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A promising approach to the functionalization of unactivated
hydrocarbons (RH) involves a 1,2-RH-addition across metal�
heteroatom multiple bonds [MX] (M=Groups 4–6, X=

NR,[1,2] CR2,
[3] CR,[4] O[5]) to afford products of general

structure [M(XH)(R)]. Extensive selectivity studies have
been performed on Group 4 imido [M=NR’] systems that
activate hydrocarbons under reversible conditions.[1l–m] How-
ever, isolation of kinetically controlled product ratios has not
yet been achieved owing to the reverse reaction: competitive
extrusion of RH from the resulting [M(NHR’)(R)] products.
One process requiring kinetic control of the product distri-
bution is diastereoselective activation of a C�H bond, a
desirable transformation wherein kinetic selectivity will play
a critical role. Herein, we report the first Zr=NR system
capable of generating kinetic product distributions in the
selective C�H bond activation of unactivated sp2 and sp3
hydrocarbons. The results provide important information
regarding the selectivity and mechanism of the 1,2-RH-
addition event.
In an ongoing study in our laboratory,[1a–e] zirconium

complexes bearing Cp*Cp ligands emerged as ideal candi-
dates for the investigation of kinetic control in C�H bond
activation (Cp*= h5-C5Me5, Cp= h5-C5H5). Specifically,
imido precursors [Cp*CpZr=NCMe3(thf)] (1) and
[Cp*CpZr(Me)(NHCMe3)] (4) extrude THF or methane,
respectively, on thermolysis to form the transient imido
complex [Cp*CpZr=NCMe3] (2) [Eq. (1) and (2)].

[6a] We

found that the transient species 2 reacted with benzene to
produce the C�H activation product [Cp*CpZr(Ph)-
(NHCMe3)] (3 f) in both cases. In contrast to most Lewis
base (LB) complexes of the type [LnZr=NR(LB)], the use of
complex 1 resulted in the activation of benzene at a lower
temperature than did its corresponding methyl amide com-
plex 4.[7] That methyl amide 4 appeared more thermally stable
than imide 1 suggested that the analogous hydrocarbyl amide
products of C�H activation (e.g., 3 f) may form irreversibly
from 1 at 45 8C.
Given the unique reactivity of 1, kinetic control would

require that products [Cp*CpZr(R)(NHCMe3)] (3-R) form
irreversibly under the reaction conditions. Complex 1 reacted
with tert-butylacetylene and (E)-tert-butylethylene at ambient
temperature to generate products 3a and 3d, respectively,
whereas gentle heating (45 8C) was required to activate other
substrates depicted in Table 1 (forming 3b–c,[6b] 3e–k).[6c]

These preliminary data suggested that the hydrocarbon
substrate was involved in the rate-determining step of the
reaction.
To determine the thermal stability of C�H activation

products 3a–k, these complexes were thermolyzed with
10 equivalents of an imido trapping agent. Upon extrusion
of RH from complexes 3a–k, intermediate 2 was generated
and trapped irreversibly with di-p-tolylacetylene to produce
metallacycle 5, which subsequently rearranged to cyclometal-
lated complex 6 upon extended heating [Eq. (3)].[8] Elevated

temperatures (75–150 8C) were generally required for extru-
sion of RH from 3-R.[8,9a] Given the high thermal stability of
these products, we presume that C�H bond activation from 1
is effectively irreversible at 45 8C. This confirms that C�H
activation occurred under kinetic control at 45 8C.
To gain mechanistic insight into this process, we per-

formed a crossover labeling study to determine whether the
1,2-RH-addition event proceeded in an inter- or intramolec-
ular fashion. Reaction of complex 1 with a mixture of
[D0]mesitylene/[D6]benzene solely furnished products 3h/
[D6]-3 f. The lack of crossover products ([D1]-3h/[D5]-3 f)
indicated that 1,2-RH(D)-addition to 2 placed the R and
H(D) groups from the reacting hydrocarbon on the same
metal center in the final product: an intramolecular process.
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The nature of the transition state was examined by
performing kinetic isotope effect (KIE) studies. Measured at
45 8C, KIE values for reaction of 1 with [D0]/[D6]benzene,
[D0]/[D12]n-pentane,

