                                                                                                                                                              | $\pm 24, \pm 24, \pm 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $2\theta_{\max}$ [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60                                                                                                                                                                                                                                                                                                                                                                                                        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56                                                                                                                                                                                                                                                                                                                                                                                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Gemessene Reflexe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22124 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                        | 15127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61215                                                                                                                                                                                                                                                                                                                                                                                | 33360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Unabh. Reflexe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                           | 2190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8564                                                                                                                                                                                                                                                                                                                                                                                 | 2765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| R <sub>int</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0807                                                                                                                                                                                                                                                                                                                                                                               | 0,0248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Verfeinerte Param.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 663                                                                                                                                                                                                                                                                                                                                                                                                       | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 351                                                                                                                                                                                                                                                                                                                                                                                  | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $R(F)^{\rm b}$ [ $F > 4\sigma(F)$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,0446                                                                                                                                                                                                                                                                                                                                                                                                    | 0,0178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0431                                                                                                                                                                                                                                                                                                                                                                               | 0,0180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $wR(F^2)^{b}$ (alle Reflexe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,1041                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,1036                                                                                                                                                                                                                                                                                                                                                                               | 0,0443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| x (Flack)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\operatorname{GoF}(F^2)^c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.05                                                                                                                                                                                                                                                                                                                                                                                                      | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.06                                                                                                                                                                                                                                                                                                                                                                                 | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\Delta \rho_{er}$ (max / min) [e Å <sup>-3</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94 / - 0.76                                                                                                                                                                                                                                                                                                                                                                                             | 0.56/-0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.91/-1.59                                                                                                                                                                                                                                                                                                                                                                           | 0.74 / - 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,717 0,70                                                                                                                                                                                                                                                                                                                                                                                                | 0,007 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,017 1,09                                                                                                                                                                                                                                                                                                                                                                           | 0,717 0,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                      | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15<br>                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Summenformel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{13}{C_{12}H_{26}Ag_{3}Br_{3}N_{2}}$                                                                                                                                                                                                                                                                                                                                                                | 14<br>C <sub>8</sub> H <sub>18</sub> AgClN <sub>2</sub> O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15<br>C <sub>8</sub> H <sub>18</sub> AgBrN <sub>2</sub> O <sub>2</sub>                                                                                                                                                                                                                                                                                                               | <b>16</b><br>C <sub>8</sub> H <sub>11</sub> AgClN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Summenformel<br>M <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13<br>C <sub>12</sub> H <sub>26</sub> Ag <sub>3</sub> Br <sub>3</sub> N <sub>2</sub><br>761,69                                                                                                                                                                                                                                                                                                            | <b>14</b><br>C <sub>8</sub> H <sub>18</sub> AgClN <sub>2</sub> O <sub>2</sub><br>317,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>15</b><br>C <sub>8</sub> H <sub>18</sub> AgBrN <sub>2</sub> O <sub>2</sub><br>362,02                                                                                                                                                                                                                                                                                              | <b>16</b><br>C <sub>8</sub> H <sub>11</sub> AgClN<br>264,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Summenformel<br>M <sub>r</sub><br>Kristallgröße [mm <sup>3</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18\times0,10\times0,02 \end{array}$                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \textbf{14} \\ C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \textbf{15} \\ C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \end{array}$                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{16} \\ \hline C_8 H_{11} \text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Summenformel<br>M <sub>r</sub><br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \end{array}$                                                                                                                                                                                                                                                                    | $\begin{array}{c} 14 \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40\times0,12\times0,07 \\ 133(2) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \end{array}$                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{16} \\ \hline C_8 H_{11} \text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Summenformel<br>M <sub>r</sub><br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \end{array}$                                                                                                                                                                                                                                                        | $\begin{array}{c} 14 \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40\times0,12\times0,07 \\ 133(2) \\ monoklin \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \end{array}$                                                                                                                                                                                                                                        | $\begin{array}{c} \textbf{16} \\ \hline C_8H_{11}AgClN \\ 264,50 \\ 0,24\times0,23\times0,10 \\ 133(2) \\ monoklin \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Summenformel<br>M <sub>r</sub><br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \end{array}$                                                                                                                                                                                                                                            | $\begin{array}{c} 14 \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \end{array}$                                                                                                                                                                                                                                | $\begin{array}{c} \textbf{16} \\ \hline C_8 H_{11} \text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ \text{monoklin} \\ P2_1/c \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \end{array}$                                                                                                                                                                                                                              | $\begin{array}{c} \textbf{14} \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \end{array}$                                                                                                                                                                                                                   | $\begin{array}{c} \textbf{16} \\ \hline C_8H_{11}AgClN \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ monoklin \\ P2_1/c \\ 18,2336(14) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]<br>b [Å]                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \end{array}$                                                                                                                                                                                                                 | $\begin{array}{c} \textbf{14} \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ \text{monoklin} \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \end{array}$                                                                                                                                                                                                      | $\begin{array}{c} \textbf{16} \\ \hline C_8H_{11}\text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ \text{monoklin} \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]<br>b [Å]<br>c [Å]                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \end{array}$                                                                                                                                                                                                    | $\begin{array}{c} \textbf{14} \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ \text{monoklin} \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \end{array}$                                                                                                                                                                                       | $\begin{array}{c} \textbf{16} \\ \hline C_8H_{11}\text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ \text{monoklin} \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]<br>b [Å]<br>c [Å]<br>$\alpha$ [°]                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \end{array}$                                                                                                                                                                                              | $\begin{array}{c} \textbf{14} \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ \text{monoklin} \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \textbf{15} \\ C_8H_{18}AgBrN_2O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ \text{monoklin} \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \end{array}$                                                                                                                                                                                      | $\begin{array}{c} \textbf{16} \\ \hline C_8H_{11}\text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ \text{monoklin} \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Summenformel $M_r$ Kristallgröße [mm³] $T$ [K]         Kristallsystem         Raumgruppe $a$ [Å] $b$ [Å] $c$ [Å] $\alpha$ [°] $\beta$ [°]                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \end{array}$                                                                                                                                                                                 | $\begin{array}{c} 14 \\ \hline C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \end{array}$                                                                                                                                                                   | $\begin{array}{r} \hline 16 \\ \hline C_8 H_{11} AgClN \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ monoklin \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Summenformel $M_r$ Kristallgröße [mm³] $T$ [K]         Kristallsystem         Raumgruppe $a$ [Å] $b$ [Å] $c$ [Å] $\alpha$ [°] $\beta$ [°] $\gamma$ [°]                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \end{array}$                                                                                                                                                                           | $\begin{array}{c} 14 \\ \hline C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \end{array}$                                                                                                                                                             | $\begin{array}{r} \hline $16$\\ \hline $\mathbb{C}_8 \mathrm{H}_{11} \mathrm{AgClN}$\\ $264,50$\\ $0,24 \times 0,23 \times 0,10$\\ $133(2)$\\ $monoklin$\\ $P2_1/c$\\ $18,2336(14)$\\ $5,1150(4)$\\ $9,7306(8)$\\ $90$\\ $100,047(4)$\\ $90$\\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Summenformel $M_r$ Kristallgröße [mm <sup>3</sup> ] $T$ [K]         Kristallsystem         Raumgruppe $a$ [Å] $b$ [Å] $c$ [Å] $\alpha$ [°] $\beta$ [°] $\gamma$ [°] $\gamma$ [Å]                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P_{21}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836.6(13) \end{array}$                                                                                                                                                             | $\begin{array}{c} 14 \\ \hline C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \end{array}$                                                                                                                                                | $\begin{array}{r} \hline 16 \\ \hline C_8 H_{11} AgClN \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ monoklin \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Summenformel $M_r$ Kristallgröße [mm <sup>3</sup> ] $T$ [K]         Kristallsystem         Raumgruppe $a$ [Å] $b$ [Å] $c$ [Å] $\alpha$ [°] $\beta$ [°] $\gamma$ [°] $V$ [Å <sup>3</sup> ] $Z$                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \end{array}$                                                                                                                                                       | $\begin{array}{c} 14 \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \end{array}$                                                                                                                                           | $\begin{array}{r} \hline 