Accepted Manuscript

Low temperature synthesis and characterization of pure lanthanum hexaboride nanocrystals

Tuncay Simsek, Arun K. Chattopadhyay, Mustafa Baris, Murat Bilen

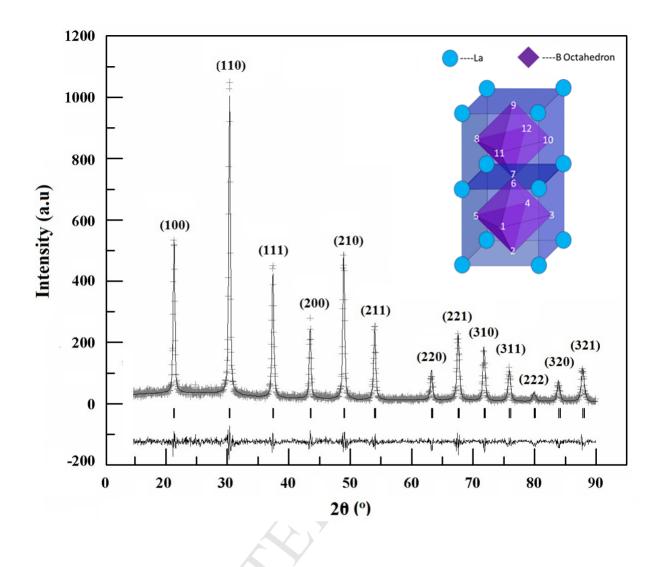
PII: S0022-4596(19)30216-6

DOI: https://doi.org/10.1016/j.jssc.2019.04.039

Reference: YJSSC 20740

To appear in: Journal of Solid State Chemistry

Received Date: 21 January 2019


Revised Date: 7 April 2019

Accepted Date: 28 April 2019

Please cite this article as: T. Simsek, A.K. Chattopadhyay, M. Baris, M. Bilen, Low temperature synthesis and characterization of pure lanthanum hexaboride nanocrystals, *Journal of Solid State Chemistry* (2019), doi: https://doi.org/10.1016/j.jssc.2019.04.039.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Low Temperature Synthesis and Characterization of Pure

Lanthanum Hexaboride Nanocrystals

Tuncay Simsek¹

¹Department of Industrial Design, Mersin University, Mersin 33343, Turkey ¹tuncaysimsek@mersin.edu.tr,

Arun K. Chattopadhyay²

²Uniformity Labs, 41400 Christy Street, Fremont, CA 94538 <u>²chattopadhyay@uniformitylabs.com</u>

Mustafa Baris³

³Eti Maden Works General Management, 06010, Ankara, Turkey. ³mustafabaris@etimaden.gov.tr,

Murat Bilen⁴

⁴Eti Maden Works General Management, 06010, Ankara, Turkey. ⁴mbilen@etimaden.gov.tr

Corresponding author: Tuncay SIMSEK Address: Department of Industrial Design, Mersin University, Mersin 33343, Turkey Fax: +90 324 361 01 09 Tel: +90 324 361 00 01 E-mail: tuncaysimsek@mersin.edu.tr

Abstract:

This study aims to synthesize very pure form of LaB₆ nanocrystals at low temperatures. The synthetic route employed involved low temperature magnesiothermic reduction process of La₂O₃ with a mixture of Mg, I₂ and B₂O₃ at 90 \Box C. The powder mixtures were mechanically induced under Ar atmosphere for 3 hours and then heat treated. The pure form of nano LaB₆ powder produced by this technic is by far the most versatile route for the synthesis of nano-LaB₆. From the XRD evidences of the synthesized powders, a correct reaction path for the reduction process has been elucidated. The average particle size of nano powder synthesized was estimated from SEM as well as XRD as 78±12 nm and 61.3±2.0 nm respectively, and the values were found to be in good agreement. The particle size determined by XRD was upon applying the Rietveld refinement method and using isotropic Lorentzian Scherrer particle broadening parameter (LX) of refined peak profiles. From the average size of the particulates and from the specific surface area of LaB₆ (1.3 m²/g) as determined by BET method, the number of unit crystals that might have constituted a nano-particulate of size 61.3±2.0 nm was estimated as 10⁵ numbers from the crystallographic information of LaB₆.

Keywords: Magnesiothermic method; LaB₆; nanocrystals; leaching.

