

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Supramolecular association in protontransfer adducts containing benzamidinium cations. II. Concomitant polymorphs of the molecular salt of 2,6-dimethoxybenzoic acid with benzamidine¹

Simona Irrera, Giancarlo Ortaggi and Gustavo Portalone*

Chemistry Department, University of Rome I 'La Sapienza', P. le A. Moro 5, I-00185 Rome, Italy Correspondence e-mail: g.portalone@caspur.it

Received 18 August 2012 Accepted 26 September 2012 Online 18 October 2012

Two concomitant polymorphs of the molecular salt formed by 2,6-dimethoxybenzoic acid, C₉H₁₀O₄ (Dmb), with benzamidine, C₇H₈N₂ (benzenecarboximidamide, Benzam) from water solution have been identified. Benzamidinidium 2,6-dimethoxybenzoate, $C_7H_9N_2^+ \cdot C_9H_9O_4^-$ (BenzamH⁺·Dmb⁻), was obtained through protonation at the imino N atom of Benzam as a result of proton transfer from the acidic hydroxy group of Dmb. In the monoclinic polymorph, (I) (space group $P2_1/n$), the asymmetric unit consists of two Dmb⁻ anions and two monoprotonated BenzamH⁺ cations. In the orthorhombic polymorph, (II) (space group $P2_12_12_1$), one Dmb⁻ anion and one BenzamH⁺ cation constitute the asymmetric unit. In both polymorphic salts, the amidinium fragments and carboxylate groups are completely delocalized. This delocalization favours the aggregation of the molecular components of these acidbase complexes into nonplanar dimers with an $R_2^2(8)$ graph-set motif via $N^+ - H \cdots O^-$ charge-assisted hydrogen bonding. Both the monoclinic and orthorhombic forms exhibit onedimensional isostructurality, as the crystal structures feature identical hydrogen-bonding motifs consisting of dimers and catemers.

Comment

The present study is a continuation of work carried out in our laboratory on the design and synthesis of hydrogen-bonding systems formed by benzamidine with benzoic acid derivatives. The protonated analogue of benzamidine is a multiple hydrogen-bond donor, and its amidinium group exhibits ideal requirements to couple with carboxylate groups in crystal structures. These acid–base complexes are usually arranged in a dimeric motif similar to that found in carboxylic acid dimers via $N^+ - H \cdots O^-$ (±)-CAHB (charge-assisted hydrogen bonds with both plus and minus charges on the donor and acceptor atoms, respectively; Gilli & Gilli, 2009), provided that ΔpK_a is sufficiently large [$\Delta pK_a = pK_a$ (conjugate acid of the base) – pK_a (acid), where the pK_a values are for aqueous solutions at 298 K]. It is generally accepted that for large ΔpK_a values (*i.e.* greater than 3), salts of the type $B^+ \cdots A^-$ are formed, while with smaller ΔpK_a values, $B \cdots H - A$ compounds (cocrystals) can be expected, but this parameter seems inappropriate for accurately predicting salt or cocrystal formation in the solid state when ΔpK_a is between 0 and 3 (Portalone & Colapietro, 2009; Portalone, 2011*a*; Delori *et al.*, 2012). This dimeric motif is commonly observed in biological systems between arginine and aspartic and glutamic acids (Saenger, 1984).

In this study, we report the molecular and supramolecular structures of two concomitant polymorphs, i.e. two different polymorphs simultaneously crystallized from the same solvent (Bernstein et al., 1999), of the acid-base complex formed by benzamidine (Benzam) with 2,6-dimethoxybenzoic acid (Dmb). Interestingly, Dmb has two polymorphic modifications, viz. the orthorhombic form (Portalone, 2009) and the tetragonal form (Portalone, 2011b). In the former polymorph, the carboxyl group is twisted away from the plane of the aromatic ring by 56.1 $(1)^{\circ}$ and the OH group adopts an antiplanar conformation, while in the latter the twist angle is $65.7 (2)^{\circ}$ and the OH group is synplanar. The molecular components of the orthorhombic polymorph do not form the conventional $R_2^2(8)$ dimeric units [see Etter *et al.* (1990), Bernstein et al. (1995) and Motherwell et al. (1999) for graphset nomenclature of hydrogen bonds] as they do in the tetragonal polymorph, but are associated in the crystal structure as catemers through single $O-H \cdots O(\text{carbonyl})$ hydrogen bonds between adjacent molecules. As the observation of polymorphism in multicomponent systems such as cocrystals and molecular salts is scant, although of topical interest given the growing relevance of pharmaceutical cocrystals (Tiekink & Vittal, 2006), we have been attracted by the planned synthesis of polymorphic molecular salts resulting from the combination of two conformationally flexible molecules, such as Dmb and benzamidine. For BenzamH⁺·Dmb⁻, since $\Delta p K_a = 7.5$, the salt is expected. Indeed, in this protontransfer compound protonation occurs at the imino N atom attached to Benzam as a result of proton transfer from the acidic hydroxy group of Dmb.

Polymorph (I) crystallizes in the monoclinic space group $P2_1/n$, with two crystallographically independent dimers of monoprotonated benzamidinium cations (BenzamH⁺) and

¹ Part I: Portalone (2010).

Figure 1

The asymmetric unit of polymorph (I), showing the atom-labelling scheme and hydrogen bonding (dashed lines). The asymmetric unit was selected so that the four ions are linked by $N^+-H\cdots O^-(\pm)$ -CAHB hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level.

benzoate anions (Dmb⁻) in the asymmetric unit (Fig. 1). Polymorph (II) crystallizes in the orthorhombic space group $P2_12_12_1$, with one BenzamH⁺ cation and one Dmb⁻ anion in the asymmetric unit (Fig. 2).

The molecular structures of polymorphs (I) and (II) are very similar. In both polymorphic forms, the BenzamH⁺ cations are not planar. The dihedral angles between the mean plane of the benzene ring and the amidinium group [20.2 (1) and 14.4 (1)° for polymorph (I), and 23.6 (1)° for polymorph (II)] are close to the values observed in benzamidine [22.7 (1)°; Barker et al., 1996], benzamidinium (2-acetamidobenzoyl)formate [16 (3)°; Joshi et al., 1994] and benzamidinium acetylsalicylate [15.2 (2)°; Kolev et al., 2009]. For both polymorphs this disposition is a consequence of an overcrowding effect, *i.e.* steric hindrance between the NH₂ group and the benzene ring, as indicated by the N-C(ortho)contacts in the range 2.859 (2)-2.893 (2) Å, and prevents conjugation between the N-C-N system and the benzene ring. Indeed, the C-C(amidine) distances are in the range 1.479 (3)–1.481 (3) Å and compare well with the expected $Csp^2 - Csp^2$ single-bond length of 1.482 (1) Å (Allen *et al.*, 1987). Interestingly, only the nonplanar conformation has been observed in small-molecule crystal structures, whereas in structures containing benzamidinium in the Protein Data Bank (PDB; Berman et al., 2000), the most frequently encountered one is the planar conformation (Li et al., 2009). The C-N bond lengths are in the range 1.305 (2)-1.317 (2) Å, evidencing the delocalization of the π electrons and doublebond character compared with the corresponding bond lengths found in benzamidine [1.294 (3) and 1.344 (3) Å; Barker et al., 1996] and benzdiamidine [1.283 (2) and 1.349 (2) Å; Jokić et al., 2001].

