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Flexible luminescent polymer films were obtained by doping europium(III) complexes in blends

of poly(methyl methacrylate) (PMMA) and the ionic liquid 1-hexyl-3-methylimidazolium

bis(trifluoromethylsulfonyl)imide, [C6mim][Tf2N]. Different europium(III) complexes have been

incorporated in the polymer/ionic liquid matrix: [C6mim][Eu(nta)4], [C6mim][Eu(tta)4],

[Eu(tta)3(phen)] and [choline]3[Eu(dpa)3], where nta is 2-naphthoyltrifluoroacetonate, tta is

2-thenoyltrifluoroacetonate, phen is 1,10-phenanthroline, dpa is 2,6-pyridinedicarboxylate

(dipicolinate) and choline is the 2-hydroxyethyltrimethyl ammonium cation. Bright red

photoluminescence was observed for all the films upon irradiation with ultraviolet radiation.

The luminescent films have been investigated by high-resolution steady-state luminescence

spectroscopy and by time-resolved measurements. The polymer films doped with b-diketonate
complexes are characterized by a very intense 5D0 -

7F2 transition (up to 15 times more intense

than the 5D0 -
7F1) transition, whereas a marked feature of the PMMA films doped with

[choline]3[Eu(dpa)3] is the long lifetime of the 5D0 excited state (1.8 ms).

Introduction

Lanthanide(III) complexes are interesting luminescent materials

for use in molecular devices.1–7 Processable lanthanide-based

luminescent molecular materials can be obtained by doping

the lanthanide(III) complex in a polymer matrix.8,9 Typical

applications of such polymer films are in organic light emitting

diodes (OLEDs)10–14 or in active optical polymer fibers for

data transmission.15–17 A popular polymer matrix for use

as host for luminescent lanthanide complexes is poly-

(methyl methacrylate) (PMMA), which is transparent at

wavelengths longer than 250 nm.18 The first experiments on

optical materials based on PMMA doped with b-diketonate
complexes go back to the 1960’s when the lanthanide

b-diketonates have been tested as active components in chelate

lasers. For instance,Wolff and Pressley (1963) doped europium(III)

tris(2-thenoyltrifluoroacetonate) into PMMA and observed

laser action in this material.19 Several other authors have

investigated the spectroscopic and photophysical properties

of lanthanide(III) complexes in PMMA.20–25 A disadvantage of

PMMA films or sheets is their brittleness, due to the high glass

transition temperature of this polymer (around 100 1C).

Flexible polymer films can be obtained by blending the polymer

with a plasticizer. The most commonly used plasticizer for

PMMA and other polymers like PVC is di-(2-ethylhexyl)-

phthalate (DEHP, also called DOP after dioctyl phthalate).

Because there are concerns about the health and environ-

mental aspects related to the use of DEHP and similar

compounds,26,27 the search for more sustainable plasticizers

is an active research field.28 Imidazolium ionic liquids have

been proposed as performant plasticizers for PVC,29 and

especially for PMMA.30–33

In this paper, it is shown that highly luminescent flexible

films can be obtained by doping europium(III) complexes into

a composite material consisting of PMMA and the ionic liquid

1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-

imide, [C6mim][Tf2N], as the plasticizer. Different europium(III)

compounds, both ionic and non-ionic complexes, have been

selected: [Eu(tta)3(phen)], [C6mim][Eu(tta)4], [C6mim]-

[Eu(nta)4], [choline]3[Eu(dpa)3], where tta is 2-thenoyltrifluoro-

acetonate, phen is 1,10-phenanthroline, nta is 2-naphthoyl-

trifluoroacetonate, dpa is 2,6-pyridinedicarboxylate (dipicolinate)

and choline is the 2-hydroxyethyltrimethyl ammonium

cation (Fig. 1).