16 \\ \hline C_8 H_{11} AgClN \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ monoklin \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]<br>b [Å]<br>c [Å]<br>c [Å]<br>$\alpha$ [°]<br>$\beta$ [°]<br>$\gamma$ [°]<br>$\gamma$ [°]<br>V [Å <sup>3</sup> ]<br>Z<br>Dec [ $g$ cm <sup>-3</sup> ]                                                                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2 \ 60 \\ \end{array}$                                                                                                                                          | $\begin{array}{c} 14 \\ C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1.88 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \end{array}$                                                                                                                                   | $\begin{array}{r} \hline 16 \\ \hline C_8 H_{11} AgClN \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ monoklin \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1 97 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Summenformel $M_r$ Kristallgröße [mm <sup>3</sup> ] $T$ [K]         Kristallsystem         Raumgruppe $a$ [Å] $b$ [Å] $c$ [Å] $\alpha$ [°] $\beta$ [°] $\gamma$ [°] $V$ [Å <sup>3</sup> ] $Z$ $D_{ber}$ [g cm <sup>-3</sup> ] $u$ (MoK <sub>a</sub> ) [mm <sup>-1</sup> ]                                                                                                                                                                                                                                                                  | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{d} \end{array}$                                                                                                                                   | $\begin{array}{c} 14 \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5 1 \end{array}$                                                                                                                            | $\begin{array}{r} \hline 16 \\ \hline C_8 H_{11} AgClN \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ monoklin \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]<br>b [Å]<br>c [Å]<br>$\alpha$ [°]<br>$\beta$ [°]<br>$\gamma$ [°]<br>$\gamma$ [°]<br>V [Å <sup>3</sup> ]<br>Z<br>$D_{ber}$ [g cm <sup>-3</sup> ]<br>$\mu$ (MoK $\alpha$ ) [mm <sup>-1</sup> ]<br>Durchläsigkeiten                                                                                                                                                                                                               | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{d} \\ 0,7061=0.0410 \end{array}$                                                                                                                  | 14 $C_8H_{18}AgClN_2O_2$ 317,56 $0,40 \times 0,12 \times 0,07$ 133(2)           monoklin $C2/c$ 23,2232(18)           6,2683(4)           16,6273(12)           90           111,946(4)           90           2245,0(3)           8           1,88           2,0           0,8720-0.6969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482-0,2953 \\ \end{array}$                                                                                                        | $\begin{array}{r} \hline 16 \\ \hline C_8H_{11}AgClN \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ monoklin \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890-0.5436 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]<br>b [Å]<br>c [Å]<br>$\alpha$ [°]<br>$\beta$ [°]<br>$\gamma$ [°]<br>$\gamma$ [°]<br>$\gamma$ [°]<br>$\gamma$ [°]<br>V [Å <sup>3</sup> ]<br>Z<br>$D_{ber}$ [g cm <sup>-3</sup> ]<br>$\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]<br>Durchlässigkeiten<br>E(000) [e]                                                                                                                                                             | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{d} \\ 0,7061-0,0410 \\ 4296 \end{array}$                                                                                                          | $\begin{array}{c} 14 \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482-0,2953 \\ 1424 \end{array}$                                                                                                   | $\begin{array}{r} \hline 16 \\ \hline C_8 H_{11} AgClN \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ monoklin \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890-0,5436 \\ 520 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Summenformel $M_r$ Kristallgröße [mm³] $T$ [K]         Kristallsystem         Raumgruppe $a$ [Å] $b$ [Å] $c$ [Å] $\alpha$ [°] $\beta$ [°] $\gamma$ [°] $V$ [ų] $Z$ $D_{ber}$ [g cm <sup>-3</sup> ] $\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]         Durchlässigkeiten $F(000)$ [e] $kll$ Bærgich                                                                                                                                                                                                                                       | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{4} \\ 0,7061-0,0410 \\ 4296 \\ \pm 10,\pm 25,\pm 38 \end{array}$                                                                                  | $\begin{array}{c} 14 \\ \hline C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \\ +322+8,+23 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482 - 0,2953 \\ 1424 \\ + 33 + 0, +23 \end{array}$                                                                                | $\begin{array}{c} \textbf{16} \\ \hline C_8H_{11}\text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ \text{monoklin} \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890-0,5436 \\ 520 \\ +25+7+13 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Summenformel $M_r$ Kristallgröße [mm³] $T$ [K]         Kristallsystem         Raumgruppe $a$ [Å] $b$ [Å] $c$ [Å] $\alpha$ [°] $\beta$ [°] $\gamma$ [°] $V$ [ų] $Z$ $D_{ber}$ [g cm <sup>-3</sup> ] $\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]         Durchlässigkeiten $F(000)$ [e] $hkl$ -Bereich $2\theta$                                                                                                                                                                                                                            | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{4} \\ 0,7061-0,0410 \\ 4296 \\ \pm 10, \pm 25, \pm 38 \\ 140 \end{array}$                                                                         | $\begin{array}{c} 14 \\ \hline C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \\ \pm 32, \pm 8, \pm 23 \\ 61 