The benzene rings in the Dmb⁻ anions of polymorphs (I) and (II) are essentially planar, and the methoxy substituents

force the carboxylate groups to be almost orthogonal to the plane of the aromatic fragment [the twist angles between the aromatic ring and the carboxylate group are 88.7 (1) and 72.3 (1)° for polymorph (I), and 78.9 (1)° for polymorph (II)]. In these anions, the bond lengths and angles of the benzene ring are in accord with the corresponding values obtained for both the orthorhombic and tetragonal forms of 2,6-dimethoxybenzoic acid (Portalone, 2009, 2011*b*) and for 4-methoxybenzamidinium 2,6-dimethoxybenzoate (Portalone, 2012). The C–O distances of the carboxylate group range from 1.246 (2) to 1.255 (2) Å, indicating delocalization of the negative charge.

The molecular components of both polymorphs are joined by two N⁺-H···O⁻ (\pm)-CAHB hydrogen bonds to form ionic dimers with graph-set motif $R_2^2(8)$. Remarkably, at variance with the well known carboxylic acid dimer $R_2^2(8)$ motif, in both polymorphs the carboxylate-amidinium pairs are not planar, as the dihedral angles for the planes defined by

Figure 2

The asymmetric unit of polymorph (II), showing the atom-labelling scheme and hydrogen bonding (dashed lines). The asymmetric unit was selected so that the two ions are linked by N⁺-H···O⁻ (±)-CAHB hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3

The supramolecular structure of polymorph (I), viewed approximately down a. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonding is indicated by dashed lines.

the CN_2^+ and CO_2^- atoms are in the range 26.8–29.5°. Nonetheless, the interface is very stable, as indicated by the N^+ -H···O⁻ parameters: N^+ ···O⁻ distances in the range 2.785 (2)–2.868 (2) Å) and N^+ – $H \cdots O^-$ angles in the range 148 (2)–177 (2)°. This deviation from planarity of carboxylate-amidinium pairs has previously been observed in the crystal structure of 3-amidinium benzoate (Papoutsakis et al., 1999).

Due to the protonated base, supramolecular aggregations in (I) and (II) are dominated by an extensive series of N^+ - $H \cdots O^{-}(\pm)$ -CAHB hydrogen bonds (Tables 1 and 2). In the supramolecular structures of polymorphs (I) and (II) (Figs. 3 and 4), eight and four hydrogen bonds, respectively, link the molecular components into a one-dimensional structure. As mentioned previously, each subunit, built from the ion pairs of the asymmetric unit, forms $R_2^2(8)$ dimers via the interaction of the N-H and C=O groups. These subunits are then joined

Figure 4

The supramolecular structure of polymorph (II), viewed approximately down c. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonding is indicated by dashed lines.

into linear chains through hydrogen bonding to adjacent antiparallel dimers. Such a disposition of dimers and catemers has frequently been observed in the solid-state structures of amides (Meléndez & Hamilton, 1998).

From a supramolecular retrosynthesis perspective, only those synthons that occur repeatedly in crystal structures, namely robust synthons of a particular set of functional groups, are useful in crystal design (Nangia & Desiraju, 1998). Moreover, hydrogen bonds are often formed in a hierarchical fashion (Etter, 1990; Allen et al., 1999; Bis et al., 2007; Shattock et al., 2008) and there is a need to ascertain the prevalence of a particular heterosynthon over another in a competitive environment. From the results reported herein, the crystal structures of polymorphs (I) and (II) are both consistent with the $R_2^2(8)$ supramolecular heterosynthon persistence exhibited by the benzamidinium adducts that have been archived in the Cambridge Structural Database (CSD, Version 5.33, November 2011; Allen, 2002). Consequently, the existence of polymorphism in these molecular salts should be related to the conformational flexibility of the carboxylate and amidinium groups. Polymorphs (I) and (II) therefore represent examples of conformational polymorphism. To the best of our knowledge, the only exception to the complementarity of amidinium and carboxylate groups has been reported for benzamidinium isoorotate (Portalone, 2010).

Experimental

Equimolar amounts of benzamidine (Fluka, 95%) and 2,6-dimethoxybenzoic acid (Sigma Aldrich, 99%), dissolved in ethanol (20 ml), were refluxed for 8 h at 323 K. The mixture was cooled to room temperature and the solvent evaporated under vacuum. The product was then recrystallized from water to give, after one week, colourless crystals suitable for X-ray analysis. Careful examination of the batch under a microscope showed crystals in the form of tablets of (I) and small prisms of (II). The majority of the crystals were (II), with a small quantity of (I). Unfortunately, any attempts to produce more crystals of polymorph (I) by repeating the crystallization conditions were unsuccessful. Crystallization of the molecular salt carried out under a wide range of different sets of conditions (different solvents, different molar ratios etc.) led systematically to the orthorhombic polymorph, (II).

Polymorph (I)

Crystal data

 $C_7H_9N_2^+ \cdot C_9H_9O_4^-$ V = 3212.39 (8) Å³ $M_{\rm r} = 302.32$ Z = 8Monoclinic, $P2_1/n$ a = 14.7103 (2) Å b = 11.7174 (1) Å T = 298 Kc = 19.7281 (3) Å $\beta = 109.145 (2)^{\circ}$

Data collection

Oxford Xcalibur S CCD areadetector diffractometer

Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) $T_{\min} = 0.982, T_{\max} = 0.987$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ $0.20 \times 0.15 \times 0.14 \text{ mm}$

248320 measured reflections 5682 independent reflections 4978 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.041$

Table 1

Hydrogen-bond geometry (Å, °) for polymorph (I).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1−H1A····O1	0.92 (2)	1.89 (3)	2.799 (2)	171 (2)
$N1-H1B\cdots O1A$	0.90 (3)	2.03 (3)	2.827 (2)	148 (2)
$N2-H2A\cdots O2$	0.95 (2)	1.85 (2)	2.796 (2)	176.3 (19)
$N2-H2B\cdots O2^{i}$	0.93 (2)	1.93 (2)	2.763 (2)	148.7 (19)
$N1A - H1A1 \cdots O1A$	0.92(2)	1.87 (3)	2.785 (2)	175 (2)
$N1A - H1A2 \cdots O1$	0.91 (3)	1.95 (3)	2.773 (2)	150 (2)
$N2A - H2A1 \cdots O2A$	0.92(2)	1.95 (2)	2.868 (2)	173.0 (19)
$N2A - H2A2 \cdots O2A^{ii}$	0.92 (3)	1.94 (3)	2.789 (2)	153 (2)

H atoms treated by a mixture of

refinement

 $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$

V = 1564.65 (3) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.15 \times 0.12 \text{ mm}$

327892 measured reflections

3175 independent reflections

2872 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^-$

T = 298 K

 $R_{\rm int}=0.040$

Z = 4

 $\Delta \rho_{\rm min}$ = -0.17 e Å⁻³

independent and constrained

Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, -z + 1.

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.129$ S = 1.185682 reflections 437 parameters

Polymorph (II)

Crystal data

 $C_7H_9N_2^+ \cdot C_9H_9O_4^ M_r = 302.32$ Orthorhombic, $P2_12_12_1$ a = 9.8921 (1) Å b = 10.4471 (1) Å c = 15.1403 (2) Å

Data collection

Oxford Xcalibur S CCD areadetector diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2008) $T_{\rm min} = 0.935, T_{\rm max} = 0.986$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of
$wR(F^2) = 0.156$	independent and constrained
S = 1.19	refinement
3175 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
219 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

In both polymorphs, all H atoms were found in a difference map, but for the final refinements all benzene-bound H atoms were positioned with idealized geometry and included in the calculations as riding on their parent atoms, with C-H = 0.97 Å and $U_{iso}(H) =$ $1.2U_{eq}(C)$. Methyl-bound H atoms were located from idealized local difference electron-density calculations and their C-H distances were allowed to vary during refinement, while being kept equivalent in any one methyl group, with $U_{iso}(H) = 1.5U_{eq}(C)$. The positional and displacement parameters of the H atoms of the amidine groups were refined freely, giving N-H distances in the range 0.84 (3)– 1.00 (3) Å. In the absence of significant anomalous scattering in this light-atom study of polymorph (II), Friedel pairs were merged.