1. Introduction

Metal borides in general are of great importance as ceramic materials due to their high hardness, high heat and electrical conductivity, good abrasion, thermal shock and corrosion resistance properties, and for an excellent chemical stability at high temperatures [1-7]. Amongst all metal borides, rare-earth hexaborides (RB₆; where R=La,Ce,Pr,Nd,etc.) as refractory ceramics occupy a special place because of their low work function, which attributes to their high electron emissivity, super-conductivity, ferro-magnetism, narrowband semi-conductivity, etc. Lanthanum hexaboride (LaB₆) in these respects is especially important for its highest electron emissivity hitherto known, and also for its excellent vacuum stability. One of the few major areas of usage of LaB_6 is for its hot cathodic application either in a single crystal form or as coatings deposited by physical vapor deposition. Because of its low work function (2.6eV) and low vapor pressure at high temperatures, LaB_6 has been considered as the material of choice for thin film coatings applications for both decorative and hard coatings [8]. Ceramics composites containing LaB₆ are gaining more and more importance in application sciences particularly as support for transition metal catalysts [9]. Recent findings on nano-LaB₆ showed its high effectiveness to absorb near-infrared emissions, which opened the new field of potential applications in reducing solar heat gains [10]. The nano LaB₆ powder is particularly considered as a material of great interest for coating filaments, carbon nano tubes and silicon field-emitters to lower work function in order to improve their electron-emissivity [11]

Various synthetic methods are commonly used for the synthesis of nano metal borides, such as borothermal [12], carbothermal [13], magnesiothermic reduction and electrochemical synthesis in molten salt [14-15], solvothermal [16], combustion synthesis (SHS) [17], mechanochemical [18] and floating zone method [19]. The synthesis of LaB₆ via magnesiothermal method is particularly beneficial due to the fact that they can be formed at relatively low reaction temperatures. In this work, pure LaB₆ nanocrystals were synthesized by magnesiothermic reaction using La₂O₃, B₂O₃, I₂ and Mg powders at 90 \Box C. The effect of stoichiometry and temperature on the synthesized nano-phase of LaB₆ were investigated in detail. Their microstructures and phase characteristics were studied by X-ray diffraction and electron microscopy. From the average size of the particulates (28.3 ± 3.0 nm) as determined

by Scherer formula and from the surface area (1.3 m²/g) analysis, it was approximated that each particulate of the LaB₆ nano-powder was comprised of approximately 600 unit-crystals of LaB₆ in an average.

2. Experimental Method

2.1. Materials

As starting materials La₂O₃ (< 100 nm, 99.99%, Sigma Aldrich), B₂O₃ (545.74 μ m, >98.00%, Eti Maden), I₂ (99.7%, 1-3 mm, Sigma Aldrich) and Mg (138.66 μ m, ≥99.00%, Sigma Aldrich) were used for the synthesis of LaB₆. B₂O₃ was vacuum desiccated for more than 24 h prior to using in order to avoid any moisture ingress. All ball milling and magnesiothermic reduction processes were conducted under Argon gas (99.999%) atmosphere. 5 M Hydrochloric (HCl) acid solution was used for the purpose of leaching out MgO formed as a byproduct in order to produce pure form of nano-crystalline LaB₆ from the reaction mix.

2.2. Magnesiothermic Reduction

The pre-weighed stoichiometric powder mixtures of La₂O₃, Mg, B₂O₃ and I₂ were placed in a grinding vial in a glovebox, and then the powder mixtures were milled under Argon atmosphere for 3 hours at 300 rpm in a ball mill (Fritch, P6) to prepare refined homogenous blends with reduced particle size. All samples must be handled very carefully under Argon atmosphere and devoid of any oxygen, in order to evade the possibility of any explosive reaction. The magnesiothermic reduction of the ball-milled powder mixture was conducted in a quartz tube. The quartz tube containing the reaction powder mixture was gradually heated to 90 °C in an ash furnace maintaining a heating rate of 2 °C/min under Ar atmosphere. The magnesiothermic reduction process followed almost instantaneously as soon as the temperature reached 90 °C to form nano-particles of LaB₆ and MgO, Mg₃(BO₃)₂ and LaOI as byproducts. The product mixture obtained after the magnesiothermic reduction reaction was leached with 5M hydrochloric acid (HCl) acid solution at 70 °C for 45 min with magnetic stirring at 400 rpm to remove all unwanted phases from the mixture. After the acid leaching process was complete, the slurry was centrifuged to separate LaB₆ and then it was vacuum dried under 20 mbar pressure in a vacuum oven (Memmert VO-400) at 80 °C for 12h forming pure nanocrystalline powders of LaB_6 .