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482-0,2953 \\ 1424 \\ \pm 33, \pm 9, \pm 23 \\ 61 \end{array}$                                                                    | $\begin{array}{c} \textbf{16} \\ \hline C_8H_{11}\text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ \text{monoklin} \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890-0,5436 \\ 520 \\ \pm 25,+7,+13 \\ 60 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Summenformel $M_r$ Kristallgröße [mm³] $T$ [K]         Kristallsystem         Raumgruppe $a$ [Å] $b$ [Å] $c$ [Å] $\alpha$ [°] $\beta$ [°] $\gamma$ [°] $V$ [ų] $Z$ $D_{ber}$ [g cm <sup>-3</sup> ] $\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]         Durchlässigkeiten $F(000)$ [e] $hkl$ -Bereich $2\theta_{max}$ [°]         Currenserie Befleure                                                                                                                                                                                     | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{d} \\ 0,7061-0,0410 \\ 4296 \\ \pm 10,\pm 25,\pm 38 \\ 140 \\ 104044 \end{array}$                                                                 | $\begin{array}{c} 14 \\ \hline C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \\ \pm 32, \pm 8, \pm 23 \\ 61 \\ 20552 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482-0,2953 \\ 1424 \\ \pm 33, \pm 9, \pm 23 \\ 61 \\ 24154 \end{array}$                                                           | $\begin{array}{r} \textbf{16} \\ \hline C_8H_{11}\text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ \text{monoklin} \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890-0,5436 \\ 520 \\ \pm 25,+7,+13 \\ 60 \\ 25014 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]<br>b [Å]<br>c [Å]<br>$\alpha$ [°]<br>$\beta$ [°]<br>$\gamma$ [°]<br>V [Å <sup>3</sup> ]<br>Z<br>$D_{ber}$ [g cm <sup>-3</sup> ]<br>$\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]<br>Durchlässigkeiten<br>F(000) [e]<br>hkl-Bereich<br>$2\theta_{max}$ [°]<br>Gemessene Reflexe                                                                                                                                                  | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P_{21}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{d} \\ 0,7061-0,0410 \\ 4296 \\ \pm 10, \pm 25, \pm 38 \\ 140 \\ 104044 \\ 10700 \\ \end{array}$                                                   | $\begin{array}{c} 14 \\ \hline C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \\ \pm 32, \pm 8, \pm 23 \\ 61 \\ 20553 \\ 2427 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482-0,2953 \\ 1424 \\ \pm 33, \pm 9, \pm 23 \\ 61 \\ 24154 \\ 2566 \end{array}$                                                   | $\begin{array}{c} \textbf{16} \\ \hline C_8H_{11}\text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ \text{monoklin} \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890-0,5436 \\ 520 \\ \pm 25,+7,+13 \\ 60 \\ 3591^a \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]<br>b [Å]<br>c [Å]<br>$\alpha$ [°]<br>$\beta$ [°]<br>$\gamma$ [°]<br>$\gamma$ [°]<br>V [Å <sup>3</sup> ]<br>Z<br>$D_{ber}$ [g cm <sup>-3</sup> ]<br>$\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]<br>Durchlässigkeiten<br>F(000) [e]<br>hkl-Bereich<br>$2\theta_{max}$ [°]<br>Gemessene Reflexe<br>P                                                                                                                             | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P_{2_{1}}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{d} \\ 0,7061-0,0410 \\ 4296 \\ \pm 10, \pm 25, \pm 38 \\ 140 \\ 104044 \\ 10709 \\ 0.9862 \end{array}$                                         | $\begin{array}{c} 14 \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \\ \pm 32, \pm 8, \pm 23 \\ 61 \\ 20553 \\ 3427 \\ 0.9227 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482-0,2953 \\ 1424 \\ \pm 33, \pm 9, \pm 23 \\ 61 \\ 24154 \\ 3566 \\ 0,0225 \end{array}$                                         | $\begin{array}{r} \hline 16 \\ \hline C_8 H_{11} AgClN \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ monoklin \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890 - 0,5436 \\ 520 \\ \pm 25, +7, +13 \\ 60 \\ 3591^a \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]<br>b [Å]<br>c [Å]<br>$\alpha$ [°]<br>$\beta$ [°]<br>$\gamma$ [°]<br>$\gamma$ [°]<br>V [Å <sup>3</sup> ]<br>Z<br>$D_{\text{ber}}$ [g cm <sup>-3</sup> ]<br>$\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]<br>Durchlässigkeiten<br>F(000) [e]<br>hkl-Bereich<br>$2\theta_{\text{max}}$ [°]<br>Gemessene Reflexe<br>Unabl. Reflexe<br>$R_{\text{int}}$                                                                              | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P_{2_{1}}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{d} \\ 0,7061-0,0410 \\ 4296 \\ \pm 10, \pm 25, \pm 38 \\ 140 \\ 104044 \\ 10709 \\ 0,0863 \\ 511 \end{array}$                                  | $\begin{array}{c} 14 \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \\ \pm 32, \pm 8, \pm 23 \\ 61 \\ 20553 \\ 3427 \\ 0,0237 \\ 125 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482 - 0,2953 \\ 1424 \\ \pm 33, \pm 9, \pm 23 \\ 61 \\ 24154 \\ 3566 \\ 0,0225 \\ 155 \\ \end{array}$                             | 16 $C_8H_{11}AgClN$ 264,50 $0,24 \times 0,23 \times 0,10$ 133(2)           monoklin $P2_1/c$ 18,2336(14)           5,1150(4)           9,7306(8)           90           100,047(4)           90           893,61(12)           4           1,97           2,5           0,7890-0,5436           520 $\pm 25, +7, +13$ 60           3591 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]<br>b [Å]<br>c [Å]<br>$\alpha$ [°]<br>$\beta$ [°]<br>$\gamma$ [°]<br>$\gamma$ [°]<br>V [Å <sup>3</sup> ]<br>Z<br>$D_{ber}$ [g cm <sup>-3</sup> ]<br>$\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]<br>Durchlässigkeiten<br>F(000) [e]<br>hkl-Bereich<br>$2\theta_{max}$ [°]<br>Gemessene Reflexe<br>Unabh. Reflexe<br>$R_{int}$<br>Verfeinerte Param.                                                                             | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P_{2_{1}}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{d} \\ 0,7061-0,0410 \\ 4296 \\ \pm 10, \pm 25, \pm 38 \\ 140 \\ 104044 \\ 10709 \\ 0,0863 \\ 541 \\ 2,9267 \\ \end{array}$                     | $\begin{array}{c} 14 \\ C_8H_{18}AgClN_2O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \\ \pm 32, \pm 8, \pm 23 \\ 61 \\ 20553 \\ 3427 \\ 0,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 135 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\ 2,0237 \\$ | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482 - 0,2953 \\ 1424 \\ \pm 33, \pm 9, \pm 23 \\ 61 \\ 24154 \\ 3566 \\ 0,0225 \\ 135 \\ 2020 \end{array}$                                            | $\begin{array}{c} \textbf{16} \\ \hline C_8H_{11}AgClN \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ monoklin \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890-0,5436 \\ 520 \\ \pm 25,+7,+13 \\ 60 \\ 3591^a \\ \hline 109 \\ 0,0212 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Summenformel<br>$M_r$<br>Kristallgröße [mm <sup>3</sup> ]<br>T [K]<br>Kristallsystem<br>Raumgruppe<br>a [Å]<br>b [Å]<br>c [Å]<br>c [Å]<br>$\alpha$ [°]<br>$\beta$ [°]<br>$\gamma$ [°]<br>$\gamma$ [°]<br>$\gamma$ [°]<br>$\gamma$ [°]<br>V [Å <sup>3</sup> ]<br>Z<br>$D_{ber}$ [g cm <sup>-3</sup> ]<br>$\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]<br>Durchlässigkeiten<br>F(000) [e]<br>hkl-Bereich<br>$2\theta_{max}$ [°]<br>Gemessene Reflexe<br>Unabh. Reflexe<br>$R_{int}$<br>Verfeinerte Param.<br>$R(F)^b$ [ $F \ge 4\sigma(F)$ ] | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{d} \\ 0,7061-0,0410 \\ 4296 \\ \pm 10, \pm 25, \pm 38 \\ 140 \\ 104044 \\ 10709 \\ 0,0863 \\ 541 \\ 0,0826 \\ \end{array}$                        | $\begin{array}{c} 14 \\ C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \\ \pm 32, \pm 8, \pm 23 \\ 61 \\ 20553 \\ 3427 \\ 0,0237 \\ 135 \\ 0,0182 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482 - 0,2953 \\ 1424 \\ \pm 33, \pm 9, \pm 23 \\ 61 \\ 24154 \\ 3566 \\ 0,0225 \\ 135 \\ 0,0203 \\ \end{array}$                   | $\begin{array}{c} \textbf{16} \\ \hline C_8H_{11}\text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ \text{monoklin} \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890 - 0,5436 \\ 520 \\ \pm 25, +7, +13 \\ 60 \\ 3591^a \\ \hline 109 \\ 0,0312 \\ 109 \\ 0,0312 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ $ |
| Summenformel $M_r$ Kristallgröße [mm³] $T$ [K]         Kristallsystem         Raumgruppe $a$ [Å] $b$ [Å] $c$ [Å] $\alpha$ [°] $\beta$ [°] $\gamma$ [°] $V$ [ų] $Z$ $D_{ber}$ [g cm <sup>-3</sup> ] $\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]         Durchlässigkeiten $F(000)$ [e] $hkl$ -Bereich $2\theta_{max}$ [°]         Gemessene Reflexe         Unabh. Reflexe $R_{int}$ Verfeinerte Param. $R(F)^b$ [ $F \ge 4\sigma(F)$ ] $wR(F^2)^b$ (alle Reflexe)                                                                         | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{4} \\ 0,7061-0,0410 \\ 4296 \\ \pm 10,\pm 25,\pm 38 \\ 140 \\ 104044 \\ 10709 \\ 0,0863 \\ 541 \\ 0,0826 \\ 0,1848 \\ \end{array}$                | $\begin{array}{c} 14 \\ \hline C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \\ \pm 32, \pm 8, \pm 23 \\ 61 \\ 20553 \\ 3427 \\ 0,0237 \\ 135 \\ 0,0182 \\ 0,0439 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482-0,2953 \\ 1424 \\ \pm 33, \pm 9, \pm 23 \\ 61 \\ 24154 \\ 3566 \\ 0,0225 \\ 135 \\ 0,0203 \\ 0,0514 \\ \end{array}$           | $\begin{array}{r} \hline 16 \\ \hline C_8 H_{11} \mathrm{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ \mathrm{monoklin} \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890-0,5436 \\ 520 \\ \pm 25,+7,+13 \\ 60 \\ 3591^a \\ \hline 109 \\ 0,0312 \\ 0,0812 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Summenformel $M_r$ Kristallgröße [mm³] $T$ [K]         Kristallsystem         Raumgruppe $a$ [Å] $b$ [Å] $c$ [Å] $\alpha$ [°] $\beta$ [°] $\gamma$ [°] $V$ [ų] $Z$ $D_{ber}$ [g cm <sup>-3</sup> ] $\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]         Durchlässigkeiten $F(000)$ [e] $hkl$ -Bereich $2\theta_{max}$ [°]         Gemessene Reflexe         Unabh. Reflexe $R_{int}$ Verfeinerte Param. $R(F)^b$ [ $F \ge 4\sigma(F)$ ] $wR(F^2)^b$ (alle Reflexe) $x$ (Flack)                                                             | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{4} \\ 0,7061-0,0410 \\ 4296 \\ \pm 10, \pm 25, \pm 38 \\ 140 \\ 104044 \\ 10709 \\ 0,0863 \\ 541 \\ 0,0826 \\ 0,1848 \\ - \end{array}$            | $\begin{array}{c} 14 \\ \hline C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \\ \pm 32, \pm 8, \pm 23 \\ 61 \\ 20553 \\ 3427 \\ 0,0237 \\ 135 \\ 0,0182 \\ 0,0439 \\ - \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482-0,2953 \\ 1424 \\ \pm 33, \pm 9, \pm 23 \\ 61 \\ 24154 \\ 3566 \\ 0,0225 \\ 135 \\ 0,0203 \\ 0,0514 \\ - \end{array}$         | $\begin{array}{c} \textbf{16} \\ \hline C_8 H_{11} AgClN \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ monoklin \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890 - 0,5436 \\ 520 \\ \pm 25,+7,+13 \\ 60 \\ 3591^a \\ \hline 109 \\ 0,0312 \\ 0,0812 \\ - \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Summenformel $M_r$ Kristallgröße [mm³] $T$ [K]         Kristallsystem         Raumgruppe $a$ [Å] $b$ [Å] $c$ [Å] $a$ [°] $\beta$ [°] $\gamma$ [°] $V$ [ų] $Z$ $D_{ber}$ [g cm <sup>-3</sup> ] $\mu$ (Mo $K_{\alpha}$ ) [mm <sup>-1</sup> ]         Durchlässigkeiten $F(000)$ [e] $hkl$ -Bereich $2\theta_{max}$ [°]         Gemessene Reflexe         Unabh. Reflexe $R_{int}$ Verfeinerte Param. $R(F)^b$ [ $F \ge 4\sigma(F)$ ] $wR(F^2)^b$ (alle Reflexe) $x$ (Flack)         GoF ( $F^2$ ) <sup>c</sup>                               | $\begin{array}{c} \textbf{13} \\ \hline C_{12}H_{26}Ag_{3}Br_{3}N_{2} \\ 761,69 \\ 0,18 \times 0,10 \times 0,02 \\ 133(2) \\ monoklin \\ P2_{1}/n \\ 8,8772(12) \\ 20,861(3) \\ 31,524(4) \\ 90 \\ 91,102(7) \\ 90 \\ 5836,6(13) \\ 12 \\ 2,60 \\ 31,1^{2} \\ 0,7061-0,0410 \\ 4296 \\ \pm 10, \pm 25, \pm 38 \\ 140 \\ 104044 \\ 10709 \\ 0,0863 \\ 541 \\ 0,0826 \\ 0,1848 \\ - \\ 1,12 \\ \end{array}$ | $\begin{array}{c} 14 \\ \hline C_8 H_{18} AgClN_2 O_2 \\ 317,56 \\ 0,40 \times 0,12 \times 0,07 \\ 133(2) \\ monoklin \\ C2/c \\ 23,2232(18) \\ 6,2683(4) \\ 16,6273(12) \\ 90 \\ 111,946(4) \\ 90 \\ 2245,0(3) \\ 8 \\ 1,88 \\ 2,0 \\ 0,8720-0,6969 \\ 1280 \\ \pm 32, \pm 8, \pm 23 \\ 61 \\ 20553 \\ 3427 \\ 0,0237 \\ 135 \\ 0,0182 \\ 0,0439 \\ - \\ 1,09 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \textbf{15} \\ \hline C_8 H_{18} Ag Br N_2 O_2 \\ 362,02 \\ 0,23 \times 0,08 \times 0,06 \\ 133(2) \\ monoklin \\ C2/c \\ 23,481(2) \\ 6,3783(6) \\ 16,7011(14) \\ 90 \\ 111,114(4) \\ 90 \\ 2333,4(4) \\ 8 \\ 2,06 \\ 5,1 \\ 0,7482-0,2953 \\ 1424 \\ \pm 33, \pm 9, \pm 23 \\ 61 \\ 24154 \\ 3566 \\ 0,0225 \\ 135 \\ 0,0203 \\ 0,0514 \\ - \\ 1,19 \end{array}$ | $\begin{array}{c} \textbf{16} \\ \hline C_8H_{11}\text{AgClN} \\ 264,50 \\ 0,24 \times 0,23 \times 0,10 \\ 133(2) \\ \text{monoklin} \\ P2_1/c \\ 18,2336(14) \\ 5,1150(4) \\ 9,7306(8) \\ 90 \\ 100,047(4) \\ 90 \\ 893,61(12) \\ 4 \\ 1,97 \\ 2,5 \\ 0,7890-0,5436 \\ 520 \\ \pm 25,+7,+13 \\ 60 \\ 3591^a \\ \hline 109 \\ 0,0312 \\ 0,0812 \\ - \\ 1,12 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Tabelle 19 (Fortsetzung).