Results and discussion

The flexible PMMA/ionic liquid films were prepared by

dissolving the europium(III) complex first in the pure ionic

liquid [C6mim][Tf2N]. In the case of [Eu(tta)3(phen)], [C6mim]-

[Eu(tta)4] and [C6mim][Eu(nta)4] the complex was first

dissolved in dichloromethane and a specific amount of this

solution was added to the ionic liquid. A given amount of the

europium(III)/ionic liquid solution was mixed with a solution

of PMMA in tetrahydrofuran. The resulting solution was

spread on a glass slide and the solvent was allowed to
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luminescence spectra and luminescence decay curve. See DOI:
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evaporate. It was found that the processing temperature of the

luminescent films is very critical. A first series of films doped

with [C6mim][Eu(nta)4] was prepared at 60 1C. Although these

films were luminescent, the luminescence spectrum differed

from what is expected for a tetrakis b-diketonate complex. In

particular, the intensity ratio I(5D0 -
7F2)/I(

5D0 -
7F1) ratio

was only 6.9, whereas values higher than 10 are expected for a

europium(III) b-diketonate complex.34 Probably, dissociation

of the europium(III) tetrakis b-diketonate complex occurred,

due to the potentially coordinating carbonyl (CQO) groups of

the PMMA matrix or THF molecules which are difficult to

entirely remove from the films. The synthetic procedure was

slightly adapted after these negative results. A second series of

[C6mim][Eu(nta)4]-doped PMMA/ionic liquid films were

therefore prepared at room temperature and in the dark.

The films were prepared in the dark, because it is known that

the lanthanide b-diketonate complexes have a low photostability

in most organic solvents, including in the THF which was used

for solvent processing of the thin films.34 The resulting films

are red luminescent under UV irradition (Fig. 2) and show a

typical europium(III) b-diketonate emission spectrum (Fig. 3).

Although the luminescence spectrum consists of different lines

of the 5D0 -
7FJ multiplet (J = 0–4 in our experiments), the

very intense 5D0 - 7F2 line at 16337 cm�1 (612 nm) clearly

dominates the spectrum. This luminescence line is responsible

for the red luminescence color visible by the naked eye upon

UV irradiation. The intensity ratio of the 5D0 - 7F2 line to

that of the 5D0 -
7F1 line, I(

5D0 -
7F2)/I(

5D0 -
7F1), is 14.1.

Although the intensity ratio is high, it is still not as high as the

value of 18.6 that was observed for the [C6mim][Eu(nta)4]

complex dissolved in the ionic liquid [C6mim][Tf2N]. This

could be due to small distortions of the first coordination

sphere of the europium(III) ion by the PMMA matrix or

remaining THF molecules and these small distortions are

clearly reflected in the hypersensitive transition 5D0 - 7F2.

Another explanation could be that the [C6mim][Eu(nta)4]

complex partially dissociates in the polymer matrix. This

hypothesis is supported by the fact that the luminescence

decay curve of the 5D0 excited state is a bi-exponential curve,

with the two components being 397 � 20 ms (58%) and

680 � 34 ms (42%). The average decay time is 553 ms and this

is very similar to the value observed for the [C6mim][Eu(nta)4]

complex dissolved in the [C6mim][Tf2N] ionic liquid (550 ms).35

Although the 5D0 - 7F0 line seems to be at a first glance

unsplit, a closer look reveals that the line is broadened and

shows a shoulder. This, in combination with the bi-exponential

decay, points to the presence of more than one europium(III)-

containing species. Gao et al. also reported on bi-exponential

decay curves found for the luminescent lifetimes of similar

samarium(III) and europium(III) tetrakis b-diketonate complexes

in lanthanide-doped PMMA polymers.36 The b-diketonate
ligands that they investigated were benzoyltrifluoroacetonate

(btfac) and hexafluoroacetylacetonate (hfac). In the case of

[Ln(btfac)4]
� they associated these bi-exponential decay curves

with a partial dissociation of the lanthanide complex resulting in

the presence of [Ln(btfac)3] as well as [Ln(btfac)4]
� species in the

doped polymers. The authors pointed to the influence of the

solvent on the dissociation of the complexes.

Table 1 summarizes the intensity ratios I(5D0 - 7FJ)/

I(5D0 - 7F1) for [C6mim][Eu(nta)4] in PMMA/ionic liquid

Fig. 1 Structure of the europium(III) complexes used in this study. [C6mim][Eu(nta)4] (I), [C6mim][Eu(tta)4] (II), [Eu(tta)3(phen)] (III) and

[choline]3[Eu(dpa)3] (IV).
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film, [C6mim][Tf2N], THF and as the pure complex in the solid

state. All the corresponding emission spectra look very similar.