For the preparation of LaB_6 nanocrystalline powders, four different starting powder mixture recipes were pursued to optimize the yield of LaB_6 . The molar ratios of the mixtures of La_2O_3 , Mg, I₂, B₂O₃ as shown in Table 1.

Table 1. Experimental conditions and the ratio of the powder mixtures used $(La_2O_3:Mg:I_2:B_2O_3)$

	А	В	С	D		
Stoichiometry (mol)	1:44:6:12	1:48:6.6:13.3	1:58.5:8:16	1:88:12:24		
Temperature (°C)	90					
Period (min)	0-50					
Atmosphere	Argon		5			

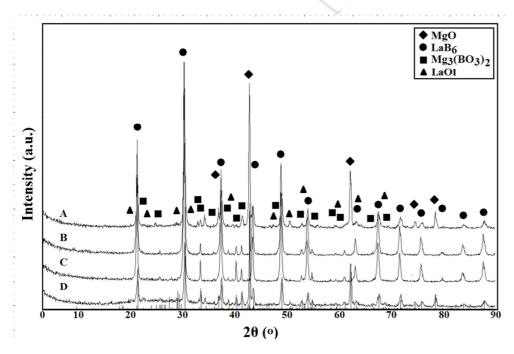
2.3. Characterization of the powders

Malvern Mastersizer-2000 was used for the particle size analysis of all precursor powders used for the synthesis of LaB₆. The phase structure of the powders was determined by X-ray diffractometer (Rigaku D / MAX-2200) with Cu K α radiation. A scanning rate of 4° per minute was used to scan over the range between 2° and 90° (2 θ). Identification of crystalline phases were determined by the files of International Center for Diffraction Data (ICDD) powder diffraction. Morphology of the powders were determined by scanning electron microscopy (SEM) (FEI Quanta-200F) and the surface areas of the powders were determined by BET method (Quantaochrome Nova 220E). From the SEM of the nano-powders, particle sizes were determined by using the image processing program ImageJ Analyzer software [20]. The crystal structure as obtained by the XRD's of the purified powders was refined with Rietveld method using General Structure Analysis System (GSAS) [21]. The initial atomic coordinates of La and B in the LaB₆ phase are given in Table 2 and full occupancy was assumed for La and B.

3. Results and Discussion

The average particle sizes (d_{50}) for the starting powders of La₂O₃ (*hexagonal*, ICDD Card No: 01-073-2141), Mg (*hexagonal*, ICDD Card No: 01-089-5003) and B₂O₃ (*cubic*, ICDD Card

No: 06-0297) used were about 5.4 μ m, 137.6 μ m and 597.9 μ m, respectively. As starting materials not all of them had any similarity with respect to their sizes and size distributions. Iodine (*orthorhombic*, ICDD Card No: 00-043-0304) used for the synthesis was rather very large in size compared to other components of the powder mix. Nevertheless, the individual sizes of the ingredients were of limited significance as starting materials as they were all ball milled for their size refinement. The starting powder mixtures were refined in a high energy ball-mill for 3 hours for homogenization and reduction of their primary particle sizes. The employed ball-milling was quite aggressive maintaining a powder to ball charge weight ratio at 1:18 for comminution prior to carry out the magnesiothermic reaction.


For the purpose of optimizing the conditions of synthesis, four formulation samples of varying mixing ratios marked as A, B, C and D (Table1) were first homogenized and then subjected to heat treatment process to produce LaB_6 [22]. All handling and milling processes were performed under Ar atmosphere. The homogenized powder mixture of the reactants first sealed into an argon-filled container, and then gradually heated to 90 °C at an incremental rate of 2°C/min. At this temperature, the powder mixture reacted almost instantaneously forming LaB₆ and other reaction byproducts. However, it is to recognize, at temperatures below the melting point of iodine, iodine sublimates until the equilibrium vapor pressure is reached, where several independent equilibria are effectively possible during the reduction process. As reported by others for similar type of magesiothermic reductions [23, 24], in this co-reduction method of La₂O₃ and anhydrous boric acid by Mg in the presence of I₂, I₂ actually enables the reaction to happen at lower temperatures that other magnesiothermic reduction process with iodine. Iodine in all probabilities acts as a catalyst that can greatly reduce the activation energy of reactions between La⁺⁺⁺ and B. Following the dissociation equilibrium of iodine, $I_2(g) \leftrightarrow 2I(g)$, both La and Mg can form metal iodides or other intermediates so the reaction can undergo at lower temperatures. Similar reactions without using iodine are not known to form hexaborides even at 650 °C [24].