For both polymorphs, data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$) for polymorph (II).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdotsO1$ $N1-H1B\cdotsO2^{i}$ $N2-H2B\cdotsO1^{ii}$ $N2-H2A\cdotsO2$	1.00 (3)	1.82 (3)	2.802 (2)	166 (2)
	0.84 (3)	2.00 (3)	2.792 (2)	157 (3)
	0.96 (3)	1.90 (3)	2.794 (2)	154 (3)
	0.86 (3)	1.97 (3)	2.821 (2)	177 (3)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: UK3051). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. pp. 25–34.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Barker, J., Phillips, P. R., Wallbridge, M. G. H. & Powell, H. R. (1996). Acta Cryst. C52, 2617–2619.
- Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalow, I. N. & Bourne, P. E. (2000). *Nucleic Acids Res.* 28, 235– 242.
- Bernstein, J., Davey, R. J. & Henck, J.-O. (1999). Angew. Chem. Int. Ed. Engl. 38, 3440–3461.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bis, J. A., Vishweshwar, P., Weyna, D. & Zaworotko, M. J. (2007). *Mol. Pharm.* 4, 401–416.
- Delori, A., Galek, P. T. A., Pidcock, E. & Jones, W. (2012). Chem. Eur. J. 18, 6835–6846.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-139.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gilli, G. & Gilli, P. (2009). *The Nature of the Hydrogen Bond*, pp. 163–167. Oxford University Press.
- Jokić, M., Bajić, M., Žinić, M., Perić, B. & Kojić-Prodić, B. (2001). Acta Cryst. C57, 1354–1355.
- Joshi, K. C., Bohra, R., Jain, R. & Arora, S. (1994). Acta Cryst. C50, 1792– 1794.
- Kolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Struct. Chem. 20, 533–536.
- Li, X., He, X., Wang, B. & Merz, K. (2009). J. Am. Chem. Soc. 131, 7742– 7754.
- Meléndez, R. E. & Hamilton, A. D. (1998). Top. Curr. Chem. 198, 97-129.
- Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056.
- Nangia, A. & Desiraju, G. R. (1998). Top. Curr. Chem. 198, 57-95.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Papoutsakis, D., Kirby, J. P., Jackson, J. E. & Nocera, D. G. (1999). Chem. Eur. J. 5, 1474–1480.
- Portalone, G. (2009). Acta Cryst. E65, 0327-0328.
- Portalone, G. (2010). Acta Cryst. C66, o295-o301.
- Portalone, G. (2011a). Chem. Cent. J. 5, article number 51.

- Portalone, G. (2011*b*). *Acta Cryst.* E**67**, 03394–03395. Portalone, G. (2012). *Acta Cryst.* E**68**, 0268–0269.
- Portalone, G. & Colapietro, M. (2009). J. Chem. Crystallogr. 39, 193-200.
- Saenger, W. (1984). Principles of Nucleic Acid Structure, ch 6. New York: Springer.
- Shattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533-4545.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tiekink, E. R. T. & Vittal, J. J. (2006). Editors. Frontiers in Crystal Engineering, ch 2. New York: John Wiley & Sons Ltd.

supplementary materials

Acta Cryst. (2012). C68, o447-o451 [doi:10.1107/S010827011204067X]

Supramolecular association in proton-transfer adducts containing benzamidinium cations. II. Concomitant polymorphs of the molecular salt of 2,6-dimethoxybenzoic acid with benzamidine

Simona Irrera, Giancarlo Ortaggi and Gustavo Portalone

(I) Benzamidinidium 2,6-dimethoxybenzoate

Crystal data

C₇H₉N₂⁺·C₉H₉O₄⁻ $M_r = 302.32$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 14.7103 (2) Å b = 11.7174 (1) Å c = 19.7281 (3) Å $\beta = 109.145$ (2)° V = 3212.39 (8) Å³ Z = 8

Data collection

Oxford Xcalibur S CCD area-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.0696 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2006) $T_{\min} = 0.982, T_{\max} = 0.987$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.129$ S = 1.185682 reflections 437 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1280 $D_x = 1.250 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 71996 reflections $\theta = 2.7-32.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 KTablet, colourless $0.20 \times 0.15 \times 0.14 \text{ mm}$

248320 measured reflections 5682 independent reflections 4978 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 25.1^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -17 \rightarrow 17$ $k = -13 \rightarrow 13$ $l = -23 \rightarrow 23$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0502P)^2 + 1.0275P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.17 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

