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Abstract

Lung cancer is the worldwide leading cause of canglated death. Here, we
described the synthesis and the anticancer actofitg novel coptisine derivative
8-cetylcoptisine (CCOP) on lung carcinommavitro andin vivo. CCOP inhibited the
cell viability of A549, BGC-823, MDA-MB-231, HCT-18.and HepG2 cell lines. In
A549 cells, CCOP induced apoptosis, GO/G1 cell eyalrest and decreased
mitochondrial membrane potential (MMP) in a dospeatelent manner. Western blot
analysis showed that CCOP increased the expres$i@tl-2-associated X protein
(Bax), cleaved caspase 3 and 9, while decreasesll Br;mphoma 2 (Bcl-2), cyclins
D and E, cyclin dependent kinases (CDKSs) 2, 4 graldhg with the inactivation of
the upstream phosphoinositide 3-kinase (Pi3k)/protenase B (Akt) signaling.
Furtherin vivo studies showed that CCOP (10 mg/kg) significaxidyayed tumor
growth in A549 xenograft nude mice, which is strentghan that of coptisine (100
mg/kg). These data suggested that CCOP could bandidate for lung cancer
therapy.

Keywords:. coptisine derivative; 8-cetylcoptisine; lung can@optosis; cell cycle

Abbreviations

Akt, protein kinase B; AO/EB, acridine orange/ethrd bromide; Bak, Bcl-2
homologous antagonist/killer; Bax, Bcl-2-associatd protein; Bcl-2, B-cell
lymphoma 2; CCOP, 8-cetylcoptisine; CDKs, cyclinpdedent kinases; COP,

coptisine; DiOG(3), 3,3-dihexyloxacarbocyanine iodide; DMEM, Dedto’s
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Modified Eagle’s Medium; MMP, mitochondrial membearpotential;, MOMP,
mitochondrial outer membrane permeabilization; NEChon-small-cell lung cancer;
PARP, poly ADP-ribose polymerase; PI, propidiumided Pi3k, phosphoinositide

3-kinase.
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1. Introduction

Lung cancer is the leading cause of cancer incelesmod mortality worldwide.

According to International Agency for Research cen€er, about 2.1 million new
cases and 1.8 million deaths are predicted in Z@L8Non-small-cell lung cancer
(NSCLC) accounts for almost 80% of lung cancer €ade recent years, the
combined use of chemotherapy and surgery has Iégetamprovement of patient’s
outcomes. However, the 5-year survival rate of loagcer remains disappointing [2],
suggesting the need for the development of novetaffeutic strategies for lung
cancer treatment.

Apoptosis, also called programmed cell death, péagstical role in the pathogenesis
of lung cancer. Numerous chemotherapeutic ageetsegorted to induce death in
cancer cells by apoptosis [3, 4]. It is well esi#d that caspase proteins are key
modulators of apoptosis induction [5]. Upon actiwaf initiator caspases 8 and 9
cleave and activate downstream effector caspasésa)d 7, which further execute
apoptosis by cleaving target proteins such as pBIR-ribose polymerase (PARP) [6].
On the other hand, the B-cell lymphoma 2 (Bcl-2jifg proteins such as Bcl-2 and
Bcl-2-associated X protein (Bax) regulate the ntfimadrial outer membrane
permeabilization (MOMP) and activate mitochondnadiated apoptosis pathway
[7]. Dysregulation of phosphoinositide 3-kinase 3{®lprotein kinase B (Akt)

components promotes pro-apoptotic function of Bawd anduces mitochondrial
membrane potential (MMP) reduction and reactivegexy species production [8].

Besides, Pi3k/Akt pathway triggers a network pusli regulates cell cycle transition
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which relies on the activation of a series of gygland cyclin dependent kinases
(CDKSs) [9]. Inhibition function of CDKs 2, 4, 6 argclins D, E could induce G1/S
arrest [10], while down-regulation of CDK 1 and liyd@1 induces G2/M arrest [11].
Thus, the inhibition of Pi3k/Akt signaling may beaaget for human cancer treatment
[12].

