T_1 Values in Hydride and New Molecular Hydrogen Phosphite Complexes of Comparable Structure

Stefano Antoniutti, Gabriele Albertin,* Paola Amendola, and Emilio Bordignon*

Dipartimento di Chimica dell'Università di Venezia, Calle Larga S. Marta 2137, 30123 Venice, Italy

The molecular hydrogen complexes $\{MH(\eta^2-H_2)[PhP(OEt)_2]_4\}BPh_4$ (M = Fe, Ru, Os) and dihydride species $\{CoH_2[PhP(OEt)_2]_4\}BPh_4$ have been prepared and T_1 measurements for H⁻ and η^2-H_2 resonances give T_1 <100 ms for all complexes at 80 MHz.

Since their discovery,¹ new examples of molecular hydrogen complexes continue to be reported² and their characterization as η^2 -H₂ derivatives is often based on the T_1 criterion.³ T_1 values below 125 ms are considered characteristic of H₂ ligands, while $T_1 > 300$ ms are attributed to hydride ligands.²c

In the course of our studies on the first molecular hydrogen complexes containing phosphite ligands, we have found a number of hydride derivatives with $T_1 < 100$ ms, and therefore the 125 ms T_1 limit is no longer applicable to the distinction between classical and non-classical hydrides.

The complexes $[MH(\eta^2-H_2)(P)_4]BPh_4$ (1) [M = Fe (1a); Ru (1b); Os (1c); $(P) = PhP(OEt)_2]$ were prepared by treating the dihydrides⁴ $MH_2(P)_4$ with an excess of $HBF_4 \cdot Et_2O$ at low temperature ($-80\,^{\circ}C$) in ethanol. The pale-yellow solids, separated as BPh_4^- salts, are relatively air-stable and only by heating of their solutions to over $70\,^{\circ}C$ was a slow loss of H_2 detected. Substitution reactions with CO, RCN, RNC, and PR_3 ligands to give $[MHL(P)_4]BPh_4$ compounds are easy for (1a) and (1b), while reflux conditions are required for (1c). Furthermore, the reaction of (1) with aryldiazonium cations affords respectively bis(aryldiazenido)[Fe(ArN_2)_2(P)_3]-(BPh_4)_2 and pentaco-ordinate monodiazene $[Ru(ArN=NH)-(P)_4](BPh_4)_2$ complexes with (1a) and (1b), whereas (1c) is unreactive.

Analytical and spectroscopic data confirm the proposed formulation. The ${}^{31}P\{{}^{1}H\}$ n.m.r. spectra of (1) at $-80\,^{\circ}C$ in each case show a multiplet, suggesting *cis*-geometry for the complexes. In the high-field region of the ${}^{1}H$ n.m.r. spectra each complex shows a broad singlet (δ –3.8, –7.2) with a very short apparent T_1 value at $-65\,^{\circ}C$ [4 ms for (1a), 7 ms for (1b), and 10 ms for (1c)] attributed to the η^2 -H₂ ligand, and a multiplet with a much longer T_1 value [60 ms for (1a), 98 ms for (1b), and 51 ms for (1c)] attributed to the hydride ligand.

These T_1 values are unexpectedly low, especially for the hydride resonance, because all previously reported hydride

complexes^{2,3,5} show H⁻ resonances with $T_1 > 200$ ms, while our data with $T_1 < 100$ ms, fall in the range generally attributed to non-classical hydrides. However, the difference between the T_1 values of the broad singlet and the sharp multiplet is as expected (a factor of ca. 10), and the ¹H n.m.r. spectrum of the isotopomer [RuH(η^2 -HD)(P)₄]+, which shows a characteristic 1:1:1 triplet at δ –3.73 with $J_{\rm HD}$ 34 Hz, fully supports the proposed formulation.

In order to clarify these unusual T_1 values, we first measured the relaxation time of the dihydride precursors and

Table 1. Apparent T_1 values for selected complexes.

Compounda	Chem. shift, b δ	T_1 , b, c ms	Assignment, H resonance
[FeH(H2)(P)4]BPh4(1a)	-10.34m	60	H-
	-7.2br	4	η^{2} -2
$[FeH_2(P)_4]^d$	-13.35m	64	H -
[FeH(CO)(P) ₄]BPh ₄ e	−8.27qi	87	H-
[RuH(H2)(P)4]BPh4(1b)	-8.21m	98	H-
	-3.8br	7	η^2 - H_2
$[RuH(HD)(P)_4]BPh_4$	-8.19m	98	H
	-3.73t	25	η²-HD
$[RuH_2(P)_4]$	-9.35m	81	H-
$[RuH(CO)(P)_4]BPh_4^f$	−6.42qi	89	H
$[OsH(H_2)(P)_4]BPh_4(1c)$	-6.47m	51	H-
	-6.9br	10	η^2 - H_2
$[OsH_2(P)_4]$	-12.5m	66	H-

^a (P) = PhP(OEt)₂. ^b In CD₂Cl₂ at -65 °C; qi = quintet. ^c Determined by the inversion-recovery method at 80 MHz on a Varian FT-80A spectrometer; T_1 values are accurate to $\pm 10\%$. ^d Measured for *cis*-isomer. For the *trans*-isomer $\delta -10.9$ qi and T_1 about 60 ms. ^c In $T_1 = 10.28 - 1214/T$ between 203 and 303 K. ^c In $T_1 = 9.94 - 1135/T$ between 203 and 303 K.

