Organic & Biomolecular Chemistry

PAPER

Cite this: Org. Biomol. Chem., 2013, **11**, 758

Received 24th September 2012, Accepted 27th November 2012 DOI: 10.1039/c2ob26877a

www.rsc.org/obc

Introduction

Since Gellert and coworkers suggested the guanine tetrad structure was linked by intermolecular hydrogen bonding in 1962,¹ the characteristic guanine-quartet (hereafter referred to as G-4) structure (Fig. 1) has attracted a great deal of attention of researchers in many different areas.^{2–8} Especially, integrated G-4 structures which exist at the edge of the DNA chain, called guanine quadruplexes (hereafter denoted as G-quadruplex), have been reported in large numbers.^{9–15} So far, many kinds of G-quadruplexes included in higher-order structures have been crystallised with various template cations.^{16,17} In parallel, studies on the interaction of molecules to show a certain selectivity for the part of the G-quadruplex have been

^bDepartment of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.

E-mail: kojima@chem.tsukuba.ac.jp; Fax: (+) 81-29-853-4323

Quartet formation of a guanine derivative with an isopropyl group: crystal structures of "naked" G-quartets and thermodynamics of G-quartet formation†

RSCPublishing

View Article Online

Yuji Inui,^{a,b} Motoo Shiro,^c Shunichi Fukuzumi*^{a,d} and Takahiko Kojima*^b

The formation of guanine quartets with 9-isopropylguanine (ⁱPG) is discussed in organic solvents. Crystal structures of the ⁱPG quartets were determined by X-ray crystallography with template cations (Na⁺ and Ca²⁺) and the structure without a template cation was also obtained by virtue of the stabilization by intermolecular hydrogen bonding with water molecules of crystallization. The difference in the quartet formation of ⁱPG in the presence and absence of a template cation was clearly demonstrated by ¹H NMR measurements in CDCl₃–CH₃OH mixed solvents. The quartet formation is mainly governed by the enthalpy gain due to the electrostatic interaction between the O6 oxygen in ⁱPG and the template cations in the presence of the cations rather than the intermolecular hydrogen bonding, while desolvation of ⁱPG is the dominant factor for the formation in the absence of cations. In the presence of Na⁺ and Ca²⁺, ΔH and ΔS values in the formation of ⁱPG-4–Na⁺ and ⁱPG-4–Ca²⁺ complexes were determined to be $\Delta H = -8.4$ kcal mol⁻¹ and $\Delta S = +50$ cal mol⁻¹ K⁻¹ for Na⁺ and $\Delta H = -12.9$ kcal mol⁻¹ and $\Delta S = +34$ cal mol⁻¹ K⁻¹ for Ca²⁺ on the basis of van't Hoff plots attained from the results of temperature-dependent UV-Vis spectroscopic measurements.

Fig. 1 Schematic description of G-quartet (G-4).

conducted.^{18–27} The main purpose of those studies has been the acquirement of an anticancer effect. The effect is based on inhibition of telomerase binding to the G-quadruplex moiety of DNA by protecting the moiety with the molecules. G-quadruplexes have also been utilized to develop functional biomaterials: the cavity of G-quadruplex can include guest ions, which can be applied to ion-conducting materials and so on.^{28,29}

The study on solution behaviour of guanine and its derivatives in organic solvents should be important for elucidating the dynamics of the G-4 structure formation by intermolecular hydrogen bonding in detail. However, the formation dynamics of a discrete G-4 structure is yet to be well investigated. The

^aDepartment of Material and Life Science, Graduate School of Engineering, Osaka University and ALCA (JST), 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan. E-mail: fukuzumi@chem.eng.osaka-u.ac.jp; Fax: (+) 81-6-6879-7370

^cX-ray Laboratory, Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo 196-8666, Japan

^dDepartment of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea †Electronic supplementary information (ESI) available. CCDC 898242, 898243, 898244, 898245. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2ob26877a

Fig. 2 The structure of 9-isopropylguanine (ⁱPG).

lack of the thermodynamic data on the formation of a discrete and single-layer G-4 structure has hampered the discussion on the details of the G-4 formation, including the driving force of the formation. In fact, G-quadruplex structures involve too many complicated factors including noncovalent intermolecular interactions³⁰ provided by many functional groups such as sugar and phosphate moieties, which cover the part of G-4 cores.^{31,32} Therefore, interactions of external molecules with a G-quadruplex have been observed as interactions with the peripheral groups, not direct interactions with the G-4 units. In addition, the conformational regulation of the peripheral moieties has been considered to be difficult for the formation of supramolecular assemblies of guanine derivatives linked only by intermolecular hydrogen bonding in solutions.^{33–35} Thus, G-4 formation with the use of a guanine derivative without complicated peripheral groups is indispensable to clarify the intrinsic thermodynamics of the complementary hydrogen bonding and interaction of G with a template cation in a discrete and single-layer G-4 structure.

