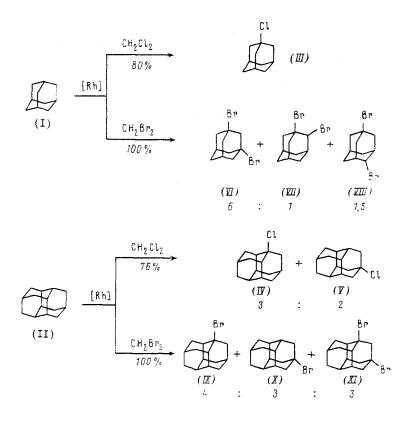
NEW EFFICIENT METHOD FOR THE SYNTHESIS OF

HALOADAMANTANES INVOLVING RHODIUM COMPLEXES


R. I. Khusnutdinov, N. A. Shchadneva, and U. M. Dzhemilev

Various reagents are used in organic synthesis for introducing halogen into adamantane (I) and diamantane (II) [1]. For example, the reaction of (I) and (II) with Br_2 proved most efficient for preparation of bromo derivatives, while chlorosulfonic acid, carboxylic acid chlorides or FeCl₃ and SbCl₃ are used for the synthesis of chloroadamantanes [1].

We are the first to establish that CH_2Cl_2 or CH_2Br_2 may be used for the controlled halogenation of (I) and (II) by the action of rhodium catalysts.

Heating of 1.7 g (12.5 mmoles) (I) in the presence of 0.12 g (0.125 mmole) $Rh(PPh_3)_3Cl$ (or 0.125 mole $[Rh(CO)_2Cl]_2$) in 6 ml CH_2Cl_2 at 180°C over 30 h gave 1-chloroadamantane (III) in about 80% yield. The analogous reaction of (II) with CH_2Cl_2 leads to a 3:2 mixture of 1-(IV) and 4-chlorodiamantanes (V) in ~76% yield.

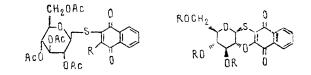
The reaction of CH_2Br_2 with (I) at 200°C over 40 h gives a 6:1:1.5 mixture of 1,3-(VI), 1,2- (VII), and 1,4-dibromoadamantanes (VIII) in ~100% yield. Diamantane (II) was converted quantitatively under the same conditions to a 4:3:3 mixture of 1-bromide (IX), 4-bromide (X), and 1,4-dibromide (XI).

Institute of Organic Chemistry, Urals Branch, Academy of Sciences of the USSR, Ufa. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2897-2898, December, 1991. Original article submitted July 16, 1991.

UDC 542.971.2+547.22+547.518

Products (III)-(XI) were characterized by comparison with authentic samples and spectral methods.

LITERATURE CITED


1. E. I. Bagrii, Adamantanes [in Russian], Nauka, Moscow (1989), p. 264.

UNEXPECTED HETEROCYCLIZATION OF 1,4-NAPHTHOQUINONE

THIOGLUCOSIDES

A. M. Tolkach, S. G. Polonik, and N. I. Uvarova UDC 547.655.6+547.455.623'292:547.81

We have found that the saponification of 1,4-naphthoquinone thioglucosides (I) [1] by the action of 0.1 N sodium methylate in methanol at 20-25°C over 0.5-4 h gives quinone (II) as an orange powder with mp 337-340°C (dec.) and low solubility. The structure of (II) was established by its conversion to triacetate (III) by pyridine/acetic anhydride at 25°C over 1 h.

 $R = H, CH_{3}O, S-GLc(Ac)_{4}$ (I); H (II); Ac (III).

A pure sample of (III) was isolated by preparative thin-layer chromatography according to our previous procedure [1], mp 203-204°C (methanol). ¹H NMR spectrum in CDCl₃ with TMS as the internal standard (δ , ppm, J, Hz): 2.08, 2.14, 2.18 (3Ac), 3.91 d.d (1H, H^{2'}, J_{1',2'} = 8.0, J_{2',5'} = 9.5), 3.95 d.d.d (1H, H^{5'}, J_{5',6a'} = 2.3, J_{5',6b'} = 4.7, J_{4',5'} = 9.5), 4.20 d.d (1H, H^{6a'}, J_{6a',6b'} = 12.0), 4.31 d.d (1H, H^{6b'}), 4.89 d (1H, H^{1'}), 5.24 d.d (1H, H^{3'}, J_{3',4'} = 9.0), 5.48 d.d (1H, H^{4'}), 7.74 m (2H, H⁶ and H⁷), 8.08 m (2H, H⁵ and H⁸). Mass spectrum at 10 eV, m/z (I_{rel}, %): 476 (M⁺⁺, 100), 415 (18), 373 (40), 355 (76), 313 (75), 296 (28), 168 (15). IR spectrum in CHCl₃ (ν , cm⁻¹): 1750, 1670, 1660, 1596, 1572.

LITERATURE CITED

 A. M. Tolkach, S. G. Polonik, S. B. Stekhova, et al., Khim.-Farm. Zh., No. 12, 1485 (1989).

Pacific Ocean Institute of Bioorganic Chemistry, Far East Branch, Academy of Sciences of the USSR, Vladivostok. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, p. 2899, December, 1991. Original article submitted August 9, 1991.