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Direct functionalisation of group 10 N-heterocyclic carbene complexes

for diversity enhancementw
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The synthesis of alkyne-substituted N-heterocyclic carbene

complexes of Pd(II) and Pt(II) is reported. Catalyzed 1,3-dipolar

cycloaddition with azides has been applied as a modular way of

functionalisation of group 10 transition metal NHC complexes

to generate potentially new metallodrugs.

Cisplatin which is effective against many forms of cancer is the

quintessential transition metal-based chemotherapeutic

agent. The formation of covalent crosslinks with DNA and

subsequent disruption of the DNA structure are believed to

account for its cytotoxic activity against cancer cells. Despite

considerable benefits, the clinical use of cisplatin is limited by

adverse side effects and resistance. Several approaches have

been explored to overcome these hurdles. The search for new

platinum complexes with different DNA binding properties

and/or improved pharmacological profile has attracted

considerable attention.1

Very recently, several groups pointed to the importance of

N-heterocyclic carbene (NHC)2 ligand as a new structure

for the development of transition metal-containing drug

candidates. Remarkably, Ghosh et al. established that

palladium complexes of general formula trans-(NHC)2PdX2

or trans-(NHC)PdX2(pyridine) are potent inhibitors of the

proliferation of cancer cells,3 whereas Marinetti et al. showed

the efficiency of trans-configured platinum complexes of

general formula (NHC)PtX2(L) (with L = amine) towards

cisplatin-resistant cell lines (Scheme 1).4,5 Nevertheless, there

is still a significant gap to be filled between this NHC-proof of

concept and (pre)clinical developments. At this stage, a

modular approach allowing the synthesis of functionalised

and conjugated NHC metal complexes would be an asset to

increase chemical diversity, introduce specific features (i.e.

water solubility, specific cell recognition elements, delivery,

fluorescence. . .) and ultimately facilitate the development of

this emerging class of cytotoxic molecules. However, the

unavoidable strategy in organometallic synthesis, which con-

sists in the coordination of the transition metal at the very last

step of the synthesis, suffers from serious drawbacks: (i)

forcing reaction conditions, (ii) low modularity and most

importantly (iii) incompatibility with a large number of che-

mical functions (i.e. alcohols, amides. . .).6 Although attractive,

the chemoselective functionalisation of the NHC complex of

late transition metals remains a challenging route and these

transition metal complexes are potentially reactive molecules

that usually do not tolerate further manipulation.7,8

We reasoned that catalyzed 1,3-dipolar cycloadditions of

terminal alkynes to azides could be the solution of choice for

that purpose. However, the copper(I)-catalyzed alkyne–azide

cycloaddition (CuAAC)9 is not compatible with the presence

of halogens on a group 10 transition metal as shown in

Scheme 2. Indeed, the reaction of dihalocomplexes of palla-

dium (or platinum) with terminal alkyne in the presence of a

copper(I) catalyst and an amine base is known as a method for

Scheme 1 Group 10 NHC complexes exhibiting cytoxicity against

cancer cells (cell lines in brackets).

Scheme 2 The incompatibility of CuAAC: the reaction conditions

lead to the formation of alkynyl complexes.
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the preparation of dialkynyl complexes.10 So far, the organic

functionalisation of a sensitive group 10 transition metal

complex (i.e. with potentially exchangeable ligands) in the

presence of a transition metal catalyst remains elusive.11

Herein, we report the successful functionalisation of alkyne-

substituted NHC complexes of Pd(II) and Pt(II) with diverse

azides as a direct and modular method for the development of

elaborated NHC-based cytotoxic molecules.

The reaction of N-alkyne (TMS protected) functionalised

imidazolium salt 1 with 0.5 equivalent of palladium acetate

leads to the trans-bis(NHC) palladium complex in 63%

yield.12,13 Optimal deprotection of the TMS-alkyne was

obtained with fluoride on a macroporous polymer support

(2.0–3.0 mmol g�1 loading). The unmasked alkyne 2 was then

subjected to reaction with 2.2 equivalents of benzyl azide

in the presence of classical copper catalysts. Screening of

various experimental conditions (copper source, solvent,

temperature. . .) led to the conclusion that the reaction is not

compatible with the presence of the Pd(II) complex derivative.