In this work, 9-isopropylguanine (ⁱPG)³⁶ having the isopropyl group at the 9-N position was used to form the G-4 structure (Fig. 2). The introduction of the small isopropyl group allowed us not only to improve the solubility into organic solvents but also to accommodate the crystallization of "naked" G-4 supramolecules, without any steric protection of the G-4 core by such deoxyribose-phosphate moieties in guanosine derivatives reported so far. The strategy presented herein makes it possible for the first time to discuss the intrinsic characteristics of the G-4 structure and the detailed thermodynamics of the G-4 formation to elucidate the role of the template cations. Based on the observations, we would clarify the switching of the driving force of the G-4 formation from desolvation of the guanine molecule in the absence of template metal ions to electrostatic attractive interactions between ⁱPG and metal ions in the presence of the template cations.

Results and discussion

1. Crystal structures of G-quartets

In all cases, crystallization of G-4 assemblies was conducted in methanol solutions with vapour diffusion of diethyl ether. Crystal structures of the G-4 assemblies made of ⁱPG are shown in Fig. 3. Even in the absence of a template cation, it was clearly demonstrated that ⁱPG could form the quartet

Fig. 3 Crystal structures of quartets of ¹PG with and without template cations: (a) ORTEP drawing of the ¹PG-4 structure without template cations (70% probability thermal ellipsoids); (c) that with Na⁺ derived from NaBPh₄ (30% probability thermal ellipsoids). BPh₄⁻ was omitted for clarity; (e) that with Ca²⁺ (70% probability thermal ellipsoids). Partial packing structures for (a), (c), and (e) are depicted in (b), (d) and (f), respectively.

(ⁱPG-4) structure in the crystal with the aid of two water molecules (¹PG-4–H₂O; Fig. 3(a) and Fig. S1 in ESI⁺). As observed in the G-quadruplex, the G-4 assembly was formed by the complementary intermolecular hydrogen bonding between the O6 and N1H atoms and that between the 2-amino group and the 7-nitrogen atom. Intermolecular hydrogen bonding was observed among the water molecule of crystallization and the oxygen atoms at the 6-position in ⁱPG showing the interatomic distance (O1…O3(W) and O2…O3(W), 2.85 and 3.03 Å, respectively). This hydrogen bonding could assist the G-4 formation to compensate for the lack of stabilization by template cations. In the packing structure, the ⁱPG-4 planes overlap partially due to CH/ π and π - π interactions (Fig. 3(b)). The integration of the ⁱPG-4 planes by stacking as seen in the G-quadruplex could not be observed, because the two hydrogen atoms of the water molecule of crystallization can direct only to one ⁱPG-4 plane and the water molecule cannot link two ⁱPG-4 planes. Although G-4 structure without template cations has been а reported,37,38 no report has appeared on "naked" G-4

Table 1 Summary of the interatomic distances related to template cations, those of N1H…O6 as intermolecular hydrogen bonding in ⁱPG-4 structures, and interplane distances between two G-4 assemblies

ⁱ PG-4–H ₂ O Water…O (Å)		ⁱ PG-4-Na ⁺		ⁱ PG-4-Ca ²⁺	
		Cation…O (Å)			
03…01	2.852(1)	Na1…O1	2.257(4)	Ca1…O1	2.3212(9)
		Na1…O2	2.300(3)		
O3…O2	3.030(1)	Na1…O3	2.320(4)	Ca1…O2	3.3232(9)
		Na1…O4	2.357(3)		
		NH··	••O (Å)		
N8…O1	2.849(2)	N18…O1	2.876(5)	N8…O1	2.941(2)
		N3…O2	2.878(6)		
N3…O2	2.782(1)	N8…O3	2.872(4)	N3…O2	2.943(1)
		N13…O4	2.906(5)		
		G-4 plane…	G-4 plane (Å	()	
3.597		3.626	1 (3.652	
		Selecte	ed bonds		
		Na1…O4′	2.729(4)	Ca1…Cl1	2.6980(4)
		Na1…O5	2.609(7)		

structures without steric protection by large substituents attached to the guanine scaffold.