 $U_{\rm iso}$ */ $U_{\rm eq}$ х v Ζ N1 0.0442 (4) 0.03204 (13) -0.09912(16)0.19097 (9) H1A -0.0078(16)-0.037(2)0.1779 (12) 0.058 (6)* H1B 0.0478 (17) -0.127(2)0.2356 (14) 0.064 (7)* N2 0.05603 (13) -0.08038(15)0.08423 (8) 0.0434(4)H2A -0.0247(19)0.0728 (11) 0.051 (6)* 0.0065 (15) H₂B 0.0836 (16) -0.1015(19)0.0499 (12) 0.057 (6)* C1 0.15214 (13) -0.22020(16)0.16763 (9) 0.0375(4)C2 0.19618 (18) -0.2465(2)0.23911 (12) 0.0658(7)H2 -0.20630.079* 0.1780 0.2757 C3 0.2663(2)-0.3302(3)0.25849 (14) 0.0894(10)H3 0.2971 -0.34870.3087 0.107* C4 0.29260 (19) -0.3871(2)0.20706 (14) 0.0726 (8) H4 0.3416 -0.44600.2210 0.087* C5 0.24997 (19) -0.3609(2)0.13663 (14) 0.0661(7) H5 0.079* 0.2692 -0.40070.1004 C6 0.17957 (16) -0.27801(19)0.11630(11) 0.0539(6) H6 0.1492 0.065* -0.26020.0659 C7 -0.13012(15)0.14702 (9) 0.07768 (12) 0.0337(4)-0.07302(11)01 0.10458 (12) 0.16122 (7) 0.0517(4)O2 -0.08607(10)0.08850(11) 0.04679 (6) 0.0468(3)O3 -0.28794(11)0.17659 (14) 0.06376 (10) 0.0719(5)04 0.01547 (13) 0.33083(15)0.10538(12)0.0840(6)C8 -0.13889(14)0.26004 (16) 0.08429 (9) 0.0397 (4) C9 -0.23748(15)0.27510 (18) 0.06566 (11) 0.0491(5)C10 -0.27836(19)0.3830 (2) 0.05061 (13) 0.0647(7)H10 -0.34740.3930 0.0377 0.078* 0.0752 (8) C11 -0.2192(2)0.4750(2) 0.05443 (14) H11 -0.24730.5504 0.0436 0.090* C12 -0.1210(2)0.4630(2)0.07318 (14) 0.0722(7)H12 -0.08040.5293 0.0761 0.087* C13 -0.08068(17)0.35450(19) 0.08794(12)0.0552 (6) C14 -0.09559(13)0.14224 (16) 0.09883(9)0.0352(4)C15 -0.39002(19)0.1817(3)0.0417(2)0.1092(13)H15A 0.164* -0.4099(5)0.237(2)0.0725(11)H15B -0.4160(6)0.1048 (17) 0.0464 (14) 0.164* 0.164* H15C -0.4156(6)0.207(2)-0.0092(11)C16 0.4227(3)0.1170 (2) 0.1181 (14) 0.0817(3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H16A	0.0782 (15)	0.4693 (18)	0.1579 (13)	0.177*
H16B	0.0656 (13)	0.4706 (18)	0.0734 (11)	0.177*
H16C	0.1476 (15)	0.3922 (7)	0.1279 (16)	0.177*
N1A	-0.03060 (14)	0.09627 (16)	0.30888 (9)	0.0496 (5)
H1A1	0.0110 (17)	0.036 (2)	0.3226 (12)	0.061 (7)*
H1A2	-0.0469 (17)	0.125 (2)	0.2637 (14)	0.063 (7)*
N2A	-0.04005 (13)	0.09148 (15)	0.42044 (9)	0.0440 (4)
H2A1	-0.0029 (15)	0.0266 (19)	0.4282 (11)	0.051 (6)*
H2A2	-0.0631 (16)	0.115 (2)	0.4560 (13)	0.064 (7)*
C1A	-0.12632 (13)	0.24195 (15)	0.34031 (9)	0.0377 (4)
C2A	-0.16792 (17)	0.27778 (18)	0.27002 (11)	0.0550 (6)
H2A3	-0.1555	0.2362	0.2315	0.066*
C3A	-0.2270 (2)	0.3725 (2)	0.25458 (13)	0.0727 (8)
H3A	-0.2562	0.3968	0.2052	0.087*
C4A	-0.24465 (19)	0.4325 (2)	0.30864 (14)	0.0695 (7)
H4A	-0.2862	0.4990	0.2975	0.083*
C5A	-0.20335 (18)	0.3982 (2)	0.37838 (13)	0.0620 (6)
H5A	-0.2153	0.4412	0.4166	0.074*
C6A	-0.14501 (15)	0.30321 (18)	0.39470 (11)	0.0495 (5)
H6A	-0.1169	0.2790	0.4442	0.059*
C7A	-0.06351 (13)	0.13984 (15)	0.35715 (9)	0.0344 (4)
O1A	0.08851 (11)	-0.09474 (11)	0.34245 (7)	0.0477 (4)
O2A	0.06223 (10)	-0.12115 (11)	0.44559 (7)	0.0459 (3)
O3A	0.25262 (11)	-0.25549 (13)	0.47826 (9)	0.0638 (4)
O4A	-0.04000 (12)	-0.29495 (15)	0.29483 (9)	0.0738 (5)
C8A	0.10499 (14)	-0.28187 (16)	0.38908 (10)	0.0390 (4)
C9A	0.19058 (15)	-0.33014 (17)	0.43287 (11)	0.0461 (5)
C10A	0.20891 (19)	-0.4456 (2)	0.42869 (14)	0.0643 (6)
H10A	0.2683	-0.4790	0.4597	0.077*
C11A	0.1415 (2)	-0.5118 (2)	0.37979 (16)	0.0798 (8)
H11A	0.1535	-0.5929	0.3774	0.096*
C12A	0.0574 (2)	-0.4663 (2)	0.33399 (15)	0.0762 (8)
H12A	0.0111	-0.5141	0.2993	0.091*
C13A	0.04010 (16)	-0.35059 (18)	0.33850 (12)	0.0540 (5)
C14A	0.08406 (12)	-0.15605 (15)	0.39317 (9)	0.0340 (4)
C15A	0.34956 (18)	-0.2927 (2)	0.51199 (17)	0.0819 (8)
H15D	0.3773 (7)	-0.3192 (17)	0.4742 (6)	0.123*
H15E	0.3505 (2)	-0.3577 (16)	0.5457 (10)	0.123*
H15F	0.3892 (8)	-0.2275 (12)	0.5398 (10)	0.123*
C16A	-0.0970 (2)	-0.3497 (3)	0.23207 (17)	0.0950 (10)
H16D	-0.1438 (14)	-0.2944 (11)	0.2015 (8)	0.143*
H16E	-0.1323 (14)	-0.4139 (17)	0.2448 (3)	0.143*
H16F	-0.0553 (8)	-0.3794 (18)	0.2055 (8)	0.143*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0567 (11)	0.0485 (10)	0.0307 (9)	0.0184 (9)	0.0186 (8)	0.0060 (8)
N2	0.0488 (10)	0.0528 (10)	0.0309 (8)	0.0144 (8)	0.0164 (8)	0.0074 (8)
C1	0.0415 (10)	0.0392 (10)	0.0343 (10)	0.0026 (8)	0.0157 (8)	0.0010 (8)

C2	0.0752 (16)	0.0860 (17)	0.0402 (12)	0.0412 (14)	0.0243 (11)	0.0112 (12)
C3	0.099 (2)	0.120 (2)	0.0519 (14)	0.0678 (19)	0.0286 (15)	0.0290 (15)
C4	0.0754 (17)	0.0763 (17)	0.0750 (17)	0.0401 (14)	0.0369 (14)	0.0194 (14)
C5	0.0802 (17)	0.0654 (15)	0.0630 (15)	0.0240 (13)	0.0376 (13)	-0.0042 (12)
C6	0.0672 (14)	0.0586 (13)	0.0387 (11)	0.0166 (11)	0.0211 (10)	0.0006 (10)
C7	0.0364 (9)	0.0368 (9)	0.0277 (9)	-0.0015 (8)	0.0101 (7)	-0.0026 (7)
01	0.0754 (10)	0.0533 (8)	0.0298 (7)	0.0258 (7)	0.0218 (7)	0.0097 (6)
O2	0.0641 (9)	0.0474 (8)	0.0301 (7)	0.0174 (7)	0.0172 (6)	0.0016 (6)
O3	0.0472 (9)	0.0626 (10)	0.1058 (14)	0.0119 (8)	0.0250 (9)	0.0152 (10)
O4	0.0628 (11)	0.0574 (10)	0.1257 (16)	-0.0100 (9)	0.0227 (11)	-0.0006 (10)
C8	0.0550 (12)	0.0392 (10)	0.0258 (9)	0.0085 (9)	0.0144 (8)	0.0022 (8)
C9	0.0556 (13)	0.0502 (12)	0.0414 (11)	0.0154 (10)	0.0159 (10)	0.0049 (9)
C10	0.0701 (16)	0.0607 (15)	0.0587 (14)	0.0304 (13)	0.0149 (12)	0.0070 (12)
C11	0.106 (2)	0.0473 (14)	0.0655 (16)	0.0296 (15)	0.0194 (15)	0.0064 (12)
C12	0.101 (2)	0.0397 (13)	0.0734 (17)	0.0017 (13)	0.0243 (15)	0.0010 (12)
C13	0.0663 (15)	0.0472 (12)	0.0495 (12)	0.0051 (11)	0.0154 (11)	0.0010 (10)
C14	0.0382 (10)	0.0400 (10)	0.0285 (9)	0.0060 (8)	0.0126 (8)	0.0030 (8)
C15	0.0492 (16)	0.104 (2)	0.174 (4)	0.0153 (16)	0.0370 (19)	0.022 (2)
C16	0.092 (2)	0.090 (2)	0.161 (4)	-0.033 (2)	0.026 (2)	-0.008(2)
N1A	0.0699 (12)	0.0519 (10)	0.0312 (9)	0.0242 (10)	0.0223 (8)	0.0069 (8)
N2A	0.0607 (11)	0.0437 (10)	0.0306 (9)	0.0151 (9)	0.0191 (8)	0.0038 (7)
C1A	0.0441 (10)	0.0356 (10)	0.0348 (10)	0.0009 (8)	0.0150 (8)	-0.0009 (8)
C2A	0.0788 (15)	0.0495 (12)	0.0382 (11)	0.0196 (11)	0.0210 (11)	0.0047 (9)
C3A	0.101 (2)	0.0633 (15)	0.0506 (13)	0.0349 (14)	0.0212 (13)	0.0172 (12)
C4A	0.0853 (18)	0.0506 (13)	0.0767 (17)	0.0307 (13)	0.0321 (14)	0.0128 (12)
C5A	0.0806 (17)	0.0519 (13)	0.0614 (14)	0.0179 (12)	0.0342 (13)	-0.0037 (11)
C6A	0.0618 (13)	0.0488 (12)	0.0408 (11)	0.0124 (10)	0.0207 (10)	-0.0009 (9)
C7A	0.0397 (10)	0.0357 (9)	0.0282 (9)	0.0002 (8)	0.0115 (8)	-0.0022 (7)
O1A	0.0716 (10)	0.0423 (7)	0.0379 (7)	0.0150 (7)	0.0299 (7)	0.0098 (6)
O2A	0.0665 (9)	0.0450 (8)	0.0323 (7)	0.0154 (7)	0.0246 (6)	0.0035 (6)
O3A	0.0533 (9)	0.0563 (9)	0.0671 (10)	0.0168 (7)	-0.0003 (8)	-0.0038 (8)
O4A	0.0683 (11)	0.0666 (10)	0.0649 (10)	0.0100 (9)	-0.0074 (8)	-0.0177 (9)
C8A	0.0499 (11)	0.0384 (10)	0.0334 (9)	0.0065 (9)	0.0202 (9)	0.0019 (8)
C9A	0.0544 (12)	0.0431 (11)	0.0428 (11)	0.0127 (10)	0.0186 (10)	0.0050 (9)
C10A	0.0732 (16)	0.0490 (13)	0.0703 (15)	0.0239 (12)	0.0232 (13)	0.0100 (12)
C11A	0.103 (2)	0.0378 (13)	0.097 (2)	0.0138 (14)	0.0305 (18)	-0.0053 (13)
C12A	0.0861 (19)	0.0474 (14)	0.0850 (18)	-0.0016 (13)	0.0141 (15)	-0.0186 (13)
C13A	0.0612 (14)	0.0479 (12)	0.0516 (12)	0.0063 (10)	0.0165 (11)	-0.0063 (10)
C14A	0.0377 (10)	0.0381 (10)	0.0268 (9)	0.0066 (8)	0.0114 (7)	0.0010 (8)
C15A	0.0538 (15)	0.0728 (17)	0.103 (2)	0.0125 (13)	0.0030 (14)	0.0060 (16)
C16A	0.086 (2)	0.088 (2)	0.084 (2)	-0.0080 (17)	-0.0094 (16)	-0.0218 (17)

