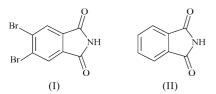
Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

4,5-Dibromophthalimide forms two centrosymmetric dimers, one linked by C— $H \cdots O$ hydrogen bonds and one by N— $H \cdots O$ hydrogen bonds

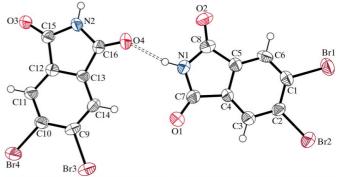
Craig Williamson and William T. A. Harrison*


Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland Correspondence e-mail: w.harrison@abdn.ac.uk

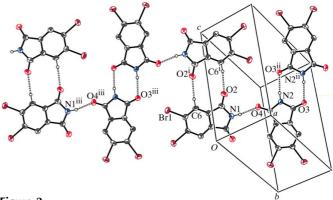
Received 30 January 2007 Accepted 31 January 2007 Online 17 February 2007

In the title compound [also called 5,6-dibromoisoindole-1,3(2*H*)-dione], $C_8H_3Br_2NO_2$, there are two planar molecules in the asymmetric unit. They both form inversion dimers, one *via* N-H···O links and one *via* short near-linear C-H···O links. The dimers are then linked into chains by further N-H···O hydrogen bonds.

Comment


The title compound, (I), was prepared as an intermediate *en route* to potential novel chromophores. This compound was first reported by Hanack & Stihler (2000).

All the geometrical parameters for (I) (Fig. 1) lie within their expected ranges (Allen *et al.*, 1995). There are two molecules in the asymmetric unit of (I); both are essentially flat, with an r.m.s. deviation from the mean plane of 0.017 Å for the molecule containing C1 and 0.012 Å for the molecule containing C9. The dihedral angle between the two molecules is 7.96 (16)°. The geometries of the six- and five-membered rings in (I) are not significantly different from those in phthalimide, (II) (Zakaria *et al.*, 2002), with the exception of the C1–C2 and C9–C10 bonds [mean = 1.414 (9) Å], which are slightly longer than the equivalent bond of 1.387 (2) Å in (II), perhaps due to steric repulsion between the *ortho* Br atoms.


The crystal packing (Fig. 2) for (I) results in hydrogenbonded inversion dimers for both molecules (Table 1). For the molecule containing C1, two strong near-linear C6-H6 \cdots O2ⁱ (see Table 1 for symmetry codes) interactions are the linking bonds. The H \cdots O separation of 2.36 Å implies a strong interaction (Taylor & Kennard, 1982; Desiraju & Steiner, 1999). An $R_2^2(10)$ supramolecular ring motif (Bernstein *et al.*, 1995) arises. For the C9 species, two more conventional, 'hard', N-H···O bonds fuse the dimeric pair of molecules together. The supramolecular motif that results is an $R_2^2(8)$ loop. Adjacent C1 and C9 dimers are then linked by the N1-H1···O4 bond, resulting in molecular tapes propagating in [210].

A *PLATON* (Spek, 2003) analysis of (I) identified two short Br...O interactions, compared with the Bondi (1964) van der Waals separation of 3.37 Å for these atoms. The close Br1...O3ⁱⁱⁱ separation of 3.209 (6) Å probably correlates with the N1-H1...O4 hydrogen bond linking the molecules into chains (see Fig. 2). The significance of the second short contact, Br3...O1^{iv} [symmetry code: (iv) -x, 1 - y, -z] of 3.117 (6) Å, which occurs between adjacent [110] chains, is less obvious. A short Br4...Br2^{iv} contact of 3.59017 (14) Å (the contact radius is 3.7 Å) is also apparent. Any π - π stacking

A view of (I), showing 50% probability displacement ellipsoids (H atoms are drawn as small spheres of arbitrary radii). The N-H···O hydrogen bond is shown as a double-dashed line. The C14-H14 group appears to be well aligned to form a C-H···O interaction to O1 (C-H···O = 174°), but the H···O separation of 2.80 Å is longer than the Bondi (1964) contact distance of 2.72 Å, suggesting that, at best, this is a very weak interaction.