The intensity ratios of the 5D0 -
7F2 line and the 5D0 -

7F4

line to that of the 5D0 - 7F1 line are slightly different. The

luminescence spectrum of a [C6mim][Eu(nta)4]—doped

PMMA/ionic liquid films was re-measured two months

after the first spectroscopic experiments. The intensity ratio

I(5D0 - 7F2)/I(
5D0 - 7F1) was found to be 11.9, which is

slightly lower than the value of 14.1 observed for the freshly

prepared films. Drying the aged films for 48 h in vacuo at

room temperature had only little effect on the luminescence

spectrum. The intensity ratio I(5D0 -
7F2)/I(

5D0 -
7F1) was

10.4. However, drying the aged films for 48 h at 50 1C had a

very pronounced effect on the luminescence spectra. Not only

was a difference in shape for the 5D0 - 7F2 transition at

612 nm noticed, but the intensity ratio I(5D0-
7F2)/I(

5D0-
7F1)

decreased to 8.0. This is a further indication that the

europium(III)-doped polymer films are not very resistant to

higher temperatures.

The luminescence spectra of the europium(III) complexes

[C6mim][Eu(tta)4] and [Eu(tta)3(phen)] in the PMMA/ionic

liquid films are also shown in Fig. 3. Comparison of these spectra

with that of [C6mim][Eu(nta)4] shows that the luminescence

spectra of [C6mim][Eu(nta)4] and [C6mim][Eu(tta)4] are very

similar, whereas very clear differences are noticed between

these spectra and that of [Eu(tta)3(phen)]. This very nicely

illustrates that the overall appearance of the luminescence

spectrum is more dependent on the class of b-diketonate
complex (tetrakis complex or Lewis base adduct of tris

complex) than on the nature of the b-diketonate ligand. The

I(5D0 - 7F2)/I(
5D0 - 7F1) ratios are 15.0 and 12.4 for

[C6mim][Eu(tta)4] and [Eu(tta)3(phen)], respectively. As for

[C6mim][Eu(nta)4], the luminescence decay curves of the
5D0 state were found to be bi-exponential for both [C6mim]-

[Eu(tta)4] and [Eu(tta)3(phen)]. The lifetime components

were 761 � 38 ms (36%) ms and 457 � 23 ms (64%) for

[C6mim][Eu(tta)4]. For [Eu(tta)3(phen)], the respective values

are 744 � 37 ms (69%) and 459 � 23 ms (31%). Just as in the

case of [C6mim][Eu(nta)4], the 5D0 - 7F0 transitions are

asymmetrically broadened.

Samples of [C6mim][Eu(tta)4] in PMMA, but without the

ionic liquid plasticizer, were prepared to investigate the influence

of the ionic liquid on the spectroscopic properties of the

europium(III)-doped polymer films. The luminescence spectra

of [C6mim]Eu(tta)4] in PMMA and of [C6mim]Eu(tta)4] in

PMMA/ionic liquid look very similar. The intensity ratio

I(5D0 - 7F2)/I(
5D0 - 7F1) of [C6mim][Eu(tta)4] in the

PMMA film was found to be 14.5 (compared to 15.0 for

[C6mim][Eu(tta)4] in the PMMA/ionic liquid film). However,

the two lifetime components in the luminescence decay curve

of [C6mim][Eu(tta)4] in the PMMA film are 374 � 19 ms
(57.1%) and 671 � 34 ms (42.9%), which is slightly lower than

the values observed for [C6mim][Eu(tta)4] in the PMMA/ionic

liquid film: 457 � 23 ms (64%) and 761 � 38 ms (36%). The

longer lifetimes of the europium(III) complex PMMA/ionic

liquid film can be explained by a dilution effect. The con-

centration of carbonyl groups is lower in the PMMA/ionic

liquid films than in pure PMMA films. Because of the strong

infrared absorption by the vibrations of the carbonyl groups,

Fig. 2 Luminescent flexible PMMA/[C6mim][Tf2N] film doped with

the europium(III) complex [C6mim][Eu(nta)4] (irradiation with UV

radiation of 365 nm).