Natural products are considered an important scofre@ticancer agents, for example,
paclitaxel fromTaxus brevifolia, and camptothecin froi@amptotheca acuminata [13,
14]. It has been reported that the antitumor agtigf coptisine (COP) fronCoptis
chinensis Franch Ranunculaceae) against lung [15], colon [16, 17], liver [18],dast
[19] and bone cancer [20]. However, its usage mitéid because of poor
bioavailability, e.g. the absolute bioavailability COP is between 1.87% to 0.52%
[21]. Alkylation is frequently used for structuratodification of natural products
which may enhance the bioavailability and actiy&g]. Hu et al. reported that adding
an hexadecyl moiety to the C8 of berberine, ancaned of COP, increased the
maximal plasma concentration (& by 2.8-fold. The relative bioavailability of
berberine to the derivative was 7.7% [23]. In additJianget al. reported that adding
C4, C6, C8, C10 and C12 alkyl chain at C8 of CORibited proliferation and
enhanced the glucose-lowering effect in HepG2 ¢2H3. Besides, 8-octylcoptisine
exhibited higher antimicrobial activity than CORspecially against gram positive
bacteria [25]. Based on this, we synthesized a @& derivative 8-cetylcoptisine
(CCOP) and investigated the potential antitumoeafbn lung cancean vitro andin

ViVO.
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2. Material and methods

2.1. Compound and reagents

CCOP was synthesized as shown in Scheme 1 [22jn&d reagents were prepared
from Mg ribbon (44 mmol) and hexadecyl bromate @ol) in absolute THF (100
ml). To a mixture of Grignard reagents in absolLitd-, the suspension of compound
1 (30 mmol) was added drop-wisely. The reactiontomexwas stirred under,Nat 0°C
for 1 h. After warming at room temperature, theuioh was heated to reflux for 1 h.
Then the solvent was removed by evaporation, relisd in ethyl acetate and
recrystallized in MeOH to obtain compound 2. Totiared solution of compound 2
(20 mmol) in hot AcOH (100 ml), Br(10 mmol) was added drop-wisely and heated
under reflux for 1 h. After cooling down at roommigerature, the precipitate was
filtered and washed with 10% B&Os solution, then with KO and recrystallized in
MeOH to yield compound 3. Then, compound 3 wasately in hot MeOH, reacted
with AgCl and recrystallized in MeOH at -20°C totaip compound 4'H and**C
NMR spectra were detected on a Bruker Ascend 4@0tspneter (Bruker Biospin,
Switzerland). Mass spectrum was recorded on LCM®3¥&8himadzu, Japan).

COP (> 95% by HPLC) was prepared from the rhizom€aptis chinensis Franch
according to a previous method [26]. Antibodiesirgfacaspase 3, caspase 9, Bcl-2,
Bax, CDK 2, CDK 4, CDK 6, Cyclin D, Cyclin E and tamabbit 1gG
HRP-conjugated secondary antibody were purchased froteintech Group Inc.,
China. Antibodies against Pi3k, Akt an@tactin were purchased from Bioss

Biotechnology Inc., China. Antibody against p-Aktasv purchased from Cell
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Signaling Technology Inc., USA.

2.2. Céll culture

Human A549, BGC-823, MDA-MB-231, HCT-116 and HepGdls were obtained
from Cell Bank of Chinese Academy of Sciences (§han China). All cells were
cultured in Dulbecco’'s Modified Eagle’s Medium (DWE containing 1%
penicillin/streptomycin (Invitrogen, USA) and 10%tdl bovine serum (BBI life
sciences, China). The cells were grown at 37°C98% humidified atmosphere with
5% CQ.