Going by the conventional wisdom and as reported by other authors as well, the intuitive reaction path for the synthesis of LaB_6 using magnesiothermic reduction process [24-26], should have been as expressed in Eq. 1.

$$La_2O_3 + 27 Mg + 6 I_2 + 6 B_2O_3 = 2 LaB_6 + 21 MgO + 6 MgI_2$$
(1)

However, the XRD pattern of the synthesized powders prior to leaching brought about the fact that the reaction was of very different nature in the presence of I₂ than it was originally thought to be. The XRD's of the as-prepared powders as shown in Fig. 1 revealed that the reaction products were actually the mixtures of LaB₆ (ICDD Card No:01-073-1669), Mg₃(BO₃)₂ (ICDD Card No:01-073-1541), MgO (ICDD Card No:01-075-1525) and LaOI (ICDD Card No: 01-073-2065) phases. The presence of MgO (*cubic, space group=Fm-3m, a=b=c=4.198 Å*), LaOI (*tetragonal, space group P4/nmm, a=b=4.144 Å, c=9.126 Å*), Mg₃(BO₃)₂ (*orthorhombic, space group=Pnnm, a= 4.497 Å, b=5.398 Å, c=8.416 Å*) and LaB₆ (*cubic, space group=Pm-3m, a=b=c= 4.157 Å*) phases were observed with all four reactions mixtures. Therefore, the magnesiothermic reduction reaction of La₂O₃ in the presence of I₂ does not follow as per the conventional understanding [21, 26, 27]. as stated in Equation 1, it rather follows as per the reaction given below in Eq 2. This mechanism is probably established for the first time for the synthesis LaB₆ nanocrystals produced by magnesiothermic reduction process using I₂.

$$2 \text{ La}_2\text{O}_3 + 34 \text{ Mg} + \text{I}_2 + 12 \text{ B}_2\text{O}_3 = 2 \text{ La}\text{B}_6 + 2 \text{ La}\text{OI} + 2 \text{ Mg}_3(\text{BO}_3)_2 + 28 \text{ MgO}$$
(2)

Fig. 1. XRD graphs of as-prepared powders obtained from the magnesiothermic reduction reactions using different molar ratios of the reactants, La₂O₃, Mg, I₂, and B₂O₃, (A: 1:44:6:12, B: 1:48:6.6:13.3, C: 1:58.5:8:16, D: 1:88:12:24, for starting powders of) XRD graph of powders obtained after explosive reactions with different molar ratios.

The standard Gibbs free energy (ΔG) and the standard enthalpy changes (ΔH) were determined using HSC Chemistry 6.0 software [28]. ΔG and ΔH changes for the reaction of the powder mixture La₂O₃+B₂O₃+Mg+I₂ to 2000 °C were calculated and plotted in Figure 2a. Figure 2a shows that the reaction of the starting powders at all temperatures between 0 to 2000 °C has a large negative Gibbs free energy and large enthalpy change. According to the estimation of the Gibbs free energy, the overall reaction of Eq. (2) is thermodynamically spontaneous (ΔG = -5450 kJ mol-1) and highly exothermic (ΔH =-6350 kJ mol-1) as reported elsewhere as well [26, 29]. Due to its high exothermicity, a massive internal heat is generated within the reacting species, and as an effect the internal temperature becomes much higher, which results in reduction of LaB₆ are given below. It explains the role of I₂ in this low temperature magnesiothermic reduction process for the synthesis of LaB₆, where I₂ forms intermediate compounds with La that ultimately lead to form LaB₆ releasing iodine back .