Geometric parameters (Å, °)

N1—C7	1.310 (2)	N1A—C7A	1.305 (2)	
N1—H1A	0.92 (2)	N1A—H1A1	0.92 (2)	
N1—H1B	0.90 (3)	N1A—H1A2	0.91 (3)	
N2—C7	1.310 (2)	N2A—C7A	1.310 (2)	
N2—H2A	0.95 (2)	N2A—H2A1	0.92 (2)	
N2—H2B	0.93 (2)	N2A—H2A2	0.92 (3)	

C1—C2	1.380 (3)	C1A—C2A	1.385 (3)
C1—C6	1.384 (3)	C1A—C6A	1.391 (3)
C1—C7	1.479 (3)	C1A—C7A	1.481 (3)
C2—C3	1.383 (3)	C2A—C3A	1.381 (3)
C2—H2	0.9700	C2A—H2A3	0.9700
C3—C4	1.372 (4)	C3A—C4A	1.371 (3)
С3—Н3	0.9700	СЗА—НЗА	0.9700
C4—C5	1.359 (3)	C4A—C5A	1.370 (3)
C4—H4	0.9700	C4A—H4A	0.9700
C5—C6	1.380(3)	C5A—C6A	1.378 (3)
С5—Н5	0.9700	C5A—H5A	0.9700
С6—Н6	0.9700	C6A—H6A	0.9700
O1—C14	1.246 (2)	O1A—C14A	1.251 (2)
O2—C14	1.251 (2)	O2A—C14A	1.248 (2)
03—C9	1.366 (3)	O3A—C9A	1.365 (3)
O3—C15	1.421 (3)	O3A—C15A	1.430 (3)
O4—C13	1.370 (3)	O4A—C13A	1.375 (3)
O4—C16	1.419 (3)	O4A—C16A	1.402 (3)
C8—C9	1.386 (3)	C8A—C13A	1.389 (3)
C8—C13	1.387 (3)	C8A—C9A	1.392 (3)
C8—C14	1.508 (3)	C8A—C14A	1.514 (3)
C9—C10	1.389 (3)	C9A—C10A	1.387 (3)
C10—C11	1.372 (4)	C10A—C11A	1.374 (4)
C10—H10	0.9700	C10A—H10A	0.9700
C11-C12	1.375 (4)	C11A—C12A	1.378 (4)
C11—H11	0.9700	C11A—H11A	0.9700
C12—C13	1,393 (3)	C12A—C13A	1.387 (3)
C12—H12	0.9700	C12A - H12A	0.9700
C15—H15A	0.9946	C15A—H15D	1.0080
C15—H15B	0 9946	C15A—H15E	1.0080
C15—H15C	0 9946	C15A—H15F	1.0080
C16—H16A	0.9886	C16A—H16D	0.9925
C16—H16B	0.9886	C16A—H16E	0.9925
C16—H16C	0.9886	C16A—H16F	0.9925
	0.9000		0.7725
C7—N1—H1A	1170(14)	C7A—N1A—H1A1	117 3 (14)
C7 - N1 - H1B	121.7(15)	C7A = N1A = H1A2	121.7(15)
HIA_NI_HIB	121.7(15) 120(2)	$H_{1}A_{1}$ $N_{1}A_{1}$ $H_{1}A_{2}$	121.7(15) 121(2)
$C7 N2 H2\Delta$	120(2) 1175(12)	C74 N24 H241	121(2) 118 2 (13)
C7 = N2 = H2R C7 = N2 = H2B	117.3(12) 122.8(14)	C7A = N2A = H2A2	110.2(15) 123.3(15)
$H_2 \Delta = N_2 = H_2 B$	122.0(14) 119.6(19)	$H_2 \land 1 \longrightarrow N_2 \land H_2 \land 2$	125.5(15) 118(2)
$C_{2}-C_{1}-C_{6}$	119.0(19)	$C_{2}A - C_{1}A - C_{6}A$	118(2) 118.80(18)
$C_2 - C_1 - C_7$	119.83 (16)	C_{2A} C_{1A} C_{7A}	120.53 (16)
$C_2 = C_1 = C_7$	117.03(10) 121.04(17)	$C_{2}A = C_{1}A = C_{7}A$	120.55 (16)
$C_1 = C_1 = C_1^2$	121.04(17) 1100(2)	C_{3A} C_{2A} C_{1A}	120.00(10) 120.3(2)
C1_C2_H2	120.1	$C_{3}A = C_{2}A = H_{2}A_{3}$	110.0
C3-C2-H2	120.1	C1A - C2A - H2A3	110.0
C_{4} C_{3} C_{2} C_{12}	120.1	C4A = C3A = C2A	120 4 (2)
C4—C3—H3	119.8	C4A - C3A - H3A	119.8
	117.0		117.0