Investigation of the reaction product composition revealed the

presence of palladium black with insoluble orange/brown

solids that may be assigned to coordination polymers by

alkynyl complexes formation. Fortunately, an attempt

to conduct the reaction with the ruthenium catalyst

Cp*RuCl(PPh3)2 afforded the long-awaited bis-cycloaddition

product 3 (1,5-regioisomer), albeit in modest yield as shown in

Scheme 3.

The ruthenium-catalyzed azide–alkyne cycloaddition

(RuAAC)14 was then successfully applied to the bis-N-hetero-

cyclic carbene palladium complex 4 with remote TMS-alkyne

tether in the backbone of the carbene ligand that accordingly

offers a more significant degree of diversity (Scheme 4).15 The

double cycloaddition reaction with benzyl azide in the

presence of 8 mol% of a Ru catalyst gave the desired

product (5) in 87% isolated yield. Functionalisation with more

challenging azides like PEG derivatives was also possible.

Noteworthily, compounds 6 and 7 were both obtained in good

yields (74% and 72% respectively).16

Further investigation of the 1,3 dipolar cycloaddition

reaction with platinum derivatives also proved the efficiency

of ruthenium vs. copper catalysts towards square-planar

NHC–platinum complexes such as 8.17 The cycloaddition

products were obtained in 82% and in 70% with benzyl

azide when L was pyridine (9) and cyclohexylamine (10)

respectively. Following the same procedure the complex 8

gave the L-lysine derivative 11 in 59% yield (Scheme 5).

Finally, in order to possibly enhance selectivity and specificity

towards cancer cells, we designed the oestrogen functionalised

Pt(II) complex 13 as a possible candidate to target hormone-

dependent diseases (e.g. breast cancer).18 Complex 13 was

obtained in 24% yield by reaction of 8 with the oestrogen

Scheme 3 Synthesis of complex 2 and 1,3-dipolar cycloaddition

studies: (1) THF, D, 2 h; (2) fluoride on Amberlyst A-26, THF, rt;

RuAAC: Cp*RuCl(PPh3)2 as a catalyst; CuAAC: various copper

sources, solvents and temperatures have been screened.

Scheme 4 Double functionalisation of trans-(NHC)2PdBr2 complex

4. (1) Fluoride on Amberlyst A-26, THF, rt; (2) 8 mol% catalyst,

THF, 60 1C, overnight.

Scheme 5 Functionalisation of platinum complex 8 (L = pyridine or

cyclohexylamine). (1) K2CO3, MeOH, rt; (2) 8 mol% catalyst, THF, D.
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derived azide 12 (Scheme 6) despite the presence of a 1,3-diol

function in 12 susceptible to react either with the platinum

complex or with the ruthenium catalyst.

In this work, we have investigated a modular approach to

the functionalisation of a sensitive group 10 transition

metal NHC complex using ruthenium-catalyzed azide–alkyne

cycloaddition. Encouraged by these preliminary results, we are

currently extending the scope of this method to a more diverse

set of azides with the aim to generate chemical libraries and

later to endow cytotoxic NHC complexes of transition metals

with new properties (e.g. specific cell recognition, delivery,

fluorescence. . .).
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73, 1077.

Scheme 6 Functionalisation of platinum complex 8 (L = pyridine)

with oestrogen derivative 13 (8 mol% catalyst, THF, D).

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SO

U
T

H
 A

U
ST

R
A

L
IA

 o
n 

07
 S

ep
te

m
be

r 
20

12
Pu

bl
is

he
d 

on
 1

8 
A

pr
il 

20
11

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

1C
C

11
39

1G

View Online

http://dx.doi.org/10.1039/C1CC11391G