Fig. 3 Luminescence spectra of europium(III)-doped PMMA/

[C6mim][Tf2N] film recorded at room temperature (excitation wave-

length is 340 nm): I: [C6mim][Eu(nta)4]; II: [C6mim][Eu(tta)4];

III: [Eu(tta)3(phen)]. The assignment of the lines is: 5D0 - 7F0 (a);
5D0 -

7F1 (b);
5D0 -

7F2 (c);
5D0 -

7F3 (d) and
5D0 -

7F4 (e).

Table 1 Relative intensities of the transitions in the luminescence
spectra of [C6mim][Eu(nta)4] in PMMA/ionic liquid film, in the ionic
liquid [C6mim][Tf2N], in THF and in the solid statea

7FJ PMMA/IL film [C6mim][Tf2N] THF Solid state

7F0 10 E0 10 10
7F1 100 100 100 100
7F2 1410 1860 1430 1660
7F3 40 80 20 50
7F4 80 190 20 130

a The integrated intensities are given in arbitrary units, but normalized

so that the intensity of the 5D0 -
7F1 line is set equal to 100.
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these groups can efficiently contribute to the non-radiative

relaxation of the 5D0 state. In the PMMA/ionic liquid films,

the non-radiative relaxation of the 5D0 state is less efficient

than in PMMA films, leading to longer lifetimes for the excited

state. Another possible explanation is that the presence of the

ionic liquid ensures a more homogeneous distribution of the

ionic europium(III) complexes in the PMMA polymer and

therefore to less undissolved aggregates and less quenching

of the luminescence.

In order to have an example of a europium(III) complex

with ligands other than b-diketonates, the compound

[choline]3[Eu(dpa)3] was prepared. The 2-hydroxyethyl-tri-

methyl ammonium (choline) cation was selected instead of

the 1-hexyl-3-methylimidazolium cation, because of experimental

difficulties experienced when trying to prepare pure samples of

[C6mim]3[Eu(dpa)3]. Experimental procedures similar to those

used for the synthesis of the tetrakis b-diketonate complexes,

always lead to the formation of Na3[Eu(dpa)3] instead of

[C6mim]3[Eu(dpa)3].

The luminescence spectrum of [choline]3[Eu(dpa)3] in a

PMMA/ionic liquid film is quite different from those of the

films containing europium(III) b-diketonate complexes (Fig. 4).

First of all, the 5D0 -
7F2 line of [choline]3[Eu(dpa)3] is much

narrower than that of the b-diketonate complexes, indicating

the presence of only one crystal-field component. The intensity

ratio I(5D0 -
7F2)/I(

5D0 -
7F1) is 3.1, which is much lower

than the value of the b-diketonates. Two crystal field compo-

nents are visible for the 5D0 -
7F1 transition, which indicates

that the 7F1 multiplet is split into two crystal-field levels. The
5D0 -

7F0 line is very weak and barely visible, but zooming in

on the transition reveals that, in contrast to this line in the

b-diketonate complexes, the line has a symmetrical shape.

In Table 2, an overview of the relative intensities of the

transitions in the luminescence spectra of [choline]3[Eu(dpa)3]

in the PMMA/IL films, in the ionic liquid and in THF are

compared. The luminescence decay curve is monoexponential

and the lifetime of the 5D0 excited state is exceptionally long

for a molecular europium(III) complex: 1803 � 90 ms. These
spectroscopic and photophysical data indicate that the

europium(III) ion is at a site of rather high symmetry. The

weakness of the 5D0 - 7F0 line and the splitting patterns of

the 5D0 - 7F1 and 5D0 - 7F2 transitions support the view

that the europium(III) ion is located at a site of approximately

D3h symmetry.37,38 D3h is the symmetry of an undistorted

tricapped trigonal prism. The very long lifetime of the
5D0 excited state is an indication of poorly efficient non-

radiative relaxation processes due to the good shielding of

the Eu3+ by the 2,6-pyridinedicarboxylate (dipicolinate) ligands

from the environment. In addition, [choline]3[Eu(dpa)3] is

found to be stable in the PMMA/ionic liquid films.

