Acta Cryst. (1997). C53, 1161-1162

1-(2,4-Diacetoxyphenyl)-2-phenylethanone \dagger

Hari N. Pati, ${ }^{a}$ Virinder S. Parmar ${ }^{a}$ and William Errington ${ }^{b}$
${ }^{\text {a Department of Chemistry, University of Delhi, Delhi }}$ 110 007, India, and ${ }^{b}$ Department of Chemistry, University of Warwick, Coventry CV4 7AL, England. E-mail: w.errington@warwick.ac.uk

(Received 3 February 1997; accepted 17 March 1997)

Abstract

The synthesis and structure of the title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5}$, are reported. The two phenyl rings are inclined at an angle of $66.9(1)^{\circ}$ with respect to each other; the substituent acetoxy groups are also twisted relative to the central phenyl group.

Comment

The use of differently substituted 1,2-diarylethanones (desoxybenzoins) as starting materials for the synthesis of a variety of biologically active polyphenolics is well documented (Jain, Tyagi \& Prasad, 1988). Many of the desoxybenzoins have shown quite significant antimicrobial and antiviral properties (Parmar et al., 1996). Consequently, we have synthesized a series of peracetylated desoxybenzoins for biotransformation studies.
The bond lengths and angles of the title compound, (I), are unexceptional (Allen et al., 1987). The two CO bond lengths to the phenyl ring are identical within experimental error [1.387 (3) and 1.388 (3) \AA] and are significantly longer than the O4-C17 [1.345 (3) A)] and $\mathrm{O} 2-\mathrm{C} 15[1.358$ (3) \AA] distances. This is indicative of some double bonding in the latter two cases; the conformation of the acetoxy groups, however, precludes any π interactions with the phenyl ring.

(I)

The overall picture is of a very angular molecule; several necessarily planar fragments may be identified, but none of these are coplanar with any other. For example, the best planes through the two phenyl rings are inclined at an angle of $66.9(1)^{\circ}$. Both acetoxy

[^0]groups are planar, as expected, but are inclined at angles of $58.9(1)$ and $82.9(1)^{\circ}$ with respect to the central phenyl ring. Finally, the ethanone unit is twisted in relation to the phenyl groups: at 28.1 (2) ${ }^{\circ}$ with respect to the central unit and at $85.4(2)^{\circ}$ relative to the peripheral phenyl. Packing diagrams do not reveal any obvious intermolecular hydrogen bonding or π-stacking interactions.

Fig. 1. View of the title molecule showing the crystallographic numbering system. Displacement ellipsoids are drawn at the 50\% probability level.

Experimental

A mixture of 2,4-dihydroxydesoxybenzoin (Jain, Arya \& Nayyar, 1984) ($5 \mathrm{mmol}, 1.14 \mathrm{~g}$), acetic anhydride (11 mmol , $1 \mathrm{ml})$ and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{ml})$ was stirred at 300 K for 24 h ; it was then poured onto crushed ice (50 g) containing concentrated $\mathrm{HCl}(0.2 \mathrm{ml})$. The product (I) was obtained as a white solid which recrystallized from chloroform-petrol (1:1) as white needles $(1.50 \mathrm{~g}, 96 \%$ yield), m.p. 401 K . IR (Nujol mull) $\nu_{\max }: 3000,1770,1700,1610,1460,1190,1100,915$ and $720 \mathrm{~cm}^{-1}$. UV (MeOH) $\lambda_{\text {max }}: 386$ and $291 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.30\left(s, 6 \mathrm{H}, 2 \times \mathrm{OCOCH}_{3}\right), 4.19(s, 2 \mathrm{H}$, $\left.-\mathrm{COCH}_{2}\right), 6.96(d, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H} 3), 7.06(m, 1 \mathrm{H}, \mathrm{H} 5), 7.19$ $\left(m, 2 \mathrm{H}, \mathrm{H} 3^{\prime}\right.$ and $\left.\mathrm{H}^{\prime}\right), 7.28\left(m, 3 \mathrm{H}, \mathrm{H} 2^{\prime}, \mathrm{H} 4^{\prime}\right.$ and $\left.\mathrm{H} 6^{\prime}\right)$ and $7.84(d, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H} 6) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.01\left(2 \times \mathrm{OCOCH}_{3}\right), 47.82\left(-\mathrm{COCH}_{2}\right)$, $117.35(\mathrm{C} 3)$, 118.95 (C^{\prime}), $126.90(\mathrm{C} 5), 127.77\left(\mathrm{Cl}^{\prime}\right), 128.54\left(\mathrm{C}^{\prime}\right.$ and C^{\prime}), 129.37 (C^{\prime} and C^{\prime}), 130.95 (C6), 133.83 (C 1), 149.98 $(\mathrm{C} 2), 153.71(\mathrm{C} 4), 168.20\left(\mathrm{OCOCH}_{3}\right), 168.98\left(\mathrm{OCOCH}_{3}\right)$ and $196.15(\mathrm{C}=\mathrm{O})$. EIMS, m / z (\% int.): $312\left[M^{+}\right](72), 270(100)$, 228 (63), 179 (20) and 43 (15).