2.3. Céll viability assessment

Cell viability was determined by MTT (Sigma-AldrictUSA) assay [13]. Briefly,
cells were seeded in 96-well plate at 6 % d€ll/well and incubated overnight. CCOP
was dissolved in DMSO solution and added to thdsweith the final concentrations
of 0—-2 ug/mL. After treated for 18 h, 20L MTT (0.5 mg/mL) was added to each
well and treated for 4 h at 37°C. The supernataa$ weplaced with DMSO and
measured at 490 nm. The cell viability was nornealito untreated cells.

2.4. Flow cytometry

Cells in log-phase growth were seeded at 2 *cgls/well. For apoptosis assay, cells
were harvested, washed and stained with Anneximegidium iodide (PI) kit
(Sigma-Aldrich, USA) according to the manufactusemstruction. For cell cycle
assay, cells were fixed in 70% ethanol at 4°C agétrthen stained with 40g/mL Pl
and detected by flow cytometer (BD FacsVerse, USAg results were analyzed by

Flow Jo software (Tree Star Inc., USA) [16].
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2.5. Acridine orange/ethidium bromide (AO/EB) staining

For AO/EB staining, cells were seeded at 4 %wéll on 12-well culture plate and
treated with CCOP. After 24 h incubation, cells evdrarvest, resuspended and
incubated in 4ug/mL AO/EB for 1 min in the dark. Cells were imagadder a
fluorescence microscope (Nikon Eclipse Ci, Jap&gd fluorescence represents
apoptosis cells while green fluorescence repredesafthy cells. At least 500 cells
were counted and the apoptosis rate was calculayedhe percentage of red
fluorescence cells in all cells [27].

2.6. MMP assay

The MMP was detected with 3,3'-dihexyloxacarbocyaniiodide (DiOG(3),
Sigma-Aldrich, USA) as reported previously [28]paphilic cation such as DIQ(3)
was transported and concentrated within the mitodhal matrix by the negative
membrane potential. After CCOP treatment, cellsewercubated with 50 nM
DiOCg(3) for 20 min at 37°C, rinsed with PBS and subsedy detected by flow
cytometry (excitation 488 nm; emission 525 nm). Thsults were analyzed using
Flow Jo software. Cells with lower fluorescenceidate loss of MMP.

2.7. Western blot analysis

Total protein was extracted by RIPA buffer (BBlelisciences, China) containing
protease inhibitors, separated by 10-15% SDS-PAGRJ transferred into
polyvinylidene fluoride membrane. After blocked KW¥Y% nonfat milk for 2 h,
antibodies against Pi3k, Akt, p-Akt, caspase 8@&;2, Bax, CDK 2, CDK 4, CDK 6,

Cyclin D, Cyclin E and3-actin were incubated at 4°C overnight. Subsequetite
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membranes were rinsed with TBST and incubated wathti-rabbit IgG
HRP-conjugated secondary antibody at room temperdtr 2 h. The results were
visualized with ECL reagent (Bio-Rad, USA) and difeed using Image J software.
2.8. Immunohistochemistry studies

Paraffin-embedded tumor sections were dewaxeddrabad, antigen retrieval by 10
mM sodium citrate buffer (pH 6.0) at 98°C for 15nn@nd endogenous peroxidase
blocked with 3% HO, for 15 min. The slides were blocked with serum arotibated
with Ki-67, cleaved caspase 3 and Bcl-2. After eshavith PBS, the sections were
incubated with 1IgG HRP-conjugated antibodies foh Jat room temperature and
further stained with 3, 3'-diaminobenzidine andrhamxylin solution. The images
were captured under a microscope and analyzed tregnge Pro Plus software [29].
2.9. Animal experiments

BALB/c nude mice (4-weeks old) were purchased frdeijing Huafukang
Bioscience Co. Inc., China (permit number: SCXK-@GI4014-0004) and housed in
sterile filter-topped cages. All animal experimentere in accordance with the
Laboratory Animal Care and Use Committee of Souitwmiversity (permit number:
SCXK-YU 2014-0002). After 7 days acclimation, A548lls were subcutaneously
inoculated in the right foreleg (5 x A6ells/mice, n = 5). The mice were treated with
5 mg/kg (CCOP-L), 10 mg/kg (CCOP-H) or 100 mg/k@@) by oral gavage for 25
days. Mice in normal control (NC) and tumor conif®C) groups were administered
with saline. Tumor volume was measured using apeslievery two days and

calculated as tumor length x tumor witith At the time of sacrificing, tumors and
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other tissues were quickly dissected, weighed &ored at -80°C.