The emission spectrum of [Eu(dpa)3]
3�-doped composite

PMMA/ionic liquid film was also recorded two months later

and after drying in vacuo for 48 h at 50 1C. The spectrum

was very similar to the previously recorded emission of the

[Eu(dpa)3]
3�-doped composite PMMA/ionic liquid film

and the intensity ratio of the 5D0 - 7F2 line to that of the
5D0 - 7F1 line, I(5D0 - 7F2)/I(

5D0 - 7F1), remained

constant (3.0 compared to 3.1 for the europium(III)-doped

film recorded for the first time). The europium(III) ions are

very well shielded in the dipicolinate complex due to a rigid

nine-coordinating structure. Perhaps this can explain the

better luminescence properties for [choline]3[Eu(dpa)3] in

the composite PMMA/ionic liquid films compared to the

europium(III) b-diketonate complexes.

In order to establish the efficiency of the luminescent materials,

the quantum yield (quantum efficiency) of the europium(III)

luminescence was determined using the formula:39

FEu ¼
tobs
tR

ð1Þ

where tobs is the observed luminescence lifetime of the 5D0

excited state and tR is the radiative lifetime (i.e. the lifetime of

the excited state in the absence of non-radiative processes). tobs
was evaluated using the luminescence decay curves and taking

the average lifetime in the case of bi-exponential decay. The

radiative lifetime tR of the 5D0 excited state was calculated using

the formula:39

1

tR
¼ AMD n3

Itot
IMD

� �
ð2Þ

where n is the refractive index of the medium,AMD is the Einstein

coefficient for spontaneous emission for the 5D0-
7F1 transition

Fig. 4 Luminescence spectrum of [choline]3[Eu(dpa)3]-doped

PMMA/[C6mim][Tf2N] film. Emission is recorded at room tempera-

ture. Excitation wavelength was set at 280 nm. The assignment of the

lines is: 5D0 -
7F0 (a);

5D0 -
7F1 (b);

5D0 -
7F2 (c);

5D0 -
7F3 (d)

and 5D0 -
7F4 (e).

Table 2 Relative intensities of the transitions in the luminescence
spectra of [choline]3[Eu(dpa)3] in PMMA/ionic liquid film, in the ionic
liquid [C6mim][Tf2N], and in THFa

7FJ PMMA/IL film [C6mim][Tf2N] THF

7F0 E0 E0 E0
7F1 100 100 100
7F2 330 420 430
7F3 5 10 5
7F4 100 150 170

a The integrated intensities are given in arbitrary units, but normalized

so that the intensity of the 5D0 -
7F1 line is set equal to 100.
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in vacuo and Itot/IMD is the ratio of the total intensity of

the emission spectrum (integrated area) to the intensity of the

magnetic dipole transition 5D0 - 7F1. The intensity of this

magnetic dipole transition is insensitive to the ligand environ-

ment of the Eu3+ ion and it can be shown that A
�M�D

equals

14.65 s�1. For the refractive index n, it was assumed that the

refractive index of the films is in a good approximation the

same as that of pure PMMA (n = 1.49). No dispersion is

taken into account. It should be noted that the 5D0 -
7F5 and

the 5D0 - 7F6 transitions were lying outside the wavelength

range of our spectroscopic setup, but it is known that in

general these transitions contribute less than 5% to the total

luminescence output.39 The quantum yields for the different

luminescent films are listed in Table 3. It can be noticed that

there is only a slight variation in the quantum yield for the

different complexes (between 41 and 48%). At first sight, it

may not seem logic that [choline]3[Eu(dpa)3] with a much

longer observed lifetime has a quantum yield that is very

comparable with those of the b-diketonate complexes, but

the radiative lifetime of [choline]3[Eu(dpa)3] (3.85 ms) is also

much longer than that of the b-diketonate complexes (between

1.19 and 1.41 ms). It should also be noted that the intensity of

the emitted light is not only dependent on the quantum

efficiency or quantum yield but also on the amount of light

that is absorbed by the complex.