In the presence of sodium cation derived from Na[B(C₆H₅)₄] (NaBPh₄), the crystal structure of ⁱPG clearly demonstrated the formation of the G-4 dimer. The Na⁺ ion resided nearly in the mean plane of the ⁱPG-4 assembly. Two of the G-4 assemblies formed a dimer by the electrostatic interaction between Na⁺ and O6 of guanine in the other ⁱPG-4 plane, showing the interatomic distance of Na···O4' to be 2.729(4) Å (Fig. 3(c, d) and Fig. S2 in ESI[†]). One diethyl ether molecule was found to bind to the Na⁺ ion with the interatomic distance of 2.609(7) Å to cap the dimeric structure, preventing further stacking with the ⁱPG-4 assemblies. In the dimeric unit in the crystal, π - π interactions are operating with the closest interatomic distance of 3.422(8) Å.

We also examined the formation of the ⁱPG-4 structures in the presence of a calcium ion derived from CaCl₂. In this case, a ⁱPG-4 structure was formed and the Ca²⁺ ion also resided in the mean plane of the ⁱPG-4 structure. Two chloride counter anions interacted with the calcium ion with the Ca²⁺...Cl⁻ distance of 2.6980(4) Å both above and below the mean plane of the ⁱPG-4 bound to Ca²⁺ (ⁱPG-4-Ca²⁺) (Fig. 3(e) and Fig. S3 shown in ESI[†]). The packing structure is similar to that of the water-assisted ⁱPG-4 assembly: As well as in the case of the water-assisted ⁱPG-4, two of the ⁱPG-4-Ca²⁺ assemblies stack *via* CH/ π and π - π interactions to form a dimeric motif in the crystal (Fig. 3(f)).

Each distance between the cation and O6 of guanine in the corresponding ⁱPG-4 plane and that between N1H and O6 for the hydrogen bonding to form the ⁱPG-4 structure were slightly different among three kinds of ⁱPG-4 structures. However, the distances fall in the normal range of those reported in G-quad-ruplexes, *i.e.*, 2.3 Å and 2.9 Å, respectively,³⁹ as summarized in Table 1. Thus, the G-4 formation can be assisted by electrostatic interactions of O6 in guanine with a cationic entity or water molecules having polarized O–H bonds, regardless of the steric protection by bulky peripheral substituents.

(a)

Fig. 4 Temperature dependent ¹H NMR studies of ⁱPG with NaBPh₄. Conditions: (a) ⁱPG (19 mM) and NaBPh₄ (5.4 mM) in CDCl₃ and CH₃OH (600 μ l (30 : 1 v/v)); (b) ⁱPG (3.6 mM) in CDCl₃ and CH₃OH (600 μ l (5 : 1 v/v)).

2. Discussion of G-quartet formation in organic solvents

Observations of the ¹PG-4 structure formation in organic solvents were carried out using ESI-MS, UV-Vis and ¹H NMR measurements. Since ⁱPG is capable of forming a variety of supramolecular structures by virtue of intermolecular hydrogen bonding, including a ribbon structure as shown in Fig. S4 in ESI.[†] Thus, the regulation of the supramolecular structure should be carried out under strictly optimized conditions in organic solvents to form the G-4 structure selectively.

In general, the following issues have been considered: (1) the proton of N1H fixed into a G-4 assembly by intermolecular hydrogen bonding does not undergo exchange with deuterium of solvents, and (2) noncovalent intermolecular interactions including hydrogen bonding and electrostatic interaction in G-4 become stronger at low temperature, and then the G-4 structure is stabilized by the decrease of enthalpy beyond the decrease of entropy.40 In the presence of Na⁺, the proton signal of N1H of ⁱPG forming the ⁱPG-4 assembly can be detected around 12 ppm in the mixed solvent of CH₃OH and CDCl₃. The signal became clearer on cooling down to 253 K (Fig. 4(a)). On the other hand, in the absence of Na^+ , the ⁱPG-4 structure could not be formed even on cooling down to 253 K. Instead, the chemical shift of the proton of N1H of ¹PG without forming the ⁱPG-4 structure (δ = 10.5 ppm) could be observed clearly at low temperature. In addition, on cooling, the signal of N1H showed a downfield shift due to intermolecular hydrogen bonding probably between the guanine derivative and methanol (Fig. 4(b)). This result indicates that, in the absence of electrostatic interaction with template cations, the solvation of the ⁱPG molecule by methanol exerts a stronger effect in the methanol solution of ⁱPG rather than intermolecular hydrogen bonding to form the ⁱPG-4 structure. This result