|                                                                         | 17                                   | 18                                  | 19                                  |
|-------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|
| Summenformel                                                            | C <sub>8</sub> H <sub>11</sub> AgBrN | C <sub>8</sub> H <sub>11</sub> AgIN | C <sub>4</sub> H <sub>9</sub> AgClN |
| M <sub>r</sub>                                                          | 308,96                               | 355,95                              | 214,44                              |
| Kristallgröße [mm <sup>3</sup> ]                                        | $0,45 \times 0,30 \times 0,04$       | $0,18 \times 0,16 \times 0,04$      | 0,7	imes 0,5	imes 0,5               |
| T [K]                                                                   | 133(2)                               | 133(2)                              | 100(2)                              |
| Kristallsystem                                                          | monoklin                             | monoklin                            | triklin                             |
| Raumgruppe                                                              | $P2_1/c$                             | $P2_1/c$                            | $P\bar{1}$                          |
| a [Å]                                                                   | 17,1293(10)                          | 17,0241(9)                          | 7,8453(12)                          |
| <i>b</i> [Å]                                                            | 6,3166(4)                            | 6,6343(4)                           | 11,6367(19)                         |
| c [Å]                                                                   | 8,8274(5)                            | 9,0051(5)                           | 12,0450(19)                         |
| α [°]                                                                   | 90                                   | 90                                  | 66,185(5)                           |
| β [°]                                                                   | 103,6930(10)                         | 103,1240(10)                        | 73,122(4)                           |
| γ[°]                                                                    | 90                                   | 90                                  | 78,377(5)                           |
| V [Å <sup>3</sup> ]                                                     | 927,97(10)                           | 990,50(10)                          | 958,2(3)                            |
| Ζ                                                                       | 4                                    | 4                                   | 6                                   |
| $D_{\rm ber} [\rm g  cm^{-3}]$                                          | 2,21                                 | 2,39                                | 2,23                                |
| $\mu(MoK_{\alpha})$ [mm <sup>-1</sup> ]                                 | 6,4                                  | 5,1                                 | 3,4                                 |
| Durchlässigkeiten                                                       | 0,7930-0,1714                        | 0,8223-0,6508                       | 0,3343-0,1409                       |
| <i>F</i> (000) [e]                                                      | 592                                  | 664                                 | 624                                 |
| hkl-Bereich                                                             | $\pm 24, \pm 8, \pm 12$              | $\pm 24, \pm 9, \pm 12$             | $\pm 10, \pm 15, \pm 16$            |
| $2\theta_{\text{max}}$ [°]                                              | 61                                   | 61                                  | 56                                  |
| Gemessene Reflexe                                                       | 16650                                | 20464                               | 18983                               |
| Unabh. Reflexe                                                          | 2823                                 | 3013                                | 4745                                |
| R <sub>int</sub>                                                        | 0,0564                               | 0,0365                              | 0,0433                              |
| Verfeinerte Param.                                                      | 108                                  | 108                                 | 200                                 |
| $R(F)^{\mathrm{b}} [F \ge 4\sigma(F)]$                                  | 0,0222                               | 0,0230                              | 0,0269                              |
| $wR(F^2)^{\rm b}$ (alle Reflexe)                                        | 0,0553                               | 0,0449                              | 0,0658                              |
| x (Flack)                                                               | -                                    | -                                   | -                                   |
| $\operatorname{GoF}(F^2)^{\mathrm{c}}$                                  | 1,04                                 | 1,07                                | 1,20                                |
| $\Delta \rho_{\text{fin}} (\text{max} / \text{min}) [e \text{ Å}^{-3}]$ | 0,75 /-0,95                          | 0,91 /-0,60                         | 1,09 /-0,72                         |

<sup>a</sup> Verzwillingte Struktur, Überlappungen verhindern eine zuverlässige Zählung der Reflexe; <sup>b</sup>  $R(F) = \Sigma ||F_0| - |F_c|/\Sigma|F_0|$ ;  $wR(F^2) = [\Sigma \{w(F_o^2 - F_c^2)^2\}/\Sigma \{w(F_o^2)^2\}]^{0,5}$ ;  $w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$ , mit  $P = [F_o^2 + 2F_c^2]/3$ . *a* und *b* sind vom Programm gewählte Konstanten; <sup>c</sup> GoF =  $[\Sigma \{w(F_o^2 - F_c^2)^2\}/(n-p)]^{0,5}$ , mit *n* Daten und *p* Parametern; <sup>d</sup>  $\mu(CuK_{\alpha})$ .

Atome N4, N6, C42, C45, C52, C56, C62, C75 und C82 war dies nicht ausreichend, so dass zusätzlich der Befehl ISOR (Angleichung der *U*-Komponenten auf isotropes Verhalten) verwendet wurde. Hier war es nicht möglich, die NH-Wasserstoffatome frei zu verfeinern, so dass sie per Reiter-Modell gesetzt und verfeinert wurden. Dank

Unser Dank gilt Frau S. Grieb für die Synthese der Kristalle von **19**. M. D. P. B. wurde vom Erasmus-Programm unterstützt.