A current trend in ionic liquid research is the broadening

towards applications which are less obvious than the use of

ionic liquids as non-volatile solvents for organic reactions.40

Ionic liquids offer a great potential in materials sciences

and technology.41–46 In this work we take advantage of the

property of the ionic liquid to act as a plasticizer for polymeric

materials. A major benefit of the ionic liquid plasticizer in the

PMMA polymer matrix is without doubt the possibility to

obtain flexible luminescent films. It has also been reported in

the literature that the ionic liquid plasticizer leads to polymers

with higher thermal stability.32 This is not a great advantage

for present luminescent materials, because the limiting factor

for their use is the low thermal stability of the europium(III)

b-diketonate complexes. The ionic liquid acts not only as a

plasticizer, but also reduces the quenching of the 5D0 excited

state, leading to longer lifetimes of this excited state. This can

probably be attributed to a better dissolution or dispersion of

the europium(III) complexes in the polymer matrix (avoiding

cluster formation) or to a dilution effect which moderates the

contribution of the carbonyl groups of the PMMA matrix to

the non-radiative deactivation of the 5D0 state. In Table 3, an

overview of the intensity ratios I(5D0 - 7F2)/I(
5D0 - 7F1)

and the luminescence decay times of the different europium(III)

complexes in the PMMA/ionic liquid matrix are given.

The similarities between the b-diketonate complexes and the

different behavior of the films doped with [choline]3[Eu(dpa)3]

are evident.

Recently, some of us introduced lanthanide-doped ionogels

as a new type of luminescent material.35,47 Ionogels are hybrid

materials consisting of an ionic liquid confined inside the

nano-sized pores of a silica matrix.48–50 The ionogels are

obtained as perfect monoliths featuring both the transparency

of silica and the outstanding ionic conductivity performances

of the ionic liquid, despite the nanometre scale of confinement.

The conductivity of the ionogel corresponded well to that of

the ionic liquid indicating an interconnecting porosity of the

silica matrix. The volume of the ionic liquid was more or less

three times the volume of the silica matrix. It is noteworthy

that ionogels can contain 80 vol.% of ionic liquid, which

was shown to retain liquid-like dynamics.51 In the ionogel,

the ionic liquid is the major component. In contrast, in the

PMMA/ionic liquid films, the major component is still the

polymer. The ionic liquid is in these materials more or less an

additive, albeit an important one. Both PMMA/ionic liquid

composite materials and ionogels can be processed into mono-

lithic bulk samples, but for the preparation of lanthanide-

doped thin films are PMMA/ionic liquid composites easier to

work with. It should be noted that our PMMA/IL composites

are structurally related to the PMMA/[C2mim][Tf2N] polymer

electrolytes reported by Watanabe and coworkers.52

Experimental

General

Photoluminescence spectra have been recorded on an Edinburgh

Instruments FS900 spectrofluorimeter. This instrument is

equipped with a xenon arc lamp, a microsecond flashlamp

(2 ms FWHW, repetition rate: 50 Hz) and a red-sensitive

photomultiplier (Hamamatsu R-928). All photoluminescence

spectra have been recorded at room temperature. The excitation

wavelength was set at 340 nm for the b-diketonate complexes

and 280 nm for the [choline]3[Eu(dpa)3] complex. A filter with

a cutoff wavelength of 390 nm was placed between the sample

and the excitation monochromator to reduce stray radiation

reaching the detector. The spectral bandwidth was 0.2 nm.

The spectra were corrected for the wavelength-dependent

sensitivity of the detector. The observed luminescence lifetime

of the 5D0 excited state (tobs) was measured by monitoring the

luminescence intensity of the 5D0 - 7F2 transition as a

function of time after excitation with a microsecond flash

lamp. Elemental analyses (CHN) were obtained on a CE

Instruments EA-1110 elemental analyzer. 1H NMR spectra

were recorded on a Bruker 300 MHz NMR spectrometer.