$$\begin{split} &I_2(g) \leftrightarrow 2I(g) \qquad (a) \\ &2B_2O_3 + Mg \ \rightarrow Mg(BO_3)_2 \ + 2B \qquad (b) \\ &La_2O_3 + 4I \rightarrow LaI_3 + 2LaOI \qquad (c) \\ &2LaI_3 + 12B \rightarrow 2LaB_6 + 3I_2 \qquad (d) \end{split}$$

The probable reaction steps as shown above indicated that the higher concentration of Mg can induce the formation of more LaI_3 by converting LaOI to LaI_3 according to the eqn. (e), and consequently the formation of more LaB_6 .

$$LaOI + Mg + 2I \rightarrow LaI_3 + MgO$$
 (e)

The XRD's also confirmed that mechanistically higher concentration of Mg can force the reaction to form more LaB_6 and reduce the formation of LaOI, which also validates the proposed reaction pathway. As per the above reaction steps, a higher molar concentration of Mg must kinetically also favor the formation of MgO as shown in Eq.(e).

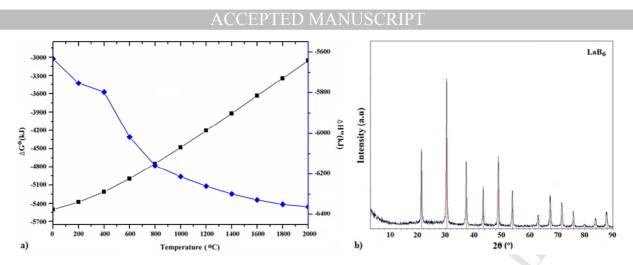


Figure 2. a) Gibbs free energy change (\blacksquare) and enthalpy change (\blacklozenge) versus temperature curves of the overall reaction in Eq.(2). b) XRD pattern of the LaB₆ nanocrystals

After a thorough and careful washing with 5 M HCl solution, the Mg₃(BO₃)₂, LaOI and MgO phases were removed from the synthesized powders. After leaching the powder was further washed with deionized water. The thoroughly leached and washed power was subjected to vacuum drying. The XRD pattern of the purified powder given in Figure 2b clearly showed that the final product of LaB₆ was completely free from any undesirable contamination and the average crystallite size of LaB₆ phase was determined as 28 ± 3.0 nm by well-known Scherrer formula.

Figure 3 presents the Rietveld refinement applied to the XRD pattern of the purified sample. The grey (plus) and black lines shows the purified powders and calculated pattern of the modelled structure, respectively. The difference of the observed and calculated patterns is plotted in the lower part of the figure as a solid trace. The vertical bars refer to the calculated allowed Bragg reflections. Single phase Rietveld refinement confirms the structure of LaB₆ in *Pm-3m* space group with the lattice parameters of a=b=c=4.153(2) Å. Table 2 presents the details of the basic crystallographic data for LaB₆. The diffraction peaks are well indexed and assigned to the parallel crystal plane of (100), (110), (111), (200), (211), (220), (221), (310), (311), (222), (320) and (321). The obtained results are in good agreement with the previous data published in the literature [9, 24]. The diffraction data was *refined* on the *assumption* that the metal atoms would *occupy* the site 1a whereas non-metal *atoms would* be at the 6f site. The sharp and well-defined peaks in Fig. 3 indicated the high purity of the crystalline products. The average particle size was also determined as 61.3 ± 2.0 nm by using the isotropic Lorentzian Scherrer particle broadening parameter (LX) of refined peak profiles.

Because of the polycrystalline nature of the synthesized LaB_6 powder particles, the particulates are composed of many crystallites of varying sizes and orientations. Measuring crystallite sizes from XRD patterns is a well-known technic. SEM images revealed that individual crystallites within the relatively larger particle sizes.

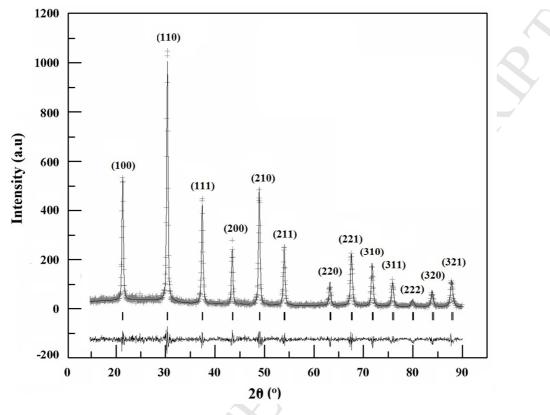


Figure 3. Rietveld refinement of LaB₆.