Fig. 5 ESI-MS spectra of self-assembled species of ⁱPG with (a) NaBPh₄ and (b) CaCl₂; in methanol at room temperature under N₂. Conditions: (a) ⁱPG (15 mM), NaBPh₄ (6.8 mM); (b) ⁱPG (18 mM), CaCl₂ (8.4 mM). Peaks: (a) 1: ⁱPG–Na⁺ (m/z = 216.0), 2: ⁱPG-2–Na⁺ (m/z = 409.1), 3: ⁱPG–NaBPh₄–Na⁺ (m/z = 558.1); (b) 1: ⁱPG-2–Ca²⁺ (m/z = 213.0), 2: ⁱPG-3–Ca²⁺ (m/z = 309.6), 3: ⁱPG-5–Ca²⁺ (m/z = 502.7), 4: ⁱPG-8–Ca²⁺ (m/z = 792.3).

suggests that the gain of enthalpy by Na⁺···O interaction can compensate for the instability caused by desolvation.

ESI-MS measurements of ⁱPG in the presence of template cations allowed us to detect the formation of the ⁱPG-4 structure clearly even in the methanol solution. Upon addition of NaBPh₄ to provide Na⁺ as a template cation, a peak cluster was observed at m/z = 795.2 (calcd, 795.4), assignable to that derived from ⁱPG-4-Na⁺ (Fig. 5(a) and Fig. S5 in ESI⁺). In the presence of Ca²⁺, a peak cluster assigned to [ⁱPG-4-Ca²⁺]²⁺ was observed at m/z = 406.1 (calcd, 406.2; see Fig. S6 in ESI⁺), also confirming its formation.

Further scrutiny was given to the formation of ⁱPG-4 in the presence of the template cations in CH₃OH-CHCl₃ mixed solution by UV-Vis absorption spectroscopy. The absorption spectra of ⁱPG showed red shifts in the course of addition of NaBPh₄ or CaCl₂ (Fig. 6(a) and see Fig. S7(a) in ESI[†]). The shift was assigned to form G-4-cation complexes: a Job's plot for ¹PG and NaBPh₄ gave the maximum at 0.2 mole fraction, indicating the 4 : 1 complexation of ${}^{i}PG$ with sodium ion (Fig. 6(c)). In the presence of an excess amount of Na⁺, however, the presence of a 1:1 complex of ⁱPG with Na⁺ was observed by ESI-MS spectrometry (see Fig. S8 in ESI⁺). In contrast, the Job's plot for ⁱPG and CaCl₂ afforded two maximums at 0.2 and 0.5, indicating that ⁱPG-4-Ca²⁺ is formed at lower concentration of Ca^{2+} , however, a 1:1 complex (ⁱPG-Ca²⁺) became dominant at higher concentrations of Ca²⁺ (see Fig. S7(b) in ESI[†]). It should be noted that the Ca²⁺ ion binds to guanine more tightly than the Na⁺ ion due to the higher cationic charge, even though the Cl⁻ anion may interact with the Ca²⁺ ion in solution to reduce the Lewis acidity.

Fig. 6 UV-Vis spectral change by adding (a) NaBPh₄, (b) titration curve at 295 nm and (c) Job's plot of the ¹PG–Na⁺ complex: Conditions: (a) ¹PG (207 μ M) in CH₃OH and CHCl₃ (1:74 v/v), the additional NaBPh₄ (15.5 mM) in CH₃OH and CHCl₃ (1:9 v/v); (b) the total mole concentration was adjusted to 41.3 μ M in CH₃OH and CHCl₃ (1:374 v/v), ¹PG (0.62 mM) in CH₃OH and CHCl₃ (1:24 v/v), NaBPh₄ (0.62 mM) in CH₃OH and CHCl₃ (1:24 v/v); all the measurements were carried out at room temperature.

In the range under 0.5 mole fraction in the Job's plots, allosteric effects could not be observed clearly on the sequential process relating to the formation of ⁱPG-4–cation complexes in both the cases of Na⁺ and Ca²⁺ (see Fig. 6(b) and see the inset of Fig S7(a) in ESI[†]). This indicates that the intermolecular hydrogen bonding to form the G-4 structure is much weaker than the electrostatic interaction between the O6 oxygen of guanine and the template cation. Therefore, in the presence of a template cation, the main driving force of the G-4 formation is the interaction of the guanine O6 oxygen with the template cation.