Synthesis of ionic liquids

The ionic liquid 1-hexyl-3-methylimidazolium bromide,

[C6mim][Br], was prepared in spectrograde purity by a reaction

Table 3 Experimental intensity ratio parameter Z, observed lumines-
cence lifetimes tobs and quantum yield FEu of the europium(III)-doped
PMMA/[C6mim][Tf2N] films

Complex Za

tobs/ms
b

FEuComponent 1 Component 2

[C6mim][Eu(nta)4] 14.1 680 � 34 (42%) 397 � 20 (58%) 0.41
[C6mim][Eu(tta)4] 15.0 761 � 38 (36%) 457 � 23 (64%) 0.48
Eu(tta)3phen 12.4 744 � 37 (69%) 459 � 23 (31%) 0.46
[choline]3[Eu(dpa)3] 3.1 1803 � 90 — 0.47

a Ratio of integrated intensities given by Z = I(5D0 - 7F2)/

I(5D0 - 7F1).
b The decay curves were found to be bi-exponential

for the b-diketonate complexes and mono-exponential for the [choline]3-

[Eu(dpa)3] complex. For the bi-exponential decay curves, the percentage

contributions of the two components are given.
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between 1-methylimidazole and 1-bromohexane, by a method

previously developed by some of us.53 It is of prime importance

to perform the quaternization step at room temperature

or lower temperatures, and to prevent heating of the reaction

mixture. Also 1-ethylimidazole and 1-bromohexane were

carefully purified before use. It should be noted that color-

less [C6mim][Br] can also be obtained by treating a colored

sample with charcoal, but the preparative method we used

gives an ionic liquid with improved UV transparency in com-

parison with the charcoal-treated sample. The ionic liquid

1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide,

[C6mim][Tf2N], was synthesized from [C6mim][Br] by a

metathesis reaction between lithium bis(trifluoromethylsulfonyl)-

imide and [C6mim][Br].54 The resulting ionic liquid was

washed several times with aliquots of water (20 mL) until

bromide residues could no longer be detected by the AgNO3

test. This is an indication that the residual bromide con-

centration is below 200 ppm. The ionic liquid was dried

for several hours on a rotavap, at a pressure of 10�2 mbar.

Heating of the ionic liquid above 40 1C during the drying step

was avoided. The water content in the dried [C6mim][Tf2N]

ionic liquid was about 100 ppm (determined by coulometric

Karl Fischer titration). dH (300 MHz, CDCl3, 20 1C, Me4Si):

8.71 (s, 1H), 7.33 (d, J = 1.83 Hz, 1H), 7.32 (d, J = 1.83 Hz,

1H), 4.16 (t, J=7.74 Hz, 2H), 3.93 (s, 3H), 1.86 (m, J=6.39 Hz,

2H), 1.31 (m, 6H), 0.88 (t, J = 6.39 Hz, 3H). It should be

stressed that, for this study, the optical purity of the ionic

liquid is of much higher importance than the water, the halide

and lithium content. The ionic liquid [C6mim][Tf2N] showed

no significant light absorption at wavelengths longer than

300 nm, so that it had a good UV transparency and it was

totally colorless. Drying the ionic liquid to a very low water

content did not make sense, because water is also introduced

to the system via the THF solvent used for the preparation of

the thin PMMA/IL films. The authors are convinced that the

low remaining bromide and lithium ion concentrations in the

ionic liquid samples do not significantly influence the mecha-

nical and photoluminescence properties of the PMMA/IL

composite films.

Synthesis of europium(III) complexes. The europium(III)

tetrakis b-diketonate complexes, [C6mim][Eu(nta)4] and [C6mim]-

[Eu(tta)4], have been prepared by first dissolving 6 equivalents

of 2-naphthoyltrifluoroacetone or 2-thenoyltrifluoroacetone in

ethanol and deprotonating the b-diketone with an aqueous

solution of NaOH at 50 1C, followed by the addition of

1.5 equivalents of the ionic liquid [C6mim][Br] in ethanol

and by the dropwise addition of EuCl3�6H2O (1 eq.) in water.

The solution was left to stir and cool down to room tempera-

ture overnight. A yellowish precipitate of the complex was

formed. The product was filtered and washed with ice-water as

well as dried in vacuo at 50 1C. [C6mim][Eu(nta)4]: Found:

C, 56.65; H, 3.7; N, 1.5 C66H51N2O8F12Eu(H2O) requires C,

56.7; H, 3.8; N, 2.0%. [C6mim][Eu(tta)4]: Found, C, 41.65;

H, 3.0; N, 2.3 C42H35N2O8F12S4Eu requires C, 41.9; H,

2.95; N, 2.35%).