С2—С3—Н3	119.8	С2А—С3А—Н3А	119.8
C5—C4—C3	119.9 (2)	C5A—C4A—C3A	119.7 (2)
C5—C4—H4	120.0	C5A—C4A—H4A	120.1
C3—C4—H4	120.0	C3A—C4A—H4A	120.1
C4—C5—C6	120.5 (2)	C4A—C5A—C6A	120.6 (2)
С4—С5—Н5	119.8	С4А—С5А—Н5А	119.7
С6—С5—Н5	119.8	С6А—С5А—Н5А	119.7
C5—C6—C1	120.2 (2)	C5A—C6A—C1A	120.14 (19)
C5—C6—H6	119.9	C5A—C6A—H6A	119.9
C1—C6—H6	119.9	C1A—C6A—H6A	119.9
N1	118.95 (18)	N1A—C7A—N2A	118.76 (18)
N1-C7-C1	120.66 (16)	N1A—C7A—C1A	120.36 (16)
N2-C7-C1	120.39 (16)	N2A—C7A—C1A	120.88 (16)
C9-O3-C15	118.9 (2)	C9A - O3A - C15A	117.38 (18)
$C_{13} - C_{16}$	119.0(2)	C13A - O4A - C16A	118 5 (2)
C9-C8-C13	119.14 (18)	C13A - C8A - C9A	118.60(18)
C9-C8-C14	120 48 (18)	C13A - C8A - C14A	119.93 (17)
C13 - C8 - C14	120.37(18)	C9A - C8A - C14A	119.99(17) 121 40(17)
03-09-08	114 31 (17)	O3A - C9A - C10A	124.10(17) 124.2(2)
03 - C9 - C10	1247(2)	O3A - C9A - C8A	121.2(2) 114 88(17)
C8-C9-C10	121.0(2)	C10A - C9A - C8A	120.9(2)
$C_{11} - C_{10} - C_{9}$	1187(2)	C11A - C10A - C9A	120.9(2) 1189(2)
$C_{11} - C_{10} - H_{10}$	120.6	C11A - C10A - H10A	120.6
C9-C10-H10	120.6	C9A - C10A - H10A	120.6
C10-C11-C12	120.0 121.7(2)	C10A - C11A - C12A	120.0 121.8(2)
C10-C11-H11	119.1	C10A - C11A - H11A	119.1
C12_C11_H11	119.1	$C_{12} = C_{11} = H_{11}$	119.1
$C_{11} = C_{12} = C_{13}$	119.1	$C_{11}A - C_{12}A - C_{13}A$	119.1 118.7(2)
C11_C12_H12	120.4	$C_{11}A = C_{12}A = H_{12}A$	120.7
$C_{12} = C_{12} = H_{12}$	120.4	$C_{12A} = C_{12A} = H_{12A}$	120.7
04 C13 C8	120.4 114.87(10)	C13A = C12A = II12A	120.7 124.1(2)
04 - C13 - C12	114.07(19) 124.8(2)	O4A = C13A = C12A	124.1(2) 114.00(18)
C_{13}^{-} C_{12}^{-} C_{12}^{-}	124.0(2) 120.3(2)	C_{12A} C_{13A} C_{8A}	114.90(10) 121.0(2)
$C_{0} = C_{10} = C_{12}$	120.3(2) 124.56(17)	C12A = C13A = C8A	121.0(2) 124.75(16)
01 - C14 - C2	124.30(17) 118.12(15)	$O_{2A} = C_{14A} = O_{1A}$	124.75(10) 118 20 (15)
01 - 014 - 08	110.12(13) 117.31(15)	$O_{2A} = C_{14A} = C_{8A}$	116.39(13) 116.85(15)
02 - 014 - 08	100.5	$O_{A} = C_{14A} = C_{0A}$	100.5
$O_2 C_{15} H_{15} P$	109.5	$O_{2A} = C_{15A} = H_{15E}$	109.5
U15A C15 H15D	109.5	$U_{15} = U_{15} = U$	109.5
HISA - CIS - HISB	109.5	HISD—CISA—HISE	109.5
	109.5		109.5
	109.5		109.5
HISB-CIS-HISC	109.5	HISE—CISA—HISF	109.5
04 $-C16$ $-H16A$	109.5	O4A - C16A - H16D	109.5
U4 - U10 - H10B	109.5	$U4A \rightarrow U10A \rightarrow H10E$	109.5
H10A - U10 - H10B	109.5	HI0D - CI0A - HI0E	109.5
U4-U16-H16U	109.5		109.5
HI6A—CI6—HI6C	109.5	HI6D—CI6A—HI6F	109.5
H16B—C16—H16C	109.5	H16E—C16A—H16F	109.5

C6—C1—C2—C3	-0.4(4)	C6A—C1A—C2A—C3A	-0.1 (3)
C7—C1—C2—C3	-179.6 (2)	C7A—C1A—C2A—C3A	179.5 (2)
C1—C2—C3—C4	0.2 (5)	C1A—C2A—C3A—C4A	0.4 (4)
C2—C3—C4—C5	0.3 (5)	C2A—C3A—C4A—C5A	0.0 (4)
C3—C4—C5—C6	-0.6 (5)	C3A—C4A—C5A—C6A	-0.7 (4)
C4-C5-C6-C1	0.4 (4)	C4A—C5A—C6A—C1A	0.9 (4)
C2-C1-C6-C5	0.1 (3)	C2A—C1A—C6A—C5A	-0.5 (3)
C7—C1—C6—C5	179.3 (2)	C7A—C1A—C6A—C5A	179.8 (2)
C2-C1-C7-N1	-20.8(3)	C2A—C1A—C7A—N1A	14.1 (3)
C6-C1-C7-N1	160.0 (2)	C6A—C1A—C7A—N1A	-166.25 (19)
C2-C1-C7-N2	159.5 (2)	C2A—C1A—C7A—N2A	-165.8 (2)
C6-C1-C7-N2	-19.7 (3)	C6A—C1A—C7A—N2A	13.9 (3)
C15—O3—C9—C8	-176.9 (2)	C15A—O3A—C9A—C10A	14.0 (3)
C15—O3—C9—C10	3.1 (4)	C15A—O3A—C9A—C8A	-165.6 (2)
C13—C8—C9—O3	-179.92 (18)	C13A—C8A—C9A—O3A	176.49 (18)
C14—C8—C9—O3	1.4 (3)	C14A—C8A—C9A—O3A	-0.5 (3)
C13—C8—C9—C10	0.1 (3)	C13A—C8A—C9A—C10A	-3.1 (3)
C14—C8—C9—C10	-178.58 (18)	C14A—C8A—C9A—C10A	179.93 (19)
O3—C9—C10—C11	-179.9 (2)	O3A—C9A—C10A—C11A	-178.8 (2)
C8—C9—C10—C11	0.1 (3)	C8A—C9A—C10A—C11A	0.8 (3)
C9-C10-C11-C12	-0.5 (4)	C9A-C10A-C11A-C12A	1.3 (4)
C10-C11-C12-C13	0.7 (4)	C10A—C11A—C12A—C13A	-1.0 (5)
C16—O4—C13—C8	-174.1 (3)	C16A—O4A—C13A—C12A	-15.1 (4)
C16—O4—C13—C12	7.0 (4)	C16A—O4A—C13A—C8A	164.8 (2)
C9—C8—C13—O4	-178.76 (19)	C11A—C12A—C13A—O4A	178.6 (3)
C14—C8—C13—O4	-0.1 (3)	C11A—C12A—C13A—C8A	-1.4 (4)
C9—C8—C13—C12	0.1 (3)	C9A—C8A—C13A—O4A	-176.55 (18)
C14—C8—C13—C12	178.79 (19)	C14A—C8A—C13A—O4A	0.5 (3)
C11—C12—C13—O4	178.3 (2)	C9A—C8A—C13A—C12A	3.4 (3)
C11—C12—C13—C8	-0.5 (4)	C14A—C8A—C13A—C12A	-179.6 (2)
C9—C8—C14—O1	-88.9 (2)	C13A—C8A—C14A—O2A	108.7 (2)
C13—C8—C14—O1	92.5 (2)	C9A—C8A—C14A—O2A	-74.3 (2)
C9—C8—C14—O2	90.2 (2)	C13A—C8A—C14A—O1A	-70.1 (2)
C13—C8—C14—O2	-88.4 (2)	C9A—C8A—C14A—O1A	106.8 (2)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	D—H···A
N1—H1A…O1	0.92 (2)	1.89 (3)	2.799 (2)	171 (2)
N1—H1 <i>B</i> …O1 <i>A</i>	0.90 (3)	2.03 (3)	2.827 (2)	148 (2)
N2—H2A····O2	0.95 (2)	1.85 (2)	2.796 (2)	176.3 (19)
N2—H2 B ···O2 ⁱ	0.93 (2)	1.93 (2)	2.763 (2)	148.7 (19)
N1 <i>A</i> —H1 <i>A</i> 1…O1 <i>A</i>	0.92 (2)	1.87 (3)	2.785 (2)	175 (2)
N1 <i>A</i> —H1 <i>A</i> 2…O1	0.91 (3)	1.95 (3)	2.773 (2)	150 (2)
N2A—H2A1···O2A	0.92 (2)	1.95 (2)	2.868 (2)	173.0 (19)
N2A—H2A2····O2A ⁱⁱ	0.92 (3)	1.94 (3)	2.789 (2)	153 (2)

Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, -z+1.