2.10. Statistical analysis

All values were expressed as mean = SD. Differebedéseen groups were analyzed
by one-way ANOVA using SPSS 20.0 software. Valuesrabelowp < 0.05 were
considered as significant.

3. Results

3.1. Synthesisand identification

The synthetic process and chemical structure of E@&3hown in Scheme 1 and Fig.
1A. CCOP: GsH4sNOy, yellow powder (> 95% by HPLC, Fig. 1B)C NMR (400
MHz, CD;OD) §: 14.41 (C-16'), 23.71 (C-15'), 28.28 (C-5), 29€73"), 30.25 (C-4"),
30.45 (C-5'), 30.61 (C-6'), 30.69 (C-7'), 30.74'¢C8&3"), 30.77 (C-14"), 33.06 (C-2),
33.35 (C-1Y, 50.97 (C-6), 103.57 (-Ogbt), 104.96 (-OCHD-), 106.84(C-1),
108.68 (C-4), 115.28 (C-8a), 121.47 (C-11), 124E713b), 122.91 (C-13), 124.24
(C-12), 131.86 (C-4a), 134.07 (C-12a), 139.49 (@)1345.89 (C-9), 149.74 (C-8),
149.88 (C-10), 151.88 (C-2), 161.76 (C-3).NMR (400 MHz, CROD) &: 0.90 (t,J
=6 Hz, 3 H, 16-CH), 1.29 [m, 24 H, -(Ch)1~], 1.46 (m, 2 H, 15'-Ch), 1.65 (m, 2
H, 2'-CH>-), 1.87 (m, 2 H, 6-CH}), 3.21 (t,J = 6 Hz, 2 H, 1'-Ch), 3.81 (t,J = 8 Hz,

2 H, 5-H), 6.09 (s, 2 H, -OCI®-), 6.44 (s, 2 H, -OC}D-), 6.94 (s, 1 H, 4-Ar-H),
758 (s, 1 H, 1-Ar-H), 7.84 (2 H, 11-Ar-H, 12-Ar-HB.55 (s, 1 H, 13-Ar-H)
(Supplementary Fig. S1, S2 and Table 1). Yield:288. Mass spectrum (ESI):
Calculated for gsH47NO4" ([M+H]"): 545.34, Found: 545.60 (Fig. 1C).

3.2. CCOP inhibited cancer cell viability

10
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The cell viability was determined by MTT assay. dtreent with CCOP resulted in a
dose- and time-dependent cytotoxicity in differeancer cells. The Kg values were
2.12 ug/mL and 1.05ug/mL against A549 cells at 24 h and 48 h, respelstivio
identify whether the cytotoxicity of CCOP was sfiiecto A549 cells, other cancer
cell lines were used. Interestingly, similar resulvere observed in BGC-823,
MDA-MB-231, HCT-116 and HepG2 cells (Fig. 2A). Itaw further showed that
CCOP induced cell morphology shrinkage and detachoneder a 2ig/mL treatment
(Fig. 2B). Moreover, the clonogenic assay performgtth a continuing treatment of
CCORP for 2 weeks showed markedly inhibitory efi@etA549 cell growth (Fig. 2C).
These data validated that CCOP could inhibit peadifion of cancer cells.