Table 2. Atomic positions and crystallographic data of LaB₆

Formula	LaB ₆	Space group		Pm-3m				
Crystal system	Cubic	Data points			1739			
Unit cell	a = b = c = 4	a = b = c = 4.154(3) Unit cell volume (Å ³)			71.7(4)			
dimensions (Å)	$\alpha = \beta = \gamma = 90$							
2θ range refined	15-90°]	R _p		0.1329			
$S(\chi^2)$	1.421]	R _{wp}		0.1807			
Atomic positions								
Atom	site	Х	У	Z	Uiso			
La	1a	0	0	0	0.0016(2)			
В	6 <i>f</i>	0.2018(4)	0.5	0.5	0.0027(3)			

SEM images of the purified powders are shown in Fig.4. LaB₆ nano-particles thus produced were in clustered forms of many particles. An approximate size of those sample was estimated as 78 ± 12 nm by ImageJ software. As expected, their agglomerations could have been due to the vacuum drying conditions during the purification steps. The similar observations were also reported elsewhere [26, 30]

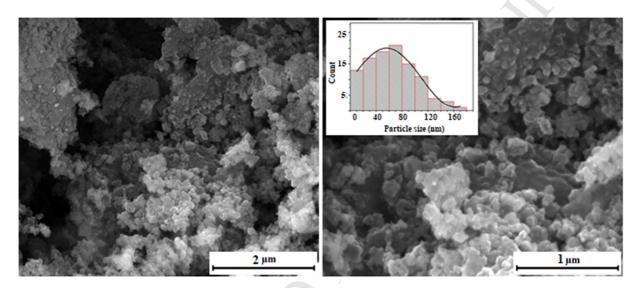
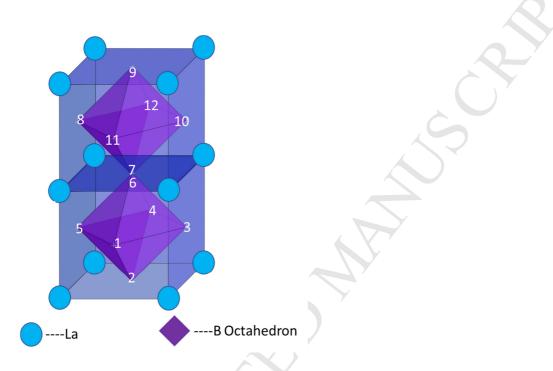



Fig 4. SEM images of purified LaB₆ nanocrystals

The average particulate size of LaB₆ phase was determined as 61.3 ± 2.0 nm and the specific surface area of the purified LaB₆ powder, $1.3 \text{ m}^2/\text{g}$, determined by BET method further signified that the nano-particulates are composed of many small LaB₆ units. The rationale of such approximation was realized from the structural information available on LaB₆ crystals. The crystal structure of LaB₆ is simple cubic (space group; Pm-3m), with Boron-octahedra in body-centered positions and La atoms at the corners of the unit cell. The crystal structure of LaB₆ comprising two unit-cells is shown in Fig. 5 as an illustration. As it can be seen boron atoms in each unit are in the form of octahedral cage. The bond length of B6-B7 in adjoining cells is the shortest in the LaB₆ crystal structure. The crystal structure studies by Hossain et al delineated that in LaB₆ there was a coexistence of covalent, ionic, and metallic bonds, which probably explains the reason for the high thermionic emissions of LaB₆ [25]. Going by its stoichiometry, a unit crystal of lanthanum hexaboride comprises 12 units of LaB₆ (La₁₂B₇₂; Mol. Wt. 2447.4) constituting 2.5x10²⁰ such unit crystals per gram. From the measured surface area (1.3m²/g) and the average volume of each nano-particulate (considering spherical

sweeping volume for the nano-particles of LaB₆ of size 61.3 ± 2.0 nm for the sake of simplicity), the average mass of an individual particulate can be estimated in of the order of $5x10^{-15}$ g (considering the density of LaB₆ as $4.72x10^6$ g/m³). From that estimated value it can be visualized that each particulate of an average size of 61.3 ± 2.0 nm might comprise around 10^5 numbers of unit-crystals to constitute a nano-particulate. A similar value was also obtained from the surface area approximation of the nanoparticles and from the BET surface area value.