3. Thermodynamics of the formation of G-quartet analysed by van't Hoff plots

As mentioned above, the electrostatic interaction among the template cation and the O6 oxygen of guanine is much stronger than the intermolecular hydrogen bonding to form the G-4 structure. In addition, the contribution of equilibrium of G-4 formation by the metal-free guanine molecules should be

negligible. Furthermore, as observed in variable-temperature NMR measurements (Fig. 4), ⁱPG molecules can form a ⁱPG-4 structure in $CH_3OH-CDCl_3$ at temperatures above 253 K, however, below 253 K, the formation is negligible. Therefore, in order to simplify the equilibrium of G-4 formation in the presence of a template cation, spectroscopic titration to determine the equilibrium constants of the ⁱPG-4 formation was conducted at temperatures below 253 K. Under such conditions, the equilibrium can be elucidated as shown in Scheme 1.

Spectroscopic titration to determine the equilibrium constant of the ⁱPG-4–Na⁺ formation was carried out at 253 K or lower and under 0.5 of the equivalence of NaBPh₄ relative to ⁱPG, *i.e.*, under 0.333 of the mole fraction of NaBPh₄ for ⁱPG. At temperatures below 253 K, the plot of UV-Vis absorbance changes at 295 nm by adding NaBPh₄ exhibited no sigmoidal change, suggesting the absence of the allosteric effect (Fig. 7). The analysis of the spectral change at each temperature was made to determine an apparent equilibrium constant based on the following equation.

$$K = K_1 K_2 K_3 K_4 = \frac{\left[{}^{i} PG \cdot 4 - Na^{+}\right]}{\left[{}^{i} PG \right]^{4} [Na^{+}]}$$
(1)

In the case of $CaCl_2$, the treatments were the same as described above for NaBPh₄, using $[Ca^{2+}]$ in eqn (1) in place of $[Na^+]$.

Equilibrium constants (K, M^{-4}) of the formation of ⁱPG-4–Na⁺ and ⁱPG-4–Ca²⁺ at various temperatures are summarized in Table 2. The enthalpy and entropy changes (ΔH and ΔS , respectively) in the formation of ⁱPG-4–Na⁺ were determined to be –8.4 kcal mol⁻¹ and +50 cal mol⁻¹ K⁻¹, respectively, on the basis of a van't Hoff plot (ln *K vs.* 1/*T*) as depicted in Fig. 7(b). Similarly, the ΔH and ΔS values of the ⁱPG-4–Ca²⁺ formation were also determined to be –12.9 kcal mol⁻¹ and +34 cal mol⁻¹ K⁻¹, respectively (see Fig. S9 in ESI[†]). The results indicate that the more positive Ca²⁺ ion binds more tightly to the ⁱPG-4 assembly to stabilize the quartet structure than the Na⁺ ion does.

The enthalpy change can be elucidated as the summation of the stabilization by the coulombic interaction between ⁱPG and the template cation (Na⁺ or Ca²⁺), intermolecular hydrogen bonding between each ⁱPG and the desolvation of methanol from ⁱPG. As noted at the end of the former section, since the intermolecular hydrogen bonding cannot become

Fig. 7 (a) Absorbance change of ⁱPG at 295 nm upon addition of NaBPh₄ at various temperatures in the course of the formation of ⁱPG-4–Na⁺; (b) a van't Hoff plot for the equilibrium constants. Conditions: ⁱPG (215 μ M) in CH₃OH and CHCl₃ (1 : 74 v/v), the additional NaBPh₄ (15.5 mM) in CH₃OH and CHCl₃ (1 : 9 v/v).

Table 2 Equilibrium constants at each temperature and the enthalpy and entropy of the formation of $^1\text{PG-4}\text{-Na}^+$ and $^1\text{PG-4}\text{-Ca}^{2+}$

ⁱ PG-4-Na ⁺					
T (K)	$K \left(\mathbf{M}^{-4} \right)^a$	ΔH^b (kcal mol ⁻¹)	$\Delta S^b (\text{cal mol}^{-1} \text{ K}^{-1})$		
253 243 233 223	$\begin{array}{c} 1.4\times10^{18}\\ 2.5\times10^{18}\\ 4.7\times10^{18}\\ 1.6\times10^{19} \end{array}$	-8.4	+50		
ⁱ PG-4-C	a ²⁺				
T (K)	$K(\mathbf{M}^{-4})^a$	ΔH^b (kcal mol ⁻¹)	$\Delta S^b (\text{cal mol}^{-1} \text{ K}^{-1})$		
308 303 298	$\begin{array}{c} 4.9 \times 10^{16} \\ 6.3 \times 10^{16} \\ 1.0 \times 10^{17} \end{array}$	-12.9	+34		