3.3. CCOP induced apoptosisin A549 cells

To identify whether CCOP-induced cytotoxicity wasedto apoptosis induction, we
employed Annexin-V/PI staining. The results showreat a significant apoptosis rate
was induced by CCOP. Especially, the percentaggpoptotic cells was increased to
29.58% p < 0.01) in cells treated with 2g/mL CCOP (Fig. 3A). In Hoechst 33342
staining, CCOP induced apoptotic cells with conddnand fragmented nucleus in
A549 cells (Supplementary Fig. S3). AdditionallyetAO/EB assay also revealed an
increase in the number of red-stained dying celtsl alecreased number of
green-stained healthy cells, confirmed that CCO#&ldcinduce apoptosis in A549
cells (Fig. 3B). Decreased MMP may be an early euenhe process of apoptosis.
Therefore, we further investigated the effect ofGFCon MMP. As expected, CCOP
decreased the MMP in a dose-dependent manner. Cedhpéath control, CCOP

11
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(0.25-2ug/mL) increased the percentage of cells with low Rk 19.33%, 22.70%,
26.03% p < 0.05) and 34.37%p(< 0.01), respectively (Fig. 3C), suggesting
CCOP-induced apoptosis in A549 cells is assocaiddMMP disruption.

3.4. Effect of CCOP on apoptosis-related proteins

The mechanism of CCOP-induced apoptosis was expldrg examining the
expression of apoptosis-related proteins. Interghtj western blot analysis showed
that CCOP reduced the expression of anti-apopBitie2 and increased the level of
pro-apoptotic Bax (Fig. 4A). This observation com@ed the MMP disruption in
CCORP incubated A549 cells. A modulation of Bcl-2nfly proteins could activate
caspase-dependent apoptosis [30]. To investigatgadlticipation of caspase 3 and 9
in the pro-apoptotic effect of CCOP in the A549gelve measured the expression of
these proteins after the cells exposed to the C€&ment. As shown in Fig. 4A,
CCOP incubation increased the expression of cleasaespases 3 and 9 in a
dose-dependent manner. In addition, CCOP redueedxpression of upstream Pi3k
and p-Akt signaling (Fig. 4B). These observationggested that CCOP induced
caspase-dependent apoptosis in A549 cells.

3.5. CCOP induced GO/G1 arrest in A549 cells

We also detected the effect of CCOP on cell cygldltw cytometry. The results
showed that CCOP induced GO/G1 arrest in A549 .c@ltampared with control,
CCOP increased the population of GO/G1 phase A%, 17.61% and 16.01% €
0.05) at the concentrations of 0.5x@/mL, respectively, accompanied by a decrease
in S phase cellsp(< 0.05). However, CCOP had no influence on G2/Msphérig.

12
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5A). During GO/G1 phase, CDKs and Cyclin D/E proen®@NA replication and
initiate G1-to-S transition [10]. Therefore, we ther examined the expression of
GO/G1 regulatory proteins. Relative to control, GC@bse-dependently decreased the
expression of CDKs 2, 4 and 6, Cyclins D and E.(BB). The results supported that
CCORP could induce GO/G1 cell cycle arrest in A5dlsc

3.6. CCOP inhibited tumor growth in vivo

We further investigated whether CCOP could inhibihor growth in xenograft nude
mice. As shown in Table 2, the gain in body weiglds significantly decreased
between TC and NC group € 0.01) at the end of the experiment, probably tue
the cancer cell inoculation. On the other hand bibety weight of CCOP treated mice
was not markedly different from those in TC and Ctéated groupp > 0.05).
Similarly, the organ index among all groups showedobvious variation, indicated
that CCOP is relatively saf@ vivo. As shown in Fig. 6A and 6B, CCOP inhibited
tumor growth in A549 xenograft nude mice. After @ays, treatment with CCOP
significantly decreased tumor weight by 19.0p0<(0.05) and 58.2%p(< 0.01) in
CCOP-L (5 mg/kg) and CCOP-H (10 mg/kg) groups respely, as compared to TC.
While high dose of COP (100 mg/kg) decreased or8%o/of tumor weight compared
to TC (Fig. 6C). Markedly, western blot analysisaaled that CCOP increased the
expression of cleaved caspase 3, Bax and decr8at@dexpression in tumor tissues
(Fig. 6D). Immunohistochemical analysis (Fig. 6Bdwed that, when compared with
TC, CCOP-H decreased Ki-67 and Bcl-2 expressiod394% p < 0.01) and 63.11%
(p < 0.05), while increasing cleaved caspase 3 expredy 184.45% < 0.01). This