Figure 2

Detail of the packing of (I), showing part of a [110] tape of dimers linked by C-H···O and N-H···O hydrogen bonds (40% probability displacement ellipsoids; H atoms involved in hydrogen bonding are drawn as small spheres of arbitrary radii and other H atoms have been omitted). The hydrogen bonds are shown as double-dashed lines. The short Br1···O3ⁱⁱⁱ separation of 3.209 (6) Å is discussed in the *Comment*. [Symmetry codes as in Table 1; additionally (iii) x - 2, y - 1, z.] effects in (I) must be exceedingly weak, with a minimum ringcentroid separation of 4.12 Å.

The crystal structure of (II) with one asymmetric molecule (Zakaria et al., 2002) also shows chains of molecules linked by $N-H \cdots O$ and $C-H \cdots O$ intermolecular interactions, but the $C-H \cdots O$ bonds in (II) (mean $H \cdots O = 2.55 \text{ Å}$) are much weaker than those in (I). Although inversion-generated loops featuring $C-H \cdots O$ and $N-H \cdots O$ interactions are present, the chain and overall structures of (I) and (II) are quite different.

Experimental

Rather than the published method of Hanack & Stihler (2000), a modified Wohrle (Wohrle et al., 1993) synthesis was used to prepare (I). Dibromophthalic anhydride and excess formamide were heated with stirring, at 413 K, without solvent for 5 h. The solution was cooled and filtered, and the residue was washed with cold water. The crude product was recrystallized (50:50 v/v, EtOH-H₂O) and dried overnight in a desiccator (P2O5). Slow crystallization from dichloromethane yielded colourless blocks of (I) (yield 66%; m.p. 508-513 K). Analysis found: C 31.4, H 0.9, N 4.4, Br 52.1%; C₈H₃Br₂NO₂ requires: C 31.5, H 1.0, N 4.6, Br 52.4%

Crystal data

$C_8H_3Br_2NO_2$ $M_r = 304.94$	V = 899 $Z = 4$
M = 304.04	
$M_r = 304.74$	D 0
Triclinic, $P\overline{1}$	$D_x = 2.2$
a = 6.7725 (6) Å	Μο Κα
b = 11.0759 (10) Å	$\mu = 8.9$
c = 12.3543 (10) Å	T = 293
$\alpha = 101.734 \ (2)^{\circ}$	Block, o
$\beta = 91.725 \ (2)^{\circ}$	$0.34 \times$
$\gamma = 97.031 \ (2)^{\circ}$	
Data collection	
Bruker SMART1000 CCD	5395 m
diffractometer	3154 in
ω scans	1994 re
Absorption correction: multi-scan	$R_{\rm int} = 0$
(SADABS; Bruker, 1999)	$\theta_{\rm max} = 2$
$T_{\min} = 0.076, T_{\max} = 0.373$	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.116$ S = 0.913154 reflections 235 parameters

9.08 (14) Å³ .253 Mg m⁻³ v radiation 98 mm⁻¹ 3 (2) K colourless $0.29 \times 0.11 \text{ mm}$

neasured reflections ndependent reflections effections with $I > 2\sigma(I)$ 0.034 25.1°

H-atom parameters constrained $w = 1/[\sigma^2 (F_0^2) + (0.0694P)^2]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.96$ e Å⁻³ $\Delta \rho_{\rm min} = -0.68 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C6-H6\cdots O2^i$	0.93	2.36	3.274 (9)	167
$N1 - H1 \cdots O4$	0.86	1.95	2.793 (8)	167
$N2-H2\cdots O3^{ii}$	0.86	2.04	2.902 (8)	175

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1.

All H atoms were placed in calculated positions, with C-H distances of 0.93 Å and N-H distances of 0.86 Å, and refined as riding, with $U_{iso}(H)$ values of $1.2U_{eq}(carrier)$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank M. John Plater for helpful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3087). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685-706. Dordrecht: Kluwer.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 38. Oxford University Press.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hanack, M. & Stihler, P. (2000). Eur. J. Org. Chem. pp. 303-311.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
- Wohrle, D., Eskes, M., Shigehara, K. & Yamada, A. (1993). Synthesis (Stuttgart), pp. 194-196.
- Zakaria, C. M., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, 09o10.