^{*a*} Each equilibrium constant was obtained by temperature-dependent UV-Vis measurements.⁴¹ ^{*b*} Each value was estimated by the slope and the intercept of the van't Hoff plot; $\ln K = -\Delta H/RT + \Delta S/R$.

the main driving force to form ⁱPG-4, the enthalpy change should be derived from the attractive electrostatic interaction between ⁱPG and the template-cation. In addition, although the formation of ⁱPG-4–Na⁺ and ⁱPG-4–Ca²⁺ should be unfavourable in terms of entropy changes, the entropy loss can be compensated for by the desolvation of methanol from ⁱPG as well as Na⁺. The degree of contributions to the entropy change from the desolvation of ⁱPG and the template cations, however, remains unclear due to the lack of the thermodynamic parameters for the ⁱPG-4 formation in the absence of a template cation.

Conclusions

In this study, we determined crystal structures of "naked" G-4 assemblies without bulky substituents using ⁱPG as a building block. In the crystal structure of ⁱPG-4–H₂O, the quartet structure is stabilized by intermolecular hydrogen bonding among the O6 oxygen of ⁱPG in the quartet and the water molecules of crystallization. In the structures of ⁱPG-4–Na⁺ and ⁱPG-4–Ca²⁺, the template cations such as Na⁺ and Ca²⁺ reside at the centre of the quartets. It should be noted that the ⁱPG-4 structure can be obtained without the presence of the template cations and bulky peripheral substituents to protect the hydrogen-bonded supramolecular G-tetramer.

We also discussed the thermodynamics of the ¹PG-4 formation in CH₃OH and CH₃OH-CH(D)Cl₃ solutions on the basis of spectroscopic measurements. Concerning the ⁱPG-4 formation, it is clarified that the electrostatic interactions between the template cations and the O6 oxygen of ⁱPG contribute more dominantly to the stabilization than the multiple intermolecular hydrogen bonding among the guanine molecules in the ⁱPG-4 structure. In the absence of the template cations, the ⁱPG-4 formation is governed by entropy change due to the desolvation of methanol from ⁱPG. In sharp contrast, in the presence of template cations, the charge of the cations, *i.e.*, the Lewis acidity of the cations, is important to stabilize the ⁱPG-4 assemblies by virtue of the electrostatic attractive interaction between the template cations and the electrostatically negative O6 oxygen of ⁱPG. This is clearly reflected on the more negative ΔH values of the ⁱPG-4–Ca²⁺ formation than that of the ⁱPG-4-Na⁺ formation. Thus, the dicationic Ca²⁺ ion is more favourable to stabilize the ⁱPG-4 structure thermodynamically than the monocationic Na⁺ ion (Fig. S10 in ESI⁺).

The results obtained in this work provide a solid thermodynamic basis of the driving force of the G-quartet formation without any bulky substituents on the guanine scaffold. This work will also contribute to the manipulation of G-quartet structures toward their further application in the construction of supramolecular materials.

Experimental section

Materials and methods

 $CHCl_3$ (Wako Pure Chemical Industries) was purified by distillation with CaH_2 . CH_3OH (Wako Pure Chemical Industries) was dried using Mg and I₂. $CDCl_3$ was purchased from Cambridge Isotope Laboratories, Inc. Other chemicals and solvents were purchased from Wako Pure Chemical Industries and Tokyo Chemical Industries. These reagents were used as received. 9-Isopropylguanine was synthesized according to the literature method (see ref. 36 in the text).

Apparatus

¹H NMR spectra were measured on a JNM-EX270 spectrometer (JEOL). UV-Vis absorption spectra were recorded on a

SHIMAZU UV2450. ESI-MS measurements were recorded on an Applied Biosystems QStar Pulsar i (ESI-TOF; positive mode) spectrometer.

¹H NMR measurements

A mixed solvent of CDCl₃-CH₃OH was used for measurements and chemical shifts were determined relative to an internal standard (TMS). Variable-temperature NMR measurements were made on a sample containing 9-isopropylguanine and each template cation after incubating for over 3 minutes at a certain temperature.