13
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result supports the idea of apoptosis activatiooweler, the effect of COP was not
significant p > 0.05). These data indicated that CCOP could &ffdg block the
progression of lung cancear vivo and its anticancer effect was much better than tha
of COP.

4. Discussion

Lung cancer is the most common malignancy worldwidé&h a high risk of
metastasis and poor prognoses [31, 32], making diteelopment of effective
therapies for lung cancer an urgency. Preliminagguits showed that CCOP
significantly inhibited the proliferation of A549d other cancer cell linas vitro.
Further studies indicated that the inhibitory effeas due to the apoptosis induction
and GO/G1 cell cycle arrest. Real. reported that COP inhibited A549 cell growth
at IG5 value of 18.09M and induced G2/M cell cycle arrest [15]. Howewver 1G,
value of CCOP was 1.49-2.5§/mL, about ten-fold lower than that of COP in athe
cancer cell lines (1§ > 27.13 ug/mL) [15, 16, 19, 33]. These results could be
explained by the introduction of a long alkyl chawhich may enhance the compound
lipophilicity.

Many cellular signals for life and death are retgpdaby Bcl-2 family proteins [34].
For example, Bcl-2 restrains MOMP and suppresseptapis [35]. Bax and Bcl-2
homologous antagonist/killer (Bak) undergo oligomreion to form a channel that
triggers the release of apoptotic factors [36]adidition, a decrease in MMP causes
MOMP and mitochondria-dependent apoptotic pathwad).[In this study, CCOP
treatment significantly decreased MMP and Bcl-2regpion. On the other hand, the

14
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treatment activated Bax, caspase 3 and 9 indicdteatt CCOP could induce
mitochondria dysfunction and activate apoptosi&s49 cells.

It has been reported that the abnormal activatioRi®k/Akt pathway is associated
with tumorigenesis, apoptosis and metastasis [3fd inhibition of Akt
phosphorylation stimulates caspase-meditated apigpin malignancies including
lung cancer [38]. Our data revealed that CCOP nullyksiecreased the expression of
p-Akt and the upstream regulator Pi3k in a doseeddpnt manner, suggesting that
CCOP might modulate the Pi3k/Akt signaling in ASeEls. P-Akt also regulates the
cell division cycle and initiates G1-to-S phasensiion which is regulated by the
activation of cyclins (e.g. cyclins D and E) andK¥)(e.g. CDKs 2, 4 and 6) [10]. In
this study, CCOP reduced the expression of cycnsand E, and consistently
decreased the expression of CDKs 2, 4 and 6. Tlieta indicated that
CCOP-induced apoptosis in A549 cells was associatigd the suppression of
Pi3k/Akt pathway.

Previous results from our lab showed that COP @bse of 100 mg/kg significantly
inhibited colon tumor growth [16, 17]. Howevershowed only a 7.9% inhibition in
A549 xenograft nude mice, probably due to the diffie types of cancer cells. In this
study, although the dose of CCOP (10 mg/kg) wayg onk-tenth of COP’s dose, it
showed 58.2% inhibition rate, almost 7-fold compat@ COP. These results further
suggested that the anticancer activity of CCOPmaie efficient than that of COR
vivo. In the progression of cancer development, thestasis causes major death [39].
However, because of the tumor model, there waslnetrved metastasis in this study.
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Nevertheless, in a mouse 4T1 spontaneous metastasisl, CCOP inhibited lung
metastasisn vivo (Supplementary Fig. S4). Together, these dataesighat CCOP
could block the progression of lung cancer.