J. CHEM. SOC., CHEM. COMMUN., 1989

of other monohydrides of known structure⁶ containing the same phosphite ligands. Furthermore, the temperature dependences of T_1 for these resonances in the range 203—303 K were also determined; the results are reported in Table 1. These data show that the hydrides containing ethoxy phosphite ligands relax faster ($T_1 < 100 \text{ ms}$) than all those reported so far, and that, for the same central metal, similar T_1 values for H⁻ are found for both mono-, di-hydride, and hydrogenhydride complexes. However, in the last derivatives, the relaxation of the η^2 -H₂ protons is also low (T_1 ratio H⁻/ η^2 -H₂ ca. 10:1). Therefore, the T_1 criterion discerning between a classical and a non-classical hydride can still be used; however, in the absence of definitive terms of reference, which may be provided by hydride resonances of the metal complexes containing the same ligands, reliance cannot be placed on absolute T_1 values only.†

The following example is typical: the reaction of the hydride⁷ CoH(P)₄ [(P) = PhP(OEt)₂] with HBF₄·Et₂O in ethanol at $-80\,^{\circ}$ C leads to the separation of a white solid, (2), which is diamagnetic and a 1:1 electrolyte, as its BPh₄⁻ salt. Its high-field 1 H n.m.r. spectrum shows a broad signal between +30 and $-80\,^{\circ}$ C at about δ -12.5, with a T_1 value of 22 ms at $-60\,^{\circ}$ C. On the basis of these data and the analytical results, formulation as a molecular hydrogen complex of the type [Co(η^2 -H₂)(P)₄]BPh₄ may seem at first plausible. However, under the same conditions, the CoH(P)₄ precursor shows a T_1 value of 21 ms (ln T_1 = 9.35 - 1280/T between 203

and 303 K) for the hydride resonance, and therefore a classical structure [CoH₂(P)₄]⁺ for the cation can be proposed. The i.r. spectrum shows a medium-intensity ν_{MH} band at 1980 cm⁻¹, which disappears on deuteriation, confirming the formulation as a dihydride species for the cobalt complex.

The financial support of the M.P.I. and the C.N.R., Rome, is gratefully acknowledged.

Received, 9th May 1988; Com. 8/01792A

References

- G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini, and H. J. Wasserman, J. Am. Chem. Soc., 1984, 106, 451.
- (a) M. Bautista, K. A. Earl, R. H. Morris, and A. Sella, J. Am. Chem. Soc., 1987, 109, 3780; (b) F. M. Conroy-Lewis and S. J. Simpson, J. Chem. Soc., Chem. Commun., 1987, 1675; (c) M. S. Chinn and D. M. Heinekey, J. Am. Chem. Soc., 1987, 109, 5865; (d) C. Bianchini, C. Mealli, M. Peruzzini, and F. Zanobini, ibid., 1987, 109, 5548; (e) G. J. Kubas, R. R. Ryan, and C. J. Unkefer, ibid., 1987, 109, 8113; (f) R. K. Upmacis, M. Poliakoff, and J. J. Turner, ibid., 1986, 108, 3645.
- 3 R. H. Crabtree and M. Lavin, *J. Chem. Soc.*, *Chem. Commun.*, 1985, 1661.
- 4 P. Meakin, E. L. Muetterties, F. N. Tebbe, and J. P. Jesson, *J. Am. Chem. Soc.*, 1971, **93**, 4701; G. Albertin, S. Antoniutti, and E. Bordignon, unpublished work.
- 5 R. H. Crabtree, B. E. Segmuller, and R. J. Uriarte, *Inorg. Chem.*, 1985, 24, 1949.
- 6 G. Albertin, S. Antoniutti, M. Lanfranchi, G. Pelizzi, and E. Bordignon, *Inorg. Chem.*, 1986, 25, 950.
- 7 D. D. Titus, A. A. Orio, R. E. Marsh, and H. B. Gray, *Chem. Commun.*, 1971, 322.

[†] Measurements of $\ln T_1 vs. 1/T$ at 200 MHz for [FeH(CO)P₄]BPh₄ as suggested by a referee revealed a T_1 minimum of 190 ms at 231 K.