In the case of [Eu(tta)3(phen)], the complex was formed by

adding 3 equivalents of 2-thenoyltrifluoroacetone and 1 equivalent

of 1,10-phenanthroline in ethanol and deprotonating the

b-diketonate ligand with an aqueous solution of NaOH at

50 1C, followed by the dropwise addition of 1 equivalent of

EuCl3�xH2O in water. The solution was left to stir and

cooled down to room temperature overnight. A precipitate

of the complex was formed. The product has been filtered

and washed with ice-water as well as dried in vacuo at 50 1C.

Found: C, 42.5; H, 2.1; N, 2.6 C36H20N2O6F9S3Eu(H2O)

requires C, 42.65; H, 2.2; N, 2.8%.

For the synthesis of (choline)3[Eu(dpa)3], 2,6-pyridinedi-

carboxylic acid (3 eq.) was dissolved in 7 mL of water together

with 2.115 mL of a solution of choline hydroxide, 45 wt% in

methanol (6 eq.). The pH was checked to be neutral and the

solution was heated to 70 1C followed by the dropwise

addition of EuCl3�xH2O (1 eq.) in water. The solution was

left to stir for 2 h. Water was removed on a rotavap. The

product had a white color and was washed with methanol to

remove residues of choline chloride and dried in vacuo at 50 1C.

Found: C, 43.65; H, 5.45; N, 8.05 C36H51N6O15Eu (H2O)2
requires C, 43.2; H, 5.6; N, 8.45%.

Synthesis of the PMMA films. PMMA (2 g) was dissolved in

17 mL of THF and stirred overnight. In the case of [C6mim]-

[Eu(nta)4], [C6mim][Eu(tta)4] and [Eu(tta)3(phen)] a solution

of the europium(III) complex in CH2Cl2 was prepared.

A specific amount of this solution (ncomplex = 1 � 10�6 moles)

was dissolved in [C6mim][Tf2N] (V = 0.3 mL) and added to

the PMMA solution. [choline]3[Eu(dpa)3] was dissolved directly

in [C6mim][Tf2N]. After 10 min the reaction mixture was poured

on a glass slide. The films were dried in open air and in the

dark for three days. The concentrations of the europium(III)-

doped [C6mim][Tf2N] solutions were 3.3 � 10�3 mol L�1 for

[C6mim][Eu(nta)4], [C6mim][Eu(tta)4] and [Eu(tta)3(phen)] and

5.9 � 10�4 mol L�1 for [choline]3[Eu(dpa)3]. The thickness of

the resulting films was about 0.2 mm.

It is important not to heat the solutions containing the

europium(III) complex and the films, because otherwise

problems with the stability of the b-diketonate complexes will

be noticed, as was observed by experiments performed at

60 1C.

Conclusions

In this paper we presented a new type of luminescent hybrid

material, which is prepared by doping europium(III) complexes

in a matrix consisting of a blend of poly(methyl methacrylate)

(PMMA) and the ionic liquid 1-hexyl-3-methylimidazolium

bis(trifluoromethylsulfonyl)imide. The ionic liquid acts as a

plasticizer. However, it is evident that toxicological tests are

necessary before a statement can be made about the toxicity of

this ionic liquid in comparison to di-(2-ethylhexyl)-phthalate

(DEHP). Nevertheless, it can be anticipated that ionic liquids

with a low toxicity and good platisticizing properties can be

designed. The ionic liquid also enhances the solubility of the

europium(III) complexes in the PMMA matrix. Although we

have illustrated here the performance of PMMA/ionic liquid

films doped with europium(III) b-diketonate complexes and

[choline]3[Eu(dpa)3], the applicability of our system is of

course not limited to europium(III) or to these types of ligands.

The luminescence color of the flexible PMMA films can be
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tuned by a suitable choice of the lanthanide ion, ranging

from blue for Tm3+, over green for Tb3+ and near infrared

emission for ions such as Nd3+, Er3+ and Yb3+.
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