5. Conclusion

In conclusion, we demonstrated that CCOP exertéidaater activity by inducing
mitochondria-dependent apoptosis and GO/G1 celeawest in A549 cells (Fig. 7).
CCOP might be a potential candidate for lung canmsatment. However, further
clinical trials are needed to support our viewpobBesides, our data also provided
evidences for the antitumor structural modificatadrCOP.
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Table 1. 'H NMR and™C NMR spectra of CCOP (400 MHz, GDD).

NO. OH dc

1 7.58 (1 H,s) 106.84
2 151.88
3 161.76
4 6.94 (1 H, s) 108.68
da 131.86
5 3.81 (2 H,t)=8Hz) 28.28

6 1.87 (2 H, m) 50.97
8 149.74
8a 115.28
9 145.89
10 149.88
11 7.84 (1 H, s) (overlap) 121.47
12 7.84 (1 H, s) (overlap) 124.24
12a 134.07
13 8.55 (1 H, s) 122.91
13a 139.49
13b 121.77
-OCH,O- 6.09 (2 H, s) 103.57
-OCH,O- 6.44 (2 H, s) 104.96
1 3.21 (2 H,tJ=6 Hz) 33.35
2' 1.65 (2 H, m) 33.06
3 1.29 (2 H, m) (overlap) 29.27
4 1.29 (2 H, m) (overlap) 30.25
5' 1.29 (2 H, m) (overlap) 30.45
6' 1.29 (2 H, m) (overlap) 30.61
7 1.29 (2 H, m) (overlap) 30.69
8'-13' 1.29 (12 H, m) (overlap) 30.74 (overlap)
14 1.29 (2 H, m) (overlap) 30.77
15' 1.46 (2 H, m) 23.71
16' 0.90 (3H,t)J=6Hz) 14.41

Data were detected on a Bruker Ascend 400 specteopehemical shiftsd) were

expressed in ppm.



Table 2. Effects of CCOP on body weight and organ index {#%BALB/c nude

mice.
Groups Body weight (g) Heart (%) Liver (%) Spleé) ( Lung (%) Kidneys (%)
Beginning End

NC 14.90 £ 0.59 22.96 +1.22 0.62 £0.12 6.0500.7 0.54+0.08 0.70 £ 0.04 1.75+0.11

TC 14.71 £ 0.60 19.64 + 0.85** 0.64 £0.05 6.63.20 0.53+0.10 0.74 £0.04 1.80 +0.19
COP 14.91 £0.37 19.12 £ 0.46 0.65 +0.08 6.48390. 0.58+0.07 0.70 £ 0.06 1.73+0.08
CCOP-L 15.09 +£0.57 19.05 +1.56 0.64 +0.03 6.2B6O 0.60 +0.12 0.69 £ 0.04 1.81+0.20
CCOP-H 14.74 £0.31 18.64 £ 0.98 0.71+£0.10 6.83650 0.58 +0.10 0.73+£0.07 1.88 +0.16

Organ index = weight of organ / body weight x 100%.
Data were presented as mean + SD, n = p.<0.01 compared with NC group. NC,
normal control; TC, tumor control. COP, coptisine aa dosage of 100 mg/kg;

CCOP-L, CCOP at low dosage (5 mg/kg); CCOP-H, CCfFhigh dosage (10

mg/kg).



Figure captions

Scheme 1. Synthetic route of CCOP (R = -GHICH,)14-CHz).

Fig. 1. Chemical structure and identification of CCOP. @f)emical structure. (B)
HPLC analysis. HPLC detection condition: Polari€B-A column (250 x 10.0 mm);
mobile phase, methanol : water (0.05% triethylajnth&% phosphoric acid) = 87:13;
flow rate, 1 mL/min; injection volume, 1tL; detection wavelength, 347 nm; column
temperature, 30°C. (C) Mass spectra (ESI). Caledldor GsHs/NOs™ ([M+H]™):
545.34, Found: 545.60.