(II) Benzamidinidium 2,6-dimethoxybenzoate

Crystal data

 $C_7H_9N_2^{+}C_9H_9O_4^{-}$ $M_r = 302.32$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.8921 (1) Å b = 10.4471 (1) Å c = 15.1403 (2) Å V = 1564.65 (3) Å³ Z = 4

Data collection

Oxford Xcalibur S CCD area-detector	327892 measured reflections
diffractometer	3175 independent reflections
Radiation source: Enhance (Mo) X-ray source	2872 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.040$
Detector resolution: 16.0696 pixels mm ⁻¹	$\theta_{\rm max} = 32.6^\circ, \theta_{\rm min} = 2.8^\circ$
ω and φ scans	$h = -15 \rightarrow 14$
Absorption correction: multi-scan	$k = -15 \rightarrow 15$
(CrysAlis RED; Oxford Diffraction, 2008)	$l = -22 \rightarrow 22$
$T_{\min} = 0.935, \ T_{\max} = 0.986$	
Refinement	
P -afinement on E^2	Secondary atom site location: differ

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.058$	Hydrogen site location: inferred from
$wR(F^2) = 0.156$	neighbouring sites
S = 1.19	H atoms treated by a mixture of independent
3175 reflections	and constrained refinement
219 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0886P)^2 + 0.1272P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

F(000) = 640

 $\theta = 2.8 - 32.6^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K

Small prism, colourless

 $0.20 \times 0.15 \times 0.12 \text{ mm}$

 $D_{\rm x} = 1.283 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71069$ Å

Cell parameters from 116123 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic	or equivalent	t isotropic	displacement	parameters	$(Å^2)$)
	1	1	1			· · ·	

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.24030 (16)	0.15399 (19)	-0.03437 (12)	0.0400 (4)
H1A	0.248 (2)	0.225 (2)	0.0091 (16)	0.034 (6)*
H1B	0.165 (3)	0.130 (3)	-0.0539 (19)	0.043 (7)*
N2	0.46956 (16)	0.1472 (2)	-0.03504 (13)	0.0420 (4)

H2A	0.468 (3)	0.209 (3)	0.002 (2)	0.051 (8)*
H2B	0.557 (3)	0.112 (3)	-0.048 (2)	0.051 (8)*
C1	0.34893 (17)	0.00992 (15)	-0.13753 (11)	0.0301 (3)
C2	0.2336 (2)	-0.0641(2)	-0.14905 (17)	0.0479 (5)
H2	0.1576	-0.0543	-0.1091	0.058*
C3	0.2269 (3)	-0.1521 (3)	-0.21747 (19)	0.0569 (6)
Н3	0.1463	-0.2038	-0.2253	0.068*
C4	0.3339 (3)	-0.1663 (3)	-0.27409 (18)	0.0577 (6)
H4	0.3286	-0.2270	-0.3224	0.069*
C5	0.4486 (3)	-0.0945 (3)	-0.26236 (19)	0.0663 (8)
Н5	0.5244	-0.1057	-0.3023	0.080*
C6	0.4578 (2)	-0.0058(2)	-0.19409 (16)	0.0501 (6)
H6	0.5394	0.0444	-0.1862	0.060*
C7	0.35372 (17)	0.10679 (16)	-0.06615 (12)	0.0299 (3)
01	0.24645 (12)	0.37862 (14)	0.06668 (10)	0.0377 (3)
O2	0.46808 (13)	0.35660 (15)	0.08260 (12)	0.0438 (4)
03	0.4554 (2)	0.6099 (2)	-0.02050 (12)	0.0595 (5)
O4	0.2968 (2)	0.4922 (2)	0.25686 (10)	0.0552 (5)
C8	0.36935 (16)	0.55819 (17)	0.11803 (12)	0.0318 (3)
C9	0.4143 (2)	0.6527 (2)	0.06053 (15)	0.0420 (4)
C10	0.4192 (3)	0.7809 (2)	0.0872 (2)	0.0575 (6)
H10	0.4480	0.8471	0.0464	0.069*
C11	0.3826 (3)	0.8113 (2)	0.1723 (3)	0.0680 (8)
H11	0.3857	0.9000	0.1910	0.082*
C12	0.3416 (3)	0.7191 (3)	0.23192 (19)	0.0595 (7)
H12	0.3179	0.7424	0.2920	0.071*
C13	0.3349 (2)	0.5912 (2)	0.20401 (15)	0.0410 (4)
C14	0.36127 (16)	0.42050 (16)	0.08702 (10)	0.0286 (3)
C15	0.5270 (4)	0.6947 (4)	-0.0758 (3)	0.0815 (10)
H15A	0.466 (2)	0.767 (3)	-0.094 (2)	0.122*
H15B	0.559 (3)	0.6477 (16)	-0.1298 (18)	0.122*
H15C	0.607 (3)	0.730 (3)	-0.0430 (12)	0.122*
C16	0.2997 (3)	0.5119 (4)	0.35037 (17)	0.0696 (8)
H16A	0.227 (2)	0.572 (3)	0.3672 (5)	0.104*
H16B	0.388 (3)	0.548 (2)	0.3676 (5)	0.104*
H16C	0.285 (3)	0.430 (2)	0.3808 (8)	0.104*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0227 (6)	0.0471 (9)	0.0502 (9)	0.0013 (6)	-0.0006 (6)	-0.0191 (8)
N2	0.0240 (7)	0.0473 (9)	0.0546 (10)	0.0006 (6)	-0.0022 (6)	-0.0209 (9)
C1	0.0274 (7)	0.0274 (6)	0.0354 (7)	-0.0009 (6)	0.0000 (6)	-0.0047 (6)
C2	0.0304 (8)	0.0466 (11)	0.0668 (13)	-0.0078 (8)	0.0030 (9)	-0.0205 (11)
C3	0.0455 (11)	0.0490 (12)	0.0762 (16)	-0.0064 (10)	-0.0115 (11)	-0.0253 (13)
C4	0.0728 (16)	0.0485 (12)	0.0518 (12)	-0.0024 (12)	-0.0034 (12)	-0.0192 (10)
C5	0.0710 (16)	0.0700 (17)	0.0579 (14)	-0.0136 (15)	0.0275 (13)	-0.0268 (13)
C6	0.0439 (10)	0.0511 (12)	0.0552 (12)	-0.0135 (10)	0.0188 (10)	-0.0166 (10)
C7	0.0247 (6)	0.0285 (7)	0.0366 (7)	-0.0007 (6)	0.0010 (6)	-0.0042 (6)
O1	0.0240 (5)	0.0409 (7)	0.0481 (7)	-0.0046 (5)	-0.0001 (5)	-0.0131 (6)