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5}$
Mo $K \alpha$ radiation
$M_{r}=312.31$
Triclinic
$P \overline{1}$
$a=8.034(6) \AA$
$b=9.039(7) \AA$
$c=11.493(9) \AA$
$\lambda=0.71073 \AA$
Cell parameters from 27

reflections

$\theta=5-11^{\circ}$
$\mu=0.100 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
$\alpha=106.15$ (6) ${ }^{\circ}$
$\beta=92.75$ (6) ${ }^{\circ}$
$\gamma=106.74(6)^{\circ}$
$V=760.2(10) \AA^{3}$
$Z=2$
$D_{x}=1.364 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens P3R3 diffractometer $\omega-2 \theta$ scans
Absorption correction: none 2905 measured reflections
2694 independent reflections 1926 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.023$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.124$
$S=1.043$
2694 reflections
211 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0599 P)^{2}\right.$ $+0.1752 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.010$

Block
$0.46 \times 0.25 \times 0.20 \mathrm{~mm}$ Colourless

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 7$	$1.196(3)$	$\mathrm{O} 4-\mathrm{C} 17$	$1.345(3)$
$\mathrm{O} 2-\mathrm{C} 15$	$1.358(3)$	$\mathrm{O} 4-\mathrm{C} 4$	$1.388(3)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.387(3)$	$\mathrm{O}-\mathrm{Cl} 7$	$1.189(3)$
$\mathrm{O} 3-\mathrm{Cl5}$	$1.188(3)$		
$\mathrm{C} 15-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$106.3(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$28.9(3)$
$\mathrm{C} 15-\mathrm{O} 2-\mathrm{C} 2-\mathrm{Cl}$	$-81.5(2)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-15.0(3)$
$\mathrm{C} 17-\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	$-60.3(3)$	$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$163.98(19)$

The temperature of the crystal was controlled using the Oxford Cryosystems Cryostream Cooler (Cosier \& Glazer, 1986). H atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms; H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameter of the atom to which they are attached.

Data collection: P3/PC Diffractometer Program (Siemens, 1989). Cell refinement: P3/PC Diffractometer Program. Data reduction: SHELXTL-Plus (Sheldrick, 1991). Program(s) used to solve structure: SHELXTL-Plus. Program(s) used to refine structure: SHELXL96 (Sheldrick, 1996). Molecular graphics: SHELXTL-Plus. Software used to prepare material for publication: SHELXL96.

The authors wish to acknowledge the use of the EPSRC's Chemical Database Service at Daresbury Laboratory (Fletcher, McMeeking \& Parkin, 1996) for access to the Cambridge Structural Database (Allen \& Kennard, 1993). HNP thanks the Council for Scientific and Industrial Research (CSIR, New Delhi, India) for the award of a research fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1147). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Jain, A. C., Arya, P. \& Nayyar, N. K. (1984). Indian J. Chem. 23B, 1030-1035.
Jain, A. C., Tyagi, O. D. \& Prasad, A. K. (1988). Proc. Indian Acad. Sci. pp. 45-52.
Parmar, V. S., Bisht, K. S., Jain, R., Singh, S., Sharma, S. K., Gupta, S., Malhotra, S., Tyagi, O. D., Vardhan, A. \& Pati, H. N. (1996). Indian J. Chem. 35B, 220-232.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SHELXL96. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1989). P3/PC Diffractometer Program. Version 3.13. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1162-1164

Dimethyl 9,10-Dihydro-9,10-etheno-anthracene-11-carboxylate-12-S-carbonothioate

Ray Jones, A. Graham M. Rattray, John R. Scheffer and James Trotter

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1. E-mail: jtrt@xray4.chem. $u b c . c a$
(Received 17 January 1997; accepted 7 March 1997)

Abstract

The title molecule, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$, contains a dibenzobarrelene skeleton, with normal geometry and dimensions. The carbomethoxy substituent is almost fully conjugated with the $\mathrm{C} 11=\mathrm{C} 12$ double bond $[\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}$ torsion angle $171.3(2)^{\circ}$ and $\cos ^{2}$ (angle) 0.98].

Comment

Previous crystal structure studies of 11,12-derivatives of dibenzobarrelene have given detailed information

[^1]
[^0]: \dagger Alternative name: 4-(benzylcarbonyl)-1,3-phenylene diacetate.
 © 1997 International Union of Crystallography
 Printed in Great Britain - all rights reserved

[^1]: \dagger Alternative name: methyl 9,10-dihydro-12-methoxycarbonylthio-9,10-ethenoanthracene-11-carboxylate.