Fig. 5. In the crystal structure of Lanthanum hexaboride, two adjoining unit cells show the bonding between two adjacent octahedra of boron. The bond length of B6-B7 is the shortest distance in the structure.

4. Conclusion

A viable method of synthesizing a very pure form of LaB₆ nano-powders has been devised by adopting a low temperature synthetic route using La₂O₃, B₂O₃, Mg and I₂ under an inert atmosphere. The ball milling process increased the reactivity of the starting materials enabling the reaction to occur at temperatures around 90 °C. Removal of all byproducts by leaching and washing helped forming nano-LaB₆ powders in very pure forms. The reaction mechanism for the formation of LaB₆ was confirmed by XRD. From the specific surface area of the nanopowder $(1.3m^2/g)$ and from the average size of the nano-particulates (61.3 ± 2.0 nm), it

appears from the crystallographic approximations that each small nano-particulate is probably constituted roughly by 10^5 numbers of unit-crystals of LaB₆ suggesting the fineness of the LaB₆ nano-powder synthesized by the present technic.

Acknowledgments

Authors would like to thank Etimaden Works General Managements, Head of Technology Development Department for using laboratory facilities and providing chemical materials. **References**

[1] S. Reich, H. Suhr, K. Hanko, L. Szepes, Deposition of thin films of Zirconium and Hafnium Boride by plasma enhanced chemical vapor deposition, Adv. Mater. 4 (1992) 650-653.

[2] H.E. Çamurlu, F. Maglia, Preparation of nano-size ZrB₂ powder by self-propagating high-temperature synthesis, J. Eur. Ceram. Soc. 29 (2009) 1501-1506.

[3] J.P. Kelly, K. Raghunath, O.A. Graeve, A Solvothermal Approach for the Preparation of Nanostructured Carbide and Boride Ultra High Temperature Ceramics, J. Am. Ceram. Soc. 93 (2010) 3035-3038.

[4] M. Barış, T. Şimşek, H. Gökmeşe, A. Akkurt, Characterisation of W_2B nanocrystals synthesized by mechanochemical method, J. of Boron. 1 (2016) 45-51.

[5] Y. Hwang, J.K. Lee, Preparation of TiB₂ powders by mechanical alloying, Mater. Lett. 54 (2002) 1-7.

[6] H.Y. Qiu, W. M. Guo, J. Zou, G. J. Zhang, ZrB₂ powders prepared by boro/carbothermal reduction of ZrO₂: The effects of carbon source and reaction atmosphere, Powder Technol. 217 (2012) 462–466.

[7] M. Aksu, E. Aydın, Nano and microsized EuB₆ via magnesiothermic reduction, J Ceram Process Res. 14 (2013) 4-7.

[8] M. Zhang, X. Wang, X. Zhang, P. Wang, S. Xiong , L. Shi, Y. Qian, Direct low-temperature synthesis of RB6 (R=Ce,Pr,Nd) nanocubes and nanoparticles, J. Solid State Chem. 182 (2009) 3098–3104

[9] M. Zhang, L. Yuan, X. Wang, H. Fan, X. Wang, X. Wu, H. Wang, Y. Qian, A low-temperature route for the synthesis of nanocrystalline LaB₆, J. Solid State Chem. 181 (2008) 294–297.

[10] Y. Yuan, L. Zhang, L. Liang, K. He, R. Liu, G. Min, A solid-state reaction route to prepare LaB₆ nanocrystals in vacuum, Ceram. Int. 37 (2011) 2891–2896.

[11] M. Kumari, S. Gautam, P. V. Shah, S. Pal, U. S. Ojha, A. Kumar, A. A. Naik, J. S. Rawat, P. K. Chaudhury, Harsh, R. P. Tandon, Improving the field emission of carbon nanotubes by lanthanum-hexaboride nano-particles decoration, Appl. Phys. Lett. 101 (2012) 123116-123122.

[12] H.Y. Qiu, W.M. Guo, J. Zou, G. J. Zhang, A1- ZrB_2 powders prepared by boro/carbothermal reduction of ZrO_2 : The effects of carbon source and reaction atmosphere, Powder Technol. 217 (2012) 462–466.

[13] L.Z. Pe, H.N. Xiao, B_4C/TiB_2 composite powders prepared by carbothermal reduction method, J Mater Process Tech. 209 (2009) 2122–2127.