[9c] [D0]/[D12]mesitylene, and [D0]/[D1]-
(E)-neohexene were kH/kD= 7.4, 8.9, 8.8, and 6.9, respective-
ly.[1n] These large positive values indicated a primary KIE
consistent with a direct C�H bond-breaking event in the rate-
determining step of the reaction. Most likely, this occurred
through a four-center transition state, wherein transfer of H
from R to N is relatively linear.[10] These values contrasted
with the equilibrium isotope effect for [D0]/[D6]benzene at
150 8C, KH/KD= 1.02, confirming that we have been able to
select independent thermodynamic conditions by varying the
reaction temperature.
Given that the hydrocarbon substrate underwent con-

certed, rate-determining 1,2-RH-addition to the Zr=N bond
of intermediate 2, intermolecular competition studies were
conducted under kinetic conditions (45 8C) such that the
observed product ratios ([3-R]/[3-R’]) reflected the relative
rates (kRH/kR’H) of RH activation (Table 1). Generally,
substrates bearing C�H bonds with a greater degree of
s character formed products 3-R with the highest relative
rates: sp (3a)> alkene sp2 (3b, 3d)� cPr (3c)> are-
ne sp2 (3e–g)> sp3 (3h–k).[9b] Less sterically hindered sub-
strates reacted up to 15 times faster than larger substrates
bearing similar electronic properties (3b> 3d ; 3h> 3k).

Arenes bearing electron-withdraw-
ing substituents (e.g., 1,3-bis(tri-
fluoromethyl)benzene to form 3e)
reacted only twice as fast as other
arenes, even in cases where the
thermodynamic stabilities of the
products were substantially differ-
ent (see below).
The high relative rate for acti-

vation of tert-butylacetylene led us
to speculate that 1 may activate
alkynes by a mechanism distinct
from that of direct 1,2-RH-addi-
tion via transition state 7
(Scheme 1, path a). In analogy to
a Ti=O system,[5] alkynes may
undergo rate-determining metalla-
cycle formation (Scheme 1, kmet,
path b) with 2 to form intermediate
metallacycle 8, followed by rear-
rangement (krearr) to provide 3a. In
a KIE competition study to form
3a/[D1]-3a, kH/kD was found to be
0.8. In contrast with the large
primary KIE values determined
for other substrates, this small,
inverse value indicated that a C�
H bond was not broken on or
before the rate-determining step.
Thus, we propose that alkynes
follow path b with an initial rate-
determining metallacycle-forming

step, whereas other unsaturated substrates react either
analogously to path a or via reversible metallacycle (kmet/
kmet

�1) formation followed by a rate-determining rearrange-
ment reaction (krearr).
To compare kinetic selectivity data to the relative

thermodynamic stability (KRH/R’H) of products 3-R, intermo-
lecular competition studies were performed at higher temper-
atures (150 8C) in which interconversion of the products takes
place: 3e@ 3d, 3b> 3 f, 3g> 3c, 3h> 3 i, 3k (Table 1).[8] With
modest exceptions, substrates reacting with the highest
relative rates generally formed the most thermodynamically

Table 1: Relative kinetic (kRH/kR’H) and thermodynamic (KRH/R’H) selectivity of C�H bond activation for
substrates RH by complex 1.

3-R[a] RH kRH/kR’H
[b] KRH/R’H

[c] 3-R[a] RH kRH/kR’H
[b] KRH/R’H

[c]

3a >106 n.d.[d] 3 f 17 170

3b 700 370 3g 16 160

3c 280 40 3h 15 30

3d 220 750 3 i 1.7 1
3 j 1.5 n.d.[d]

3e 36 26000 3k 1 0.6[e]

[a] Products 3-R formed from 1 and the explicitly drawn C�H bond in the corresponding substrate RH.[8]

[b] Relative rates (kRH/kR’H) for RH activation by 1 calculated per reactive RH bond at 45 8C; kR’H= kRH for
2,3-dimethyl-2-butene. [c] Relative thermodynamic stability (KRH/R’H) of products 3-R relative to 3 i
measured at 150 8C from 1 and calculated per reactive RH bond. [d] Determination of thermodynamic
selectivity was unsuccessful owing to decomposition of 3-R. [e] Thermodynamic selectivity measured at
105 8C.

Scheme 1. Mechanistic pathways for activation of tert-butylacetylene.
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stable products. The unusually high stability of 3e may be
attributed to electronic stabilization imparted by the arene
substitutents.
In summary, mixed-ring Cp*Cp complex 1 provided the

first example of the isolation of kinetic product ratios in sp2

and sp3 C�Hbond activation with Group 4M=NR complexes.
This feature of the Cp*Cp system allowed selectivity and
mechanistic experiments to probe the 1,2-RH-addition event.
Hybridization of reacting C�H bonds generally determined
the relative rate of RH activation, whereas electronic factors
and substrate size were responsible for more subtle differ-
ences. Substrates that formed the most thermodynamically
stable products generally reacted most rapidly. KIE values
indicated that alkyne substrates likely undergo rate-deter-
mining metallacycle formation followed by rearrangement,
whereas the RH bond was likely broken directly in the rate-
determining step for other hydrocarbons. Continuing work
focuses on designing complexes capable of diastereoselective
C�H bond activation as well as on determining the factors
responsible for reactivity differences promoted by various
ancillary Cp-based ligands.
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