O2	0.0260 (6)	0.0437 (7)	0.0617 (9)	0.0014 (5)	-0.0011 (6)	-0.0191 (7)
03	0.0740 (12)	0.0593 (10)	0.0451 (8)	-0.0179 (10)	0.0083 (8)	0.0012 (7)
O4	0.0642 (11)	0.0634 (10)	0.0380 (7)	-0.0107 (9)	0.0119 (7)	-0.0117 (7)
C8	0.0225 (6)	0.0339 (7)	0.0392 (8)	-0.0014 (6)	-0.0016 (6)	-0.0094 (7)
C9	0.0365 (9)	0.0407 (9)	0.0486 (10)	-0.0029 (8)	-0.0056 (8)	-0.0022 (8)
C10	0.0570 (14)	0.0361 (10)	0.0795 (17)	-0.0045 (10)	-0.0055 (13)	-0.0004 (11)
C11	0.0660 (17)	0.0393 (11)	0.099 (2)	0.0001 (12)	0.0005 (16)	-0.0243 (13)
C12	0.0561 (14)	0.0564 (13)	0.0662 (14)	0.0015 (11)	0.0068 (12)	-0.0340 (12)
C13	0.0323 (8)	0.0453 (10)	0.0454 (9)	-0.0015 (7)	0.0034 (7)	-0.0175 (8)
C14	0.0242 (6)	0.0333 (7)	0.0283 (6)	-0.0026 (6)	0.0034 (6)	-0.0067 (6)
C15	0.096 (2)	0.077 (2)	0.0720 (19)	-0.017 (2)	0.0219 (19)	0.0166 (17)
C16	0.0728 (18)	0.097 (2)	0.0388 (11)	0.0119 (18)	0.0022 (11)	-0.0101 (13)

Geometric parameters (Å, °)

N1—C7	1.317 (2)	О3—С9	1.368 (3)
N1—H1A	1.00 (3)	O3—C15	1.410 (4)
N1—H1B	0.84 (3)	O4—C13	1.361 (3)
N2—C7	1.309 (2)	O4—C16	1.431 (3)
N2—H2A	0.86 (3)	C8—C13	1.389 (3)
N2—H2B	0.96 (3)	C8—C9	1.389 (3)
C1—C6	1.386 (3)	C8—C14	1.515 (2)
C1—C2	1.389 (3)	C9—C10	1.400 (3)
C1—C7	1.481 (2)	C10-C11	1.376 (5)
С2—С3	1.387 (3)	C10—H10	0.9700
С2—Н2	0.9700	C11—C12	1.380 (5)
C3—C4	1.370 (4)	C11—H11	0.9700
С3—Н3	0.9700	C12—C13	1.403 (3)
C4—C5	1.371 (4)	C12—H12	0.9700
C4—H4	0.9700	C15—H15A	1.0051
С5—С6	1.391 (3)	C15—H15B	1.0051
С5—Н5	0.9700	C15—H15C	1.0051
С6—Н6	0.9700	C16—H16A	0.9863
O1—C14	1.255 (2)	C16—H16B	0.9863
O2—C14	1.252 (2)	C16—H16C	0.9863
C7—N1—H1A	117.3 (14)	C9—C8—C14	119.81 (16)
C7—N1—H1B	121 (2)	O3—C9—C8	115.16 (19)
H1A—N1—H1B	121 (2)	O3—C9—C10	124.1 (2)
C7—N2—H2A	117 (2)	C8—C9—C10	120.7 (2)
C7—N2—H2B	126.0 (19)	C11—C10—C9	118.8 (3)
H2A—N2—H2B	116 (3)	C11—C10—H10	120.6
C6—C1—C2	119.64 (17)	C9—C10—H10	120.6
C6—C1—C7	120.47 (16)	C10-C11-C12	121.9 (2)
C2—C1—C7	119.88 (16)	C10-C11-H11	119.0
C3—C2—C1	120.1 (2)	C12—C11—H11	119.0
С3—С2—Н2	119.9	C11—C12—C13	118.8 (2)
С1—С2—Н2	119.9	C11—C12—H12	120.6
C4—C3—C2	120.1 (2)	C13—C12—H12	120.6
С4—С3—Н3	119.9	O4—C13—C8	115.48 (18)

С2—С3—Н3	119.9	O4—C13—C12	124.0 (2)
C3—C4—C5	119.9 (2)	C8—C13—C12	120.5 (2)
С3—С4—Н4	120.0	O2—C14—O1	124.38 (15)
С5—С4—Н4	120.0	O2—C14—C8	118.58 (15)
C4—C5—C6	121.0 (2)	O1—C14—C8	117.03 (15)
С4—С5—Н5	119.5	O3—C15—H15A	109.5
С6—С5—Н5	119.5	O3—C15—H15B	109.5
C1—C6—C5	119.2 (2)	H15A—C15—H15B	109.5
С1—С6—Н6	120.4	O3—C15—H15C	109.5
С5—С6—Н6	120.4	H15A—C15—H15C	109.5
N2—C7—N1	119.58 (15)	H15B—C15—H15C	109.5
N2—C7—C1	120.72 (15)	O4—C16—H16A	109.5
N1—C7—C1	119.69 (15)	O4—C16—H16B	109.5
C9—O3—C15	118.4 (2)	H16A—C16—H16B	109.5
C13—O4—C16	117.9 (2)	O4—C16—H16C	109.5
C13—C8—C9	119.29 (18)	H16A—C16—H16C	109.5
C13—C8—C14	120.88 (17)	H16B—C16—H16C	109.5
C6—C1—C2—C3	-0.8 (4)	C14—C8—C9—C10	178.4 (2)
C7—C1—C2—C3	178.0 (2)	O3—C9—C10—C11	-176.1 (3)
C1—C2—C3—C4	-0.1 (4)	C8—C9—C10—C11	1.9 (4)
C2—C3—C4—C5	0.9 (5)	C9—C10—C11—C12	0.1 (5)
C3—C4—C5—C6	-0.7 (5)	C10-C11-C12-C13	-1.2 (5)
C2-C1-C6-C5	0.9 (4)	C16—O4—C13—C8	161.5 (2)
C7—C1—C6—C5	-177.8 (2)	C16—O4—C13—C12	-17.9 (4)
C4—C5—C6—C1	-0.2 (5)	C9—C8—C13—O4	-177.59 (18)
C6—C1—C7—N2	-23.6 (3)	C14—C8—C13—O4	1.1 (3)
C2C1C7N2	157.6 (2)	C9—C8—C13—C12	1.8 (3)
C6—C1—C7—N1	155.5 (2)	C14—C8—C13—C12	-179.5 (2)
C2-C1-C7-N1	-23.3 (3)	C11—C12—C13—O4	179.6 (3)
C15—O3—C9—C8	-167.5 (3)	C11—C12—C13—C8	0.2 (4)
C15—O3—C9—C10	10.7 (4)	C13—C8—C14—O2	-101.0 (2)
C13—C8—C9—O3	175.32 (18)	C9—C8—C14—O2	77.7 (2)
C14—C8—C9—O3	-3.4 (3)	C13—C8—C14—O1	79.5 (2)
C13—C8—C9—C10	-2.9 (3)	C9—C8—C14—O1	-101.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A	
N1—H1A…O1	1.00 (3)	1.82 (3)	2.802 (2)	166 (2)	
N1—H1 B ···O2 ⁱ	0.84 (3)	2.00 (3)	2.792 (2)	157 (3)	
N2—H2 <i>B</i> ···O1 ⁱⁱ	0.96 (3)	1.90 (3)	2.794 (2)	154 (3)	
N2—H2A····O2	0.86 (3)	1.97 (3)	2.821 (2)	177 (3)	

Symmetry codes: (i) x-1/2, -y+1/2, -z; (ii) x+1/2, -y+1/2, -z.