UV-Vis titration to determine thermodynamic parameters

UV-Vis spectroscopic titrations of ¹PG upon addition of template cations were conducted in mixed solvents of $CHCl_3/CH_3OH$. Sodium tetraphenylborate and calcium dichloride were used as the sources of the template cations. In order to determine the *K* value (expressed by eqn (1) in the text), absorbance at an appropriate wavelength (295 nm for ⁱPG-4–Na⁺ and 288 nm for ⁱPG-4–Ca²⁺) was monitored. Thermodynamic parameters were determined using the van't Hoff plot (see the footnote of Table 2).

X-ray crystallography

Single crystals of ⁱPG-4 assemblies made of ⁱPG with water molecules of crystallization and template cations were attained by recrystallisation from methanol with vapour diffusion of diethyl ether. The crystallization of the G-ribbon type was carried out in the mixed solvent of methanol and chloroform with vapour diffusion of diethyl ether. All measurements were performed on a Bruker SMART APEX II ULTRA CCD diffractometer at 120 K or 90 K with graphite-monochromated Mo Ka radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and expanded using Fourier techniques. Non-hydrogen atoms were refined anisotropically including solvents except disordered molecules (ether in the crystal structure of the G-4 with sodium tetraphenylborate). Refinements were carried out by full-matrix least squares techniques on F^2 with scattering factors⁴² and including anomalous dispersion effects.43 All calculations were performed using the Yadokari-XG crystallographic software package,44 and structure refinements were made by using *SHELXL* 97.⁴⁵ All the X-ray crystallographic data are summarized in Table S1 in ESI.†

Acknowledgements

This work was supported by Grants-in-Aids (20108010, 23111703, 24245011) from the Japan Society of Promotion of Science and Technologies, and by KOSEF/MEST through the WCU project (R31-2008-000-10010-0) of Korea.

Notes and references

- 1 M. Gellert, M. N. Lipsett and D. R. Davies, *Proc. Natl. Acad. Sci. U. S. A.*, 1962, **48**, 2013.
- 2 J. T. Davis, Angew. Chem., Int. Ed., 2004, 43, 668.
- 3 J. R. Williamson, Curr. Opin. Struct. Biol., 1993, 3, 357.
- 4 D. E. Gilbert and J. Feigon, *Curr. Opin. Struct. Biol.*, 1999, 9, 305.
- 5 M. A. Keniry, Biopolymers, 2001, 56, 123.
- 6 R. H. Shafer and I. Smirnov, Biopolymers, 2001, 56, 209.
- 7 G. Fang and T. R. Cech, *Biochemistry*, 1993, **32**, 11646.
- 8 H. Arthanari and P. H. Bolton, Chem. Biol., 2001, 8, 221.
- 9 J. McCallum, S. Amare and R. Nolan, *Nucleosides, Nucleotides Nucleic Acids*, 2010, **29**, 801.
- 10 D. J. E. Yue, K. W. Lim and A. T. Phan, *J. Am. Chem. Soc.*, 2011, **133**, 11462.
- 11 G. N. Parkinson, M. P. H. Lee and S. Neidle, *Nature*, 2002, 417, 876.
- 12 S. Haider, G. N. Perkinson and S. Neidle, *J. Mol. Biol.*, 2002, **320**, 189.
- 13 Y. Xu, Y. Suzuki, T. Lönnberg and M. Komiyama, J. Am. Chem. Soc., 2009, 131, 2871.
- 14 Y. Wang and D. J. Patel, *Biochemistry*, 1992, **31**, 8112.
- 15 K. Y. Wang, S. Swaminathan and P. H. Bolton, *Biochemistry*, 1994, **33**, 7517.
- 16 S. L. Forman, J. C. Fettinger, S. Pieraccini, G. Gottarelli and J. T. Davis, J. Am. Chem. Soc., 2000, 122, 4060.
- 17 T. J. Pinnavaia, C. L. Marshall, C. M. Mettler, C. L. Fisk, H. T. Miles and E. D. Becker, *J. Am. Chem. Soc.*, 1978, 100, 3625.
- 18 K. Saito, H. Tai, H. Hemmi, N. Kobayashi and Y. Yamamoto, *Inorg. Chem.*, 2012, **51**, 8168.
- 19 H. Yaku, T. Fujimoto, T. Murashima, D. Miyoshi and N. Sugimoto, *Chem. Commun.*, 2012, **48**, 6203.
- 20 G. W. Collie, R. Promontorio, S. M. Hampel, M. Micco, S. Neidle and G. N. Parkinson, J. Am. Chem. Soc., 2012, 134, 2723.
- 21 J. E. Reed, A. A. Arnal, S. Neidle and R. Vilar, *J. Am. Chem. Soc.*, 2006, **128**, 5992.
- 22 I. Haq, J. O. Trent, B. Z. Chowdhry and T. C. Jenkins, *J. Am. Chem. Soc.*, 1999, **121**, 1768.
- 23 J. Dai, M. Carver, L. H. Hurley and D. Yang, J. Am. Chem. Soc., 2011, 133, 17673.
- 24 C. L. Grand, H. Han, R. M. Muñoz, S. Weitman, D. D. V. Hoff, L. H. Hurley and D. J. Bearss, *Mol. Cancer Ther.*, 2002, 1, 565.
- 25 D. F. Shi, R. T. Wheelhouse, D. Sun and L. H. Hurley, J. Med. Chem., 2001, 44, 4509.