- [1] Z. Ni, J. J. Vittal, *Crystal Growth & Design* **2001**, *1*, 195–198.
- [2] T.J. Burchell, D.J. Eisler, R.J. Puddephatt, *Chem. Commun.* 2004, 944–945.
- [3] L. M. Engelhardt, S. Gotsis, P. C. Healey, J. D. Kildea, B. W. Skelton, A. H. White, *Aust. J. Chem.* **1989**, *42*, 149–176.
- [4] P.C. Healy, J.D. Kildea, A.H. White, Aust. J. Chem. 1988, 41, 417–418.
- [5] P.C. Healy, N.K. Mills, A.H. White, J. Chem. Soc., Dalton Trans. 1985, 111–116.
- [6] P.C. Healy, N.K. Mills, A.H. White, Aust. J. Chem. 1983, 36, 1851–1864.

- [7] X.-W. Dong, W. Li, H.-Y. Liu, J.-F. Ma, Acta Crystallogr. 2006, E62, m302 – m303.
- [8] C. Näther, A. Beck, Acta Crystallogr. 2004, E60, m1678-m1680.
- [9] P.G. Jones, C. Wölper, *Dalton Trans.* 2005, 1762– 1763.
- [10] G. Desiraju, T. Steiner, *The Weak Hydrogen Bond*, Oxford University Press, New York, 2001.
- [11] P. G. Jones, B. Ahrens, Chem. Ber./Recueil 1997, 130, 1813–1814.
- [12] P.G. Jones, B. Ahrens, Z. Naturforsch. **1998**, 53b, 653–662.

- [13] P.G. Jones, B. Ahrens, New J. Chem. 1998, 22, 1041– 1042.
- [14] B. Ahrens, P.G. Jones, A.K. Fischer, *Eur. J. Inorg. Chem.* 1999, 1105–1110.
- [15] M. Freytag, P.G. Jones, *Chem. Commun.* 2000, 277– 278.
- [16] B. Ahrens, S. Friedrichs, R. Herbst-Irmer, P. G. Jones, *Eur. J. Inorg. Chem.* **2000**, 2017 – 2029.
- [17] Wir nehmen in allen Fällen an, dass die in der CSD publizierten Positionen von Methyl-Wasserstoffatomen zuverlässig sind. Das geometrische Setzen dieser Wasserstoffe ist allerdings mit Problemen und Unsicherheiten behaftet, insbesondere bei RT-Datensätzen, denn es beruht auf der Anwesenheit als Wasserstoffe zuzuordnender signifikanter Differenzpeaks.
- [18] A. I. Kitaigorodski, *Molecular Crystals and Molecules*, Academic Press, New York, **1973**, S. 1–37.
- [19] G.B. Ansell, J. Chem. Soc., Perkin Trans. II 1976, 104–106.
- [20] N. K. Mills, A. H. White, J. Chem. Soc., Dalton Trans. 1984, 225–227.
- [21] G. A. Bowmaker, C. Pettinari, B. W. Skelton, N. Somers, N. A. Vigar, A. H. White, Z. Anorg. Allg. Chem. 2007, 633, 415 – 421.
- [22] Der maximale Abstand für eine Bindung wurde nach [23] aus dem Ionenradius des Silbers (1,0 Å) und dem Van-der-Waals-Radius des Halogens berech-

net, der maximale Abstand für einen Kontakt analog dazu aus dem kovalenten Radius des Silbers und dem Van-der-Waals-Radius des Halogens. Diese Kriterien sind nur als Richtwerte anzusehen. Es wurde für Ag…S Kontakte festgestellt [24], dass diese zwischen der Summe der kovalenten und der Van-der-Waals-Radien liegen.

- [23] O. Moers, Dissertation, Technische Universität Braunschweig, Papierflieger Verlag, Clausthal-Zellerfeld, 1999, S. 12 ff.
- [24] M. Dennehy, Q. V. Quinzani, R. A. Burrow, Acta Crystallogr. 2007, C63, m395 – m397.
- [25] M. S. Santos, E. F. G. Barbosa, M. Spiro, J. Chem. Soc., Faraday Trans. I 1988, 84, 4439–4449.
- [26] E.-M. Zerbe, Dissertation, Technische Universität Braunschweig, Papierflieger Verlag, Clausthal-Zellerfeld, 2006, S. 37 ff, S. 168 ff.
- [27] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, Universität Göttingen, Göttingen (Germany) 1997, Siehe auch: G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112–122.
- [28] Cambridge Structural Database (Version 5.30). Siehe auch: F. H. Allen, Acta Crystallogr. 2002, B58, 380– 388.
- [29] a) T. Kottke, D. Stalke, J. Appl. Crystallogr. 1993, 26, 615–619; b) D. Stalke, Chem. Soc. Rev. 1998, 27, 171–178.