Fig. 2. Effects of CCOP on cancer cell viabilit{p) Cells were treated with CCOP
(0O—4 pg/mL) for 24 h or 48 h, and determined by MTT as$2gta were presented as
mean = SD, n = 5. (B) Morphology of A549 cells teshwith CCOP (0—2ig/mL) for
24 h. Scale bar, 20@m. (C) Colonies of A549 cells treated with CCOPZA@g/mL)
for 2 weeks. The picture depicts the crystal viskatined colonies and the cloning
efficiency compared with control. Data were presdnds mean £ SD, n = 3p X
0.05 and *p < 0.01 compared with control.

Fig. 3. Effects of CCOP on apoptosis in A549 cells. (A) I€alere treated with
CCOP (0-2ug/mL) for 24 h, the apoptotic cells were stainedAmnexin-V/PI and
analyzed by flow cytometryB) Cells were resuspended in PBS and incubated wit
AO/EB (4 pg/mL) for 1 min in darkness. The arrows indicatpi¢gl cell bodies
(healthy cell, green-stained; apoptotic cell, readred). Scale bar, 1Q0n. Data were
presented as mean = SD, n = 8.<0.05 and *p < 0.01 compared with control. (C)

Cells were treated with CCOP (0+@/mL) for 24 h, stained with DiO43) and



measured by flow cytometry. Cells with lower fluscence indicate loss of MMP.
Data were presented as mean + SD, n =38<0.01 compared with control

Fig. 4. Effects of CCOP on apoptosis related proteins iMtAgells. Cells were
treated with CCOP (0—2g/mL) for 24 h. The expression of apoptosis relgexdeins
(A) Bcl-2, Bax, cleaved caspase 3 and 9 (B) Pi3k, #nd p-Akt was determined by
western blot. Data were presented as mean = SD3n*p < 0.05 and *p < 0.01
compared with control.

Fig. 5. Effects of CCOP on cell cycle in A549 cells. (A) IGewere treated with
CCOP (0-2ug/mL) for 24 h, then, stained with Pl and analybgdilow cytometry.
Data were presented as mean + SD, n 93 9.05 and *p < 0.01 compared with
control. (B) The expression of cell cycle relatedtpins (CDK 2, CDK 4, CDK 6,
Cyclin D and Cyclin E) was determined by westemwt.iData were presented as mean
+ SD, n=3. $<0.05 and *p < 0.01 compared with control.

Fig. 6. Effects of CCOP on tumor growtin vivo. BALB/c nude mice were
subcutaneously injected with A549 cells into thghtiarmpit and orally administered
with CCOP or COP every day. (A) Image of excisaddts. (B) Tumor volume. (C)
Tumor weight. Data were presented as mean + SD5n*p < 0.05 and *p < 0.01
compared with TC group. (D) Western blot and (Eumohistochemistry analysis of
apoptosis related proteins in tumor tissue. Scats,ld00um. Data were presented as
mean = SD, n = 3. < 0.05 and *p < 0.01 compared with TC group. TC, tumor
control; COP, COP at a dosage of 100 mg/kg; CCORCQP at low dosage (5

mg/kg); CCOP-H, CCOP at high dosage (10 mg/kg).



Fig. 7. Proposed mechanism of CCOP in A549 lung cancer. EQctivates
Pi3k/Akt signaling pathway, decreases mitochondmaémbrane potential and
activates caspase-dependent apoptosis. SimultdpeoGELOP suppresses the
expression of cyclin D, cyclin E and their corresging CDK 2, CDK 4, CDK 6,

resulting in GO/G1 cell cycle arrest.
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Highlights

1.

A new coptisine derivative 8-cetylcoptisine is synthesized and characterized.
CCOP inhibits cell growth in A549 and other cancer cell lines.
CCOP induces mitochondria-dependent apoptosis and GO/GL1 arrest in A549 cells.

CCOP exhibits better antitumor effect than COP in A549 xenograft nude mice.