- 26 E. Izbicka, R. T. Wheelhouse, E. Raymond, K. K. Davidson,
 R. A. Lawrence, D. Sun, B. E. Windle, L. H. Hurley and
 D. D. V. Hoff, *Cancer Res.*, 1999, **59**, 639.
- 27 S. E. Evans, M. A. Mendez, K. B. Turner, L. R. Keating,
 R. T. Grimes, S. Melchoir and V. A. Szalai, *J. Biol. Inorg. Chem.*, 2007, 12, 1235.
- 28 V. A. Szalai and H. H. Thorp, J. Am. Chem. Soc., 2000, 122, 4524.
- 29 R. Freeman, X. Liu and I. Willner, J. Am. Chem. Soc., 2011, 133, 11597.
- 30 C. C. Hardin, A. G. Perry and K. White, *Biopolymers*, 2001, 56, 147.
- 31 G. N. Parkinson, R. Ghosh and S. Neidle, *Biochemistry*, 2007, **46**, 2390.
- 32 J. Pan and S. Zhang, J. Biol. Inorg. Chem., 2009, 14, 401.
- 33 J. Lim and O. Š. Miljanić, CrystEngComm, 2011, 13, 5309.
- 34 M. Meyer and J. Sühnel, J. Phys. Chem. A, 2003, 107, 1025.
- 35 T. Giorgi, F. Grepioni, I. Manet, P. Mariani, S. Masiero, E. Mezzina, S. Prieraccini, L. Saturni, G. P. Spada and G. Gottarelli, *Chem.-Eur. J.*, 2002, 8, 2143.
- 36 S. Fletcher, V. M. Shahani, A. J. Lough and P. T. Gunning, *Tetrahedron*, 2010, **66**, 4621.
- 37 J. L. Sessler, M. Sathiosatham, K. Doerr, V. Lynch and K. A. Abboud, Angew. Chem., Int. Ed., 2000, 39, 1300.
- 38 T. N. Pham, S. Masiero, G. Gottarelli and S. P. Brown, J. Am. Chem. Soc., 2005, 127, 16018.
- 39 K. Phillips, Z. Dauter, A. I. H. Murchie, D. M. J. Lilley and B. Luisi, *J. Mol. Biol.*, 1997, 273, 171.
- 40 A. J. Dingley, R. D. Peterson, S. Grzesiek and J. Feigon, J. Am. Chem. Soc., 2005, **127**, 14466.
- 41 Each equilibrium constant was estimated by the following formula:

$$\begin{bmatrix} \text{Cation} \end{bmatrix}_{\text{add}} = \frac{\Delta A}{\varepsilon K} \left(\left(\frac{\varepsilon}{\varepsilon [^{\text{i}} \text{PG}]_{0} - 4\Delta A} \right)^{4} + K \right)$$
$$\left(\varepsilon = \varepsilon_{\text{i} \text{PG}_{4}} - 4\varepsilon_{\text{i} \text{PG}} \right)$$

- 42 D. C. Creagh and W. J. McAuley, *International Tables for X-ray Crystallography*, ed. A. J. C. Wilson, Kluwer Academic Publisher, Boston, 1992, vol. C, Table 4.2.6.8 and 6.1.1.4.
- 43 J. A. Ibers and W. C. Hamilton, *Acta Crystallogr.*, 1964, **17**, 781.
- 44 Yadokari-XG 2009: Crystal Structure Analysis Package; modified by T. Nemoto, 2009, based on version 2007.5.12 (written by K. Wakita, C. Kabuto, S. Akine, T. Nemoto, E. Kwon). Release of software (Yadokari-XG 2009) for crystal structure analyses: J. Cryst. Soc. Jpn., 2009, 51, 218.
- 45 G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 4, 112.