[14] K. Bao, Y. Wen, M. Khangkhamano, S. Zhang, Low-temperature preparation of titanium diboride fine powder via magnesiothermic reduction in molten salt, J Am Ceram Soc. 100 (2017) 2266–2272.

[15] S. Angappan, N. Kalaiselvi, R. Sudha, A. Visuvasam, Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique, Int. Sch. Res Notices. 2014 (2014) 1-6.

[16] M. Baris, T. Şimşek, H. Taşkaya, A. K. Chattopadhyay, Synthesis of Fe-Fe₂B Catalysts via Solvothermal Route for Hydrogen Generation By Hydrolysis Of NaBH₄, J. of Boron. 3 (2018) 51 - 62.

[17] C.L. Yeh, H.J. Wang, Preparation of borides in Nb–B and Cr–B systems by combustion synthesis involving borothermic reduction of Nb₂O₅ and Cr₂O₃, J. Alloys and Compd. 490 (2010) 366–371.

[18] J.Abenojar, F.Velasco, J.M.Mota, M.A.Martinez, Preparation of Fe/B powders by mechanical alloying, J. Solid State Chem. 177 (2004) 382-388.

[19] S. Otani, S. Honma, Y. Yajima, Y. Ishizawa, Preparation of LaB₆ single crystals from a boron-rich molten zone by the floating zone method, J. Cryst. Growth. 126 (1993) 466-470.

[20] W. Rasband, ImageJ, Image Processing and Analysis in Java, National Institutes of Health, USA, 1.50V, (2014).

[21] A.C. Larson, R.B.V. Dreele, GSAS: General structure analysis system report LAUR 86-748. Tech. Rep., Los Alamos National Laboratory (2000).

[22] M. Baris, T. Simsek, T. Simsek, S. Ozcan, B. Kalkan, High purity synthesis of ZrB_2 by a combined ball milling and carbothermal method: Structural and magnetic properties, Adv. Powder Technol. 29 (2018) 2440-2446.

[23] W. Han, Z. Wang, Q. Li, H. Liu, Q. Fan, Y. Dong, Q. Kuang, Y. Zhao, Autoclave growth, magnetic, and optical properties of GdB_6 nanowires, J. Solid State Chem. 256 (2017) 53–59.

[24] L. Wang, L. Xu, Z. Ju, Y. Qian, A versatile route for the convenient synthesis of rareearth and alkaline-earth hexaborides at mild temperatures, Cryst. Eng. Comm. 12 (2010) 3923–3928.

[25] K. Bao, C. Liu, B. Yazdani Damavandi, S. Zhang, Low-Temperature Preparation of Lanthanum Hexaboride Fine Powder via Magnesiothermic Reduction in Molten Salt, J. Ceram. Sci. Tech. 07 (2016) 403-408.

[26] D. Agaogullari, I. Duman, M. L. Ovecoglu, Synthesis of LaB_6 powders from La_2O_3 , B_2O_3 and Mg blends via a mechanochemical route, Ceram. Int. 38 (2012) 6203-6214.

[27] B. Lihong, W. Wei, O. Tegus, A new route for the synthesis of submicron-sized LaB₆, Mater. Charact. 97 (2014) 69-73.

[28] HSC Chemistry 6.0, Chemical Reaction and Equilibrium Software with extensive thermochemical database, Outokumpu. 2006.

[29] J. A. Dean, in Lange's Handbook of Chemistry, McGraw-Hill, New York, 13th edn, 1985, Section 6; I. Barin, G. Platzki, in Thermochemical Data of Pure Substances, Wiley-VCH, Weinheim, 1995.

[30] M. Hasan, H. Sugo, E. Kisi, Low temperature carbothermal and boron carbide reduction synthesis of LaB₆, J. Alloys and Compd. 578 (2013) 176–182

[31] F. M. Hossain, D. P. Riley, G. E. Murch, Ab initio calculations of the electronic structure and bonding characteristics of LaB₆, Phys. Rev. B 72 (2005) 235101-235106.

Highlights

- Low temperature synthesis of pure LaB₆ via magnesiothermic method.
- Rietveld refinements of LaB₆ and its structural properties.
- Each particle seemed to be constituted by 10^5 numbers of unit crystal cells.
- Purification of unwanted phases by aqueous acid solution.