Award Accounts

The Chemical Society of Japan Award for Creative Work for 2008

Linearly Aligned Metal Clusters: Versatile Reactivity and Bonding Nature of Tetrametal M–Mo–Mo–M Complexes (M = Pt, Pd, Ir, and Rh) Supported by 6-Diphenylphosphino-2-pyridonato Ligand

Kazushi Mashima

Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531

Received October 23, 2009; E-mail: mashima@chem.es.osaka-u.ac.jp

A tridentate ligand, pyphos (6-diphenylphosphino-2-pyridonato), was utilized to prepare tetrametal complexes since this ligand has unique coordinating sites comprised of three different elements, i.e., phosphorus, nitrogen, and oxygen, in almost linear fashion. By using pyphos ligand, linearly aligned tetrametal complexes of group 10 metals $[Mo_2M_2(pyphos)_4X_{2n}]$ (M = Pt and Pd; n = 0, 1, and 2) were prepared, and for group 9 metals, $[Mo_2M_2(pyphos)_4(RNC)_4X_{2n}]^{2+}$ (M = Ir and Rh; n = 0 and 1). Fully metal-to-metal bonded complexes were obtained by reduction of M^{II} to M^I for group 10 metals and by oxidation of M^I to M^{II} for group 9 metals. Both reactions afforded complexes having unique M– Mo=Mo–M skeletons, i.e., metalla-2-butyne. Structural and chemical properties were systematically investigated for M⁰ (M = Pt and Pd) and M^I (M = Ir and Rh). Thus, oxidative reactions of Pd⁰ complexes $[Mo_2Pd_2(pyphos)_4]$ and Ir^I complexes $[Mo_2Ir_2(pyphos)_4(RNC)_4]^{2+}$ with RX or X₂ were studied and unique 1,4-addition reaction was demonstrated. Dichromium complexes analogous to dimolybdenum complexes were prepared and axial donation of PtMe₂ moiety significantly elongated the Cr–Cr bond, due to the dative bonding interaction between Cr^{II} and Pt^{II} units.

1. Introduction

Direct bonding interaction among metal atoms, in particular, multiply-bonded dinuclear complexes including the most characteristic concept of δ bonding, has been intensively studied over the last decades as one of the most attractive targets in inorganic chemistry.¹ As a resemblance to carbon-tocarbon double and triple bonds, an ideal reaction leading to one-dimensional metal complexes bearing metal-metal bonds, which have attracted much interest in terms of not only bonding nature¹ but also potential applications as singlemolecule transistors,^{2–4} (semi)conductors,⁵ and so on, is polymerization of such multiply-bonded dinuclear complexes. However, it has been known that the aligned metal array in principle turns to the assembly of dinuclear metal units due to the Peierls distortion (Scheme 1). In addition, it is necessary to avoid the perpendicular alignment of multiply-bonded dinuclear units and the [2 + 2] cyclodimerization of multiplybonded dinuclear complexes of Re,^{6,7} Mo,⁸⁻¹² and W¹³ (eq 1).

Many efforts have been devoted to construct nanometerscale metal strings connected entirely by metal-metal bonds. Three synthetic approaches have been rationally conducted for one-dimensional homoleptic and heteroleptic transition-metal clusters with more than three metal ions; thus categorized as (1) use of non-bridged mixed valent metal complexes like platinum blue species, (2) use of suitable multidentate ligands for lapping the metal strings, and (3) use of dative bond or strong closed-shell interactions among heavier metal ions with d^8 , d^{10} , and s^2 configurations.

1.1 Homoleptic Linear Transition-Metal Clusters. A typical example of category (1) is the partially oxidized tetracyanoplatinate salts $\{K_2[PtBr_{0.3}(CN)_4]\cdot 3H_2O\}_{\infty}$, referred to as Krogmann salts, which were reported to have unique short Pt…Pt bonding interactions through overlapping the d_{z^2} orbital of each platinum atom.¹⁴ In the same manner, controlled-potential electrolysis afforded one-dimensional materials:

Scheme 1. One-dimensional materials vs. multiply-bonded dinuclear complexes.

Ziessel et al. synthesized a deep blue film of $[Ru^{0}(bpy)(CO)_{2}]_{\infty}$ (1) (bpy = 2,2'-bipyridine) on a working electrode from *trans*-[Ru^{II}(bpy)(CO)₂C1₂],^{15,16} and Dunbar et al. prepared a 1D rhodium chain, $\{[Rh(CH_3CN)_4][BF_4]_{1.5}\}_{\infty}$ (2) (Chart 1), as crystalline solids from electrochemical reduction of [Rh2^{II,II}-(MeCN)₁₀][BF₄]₄ at a Pt electrode, in which there were bonding interactions among RhI and RhII atoms with two different contacts.¹⁷ A similar strategy has been utilized for dimerization of dinuclear complexes: a tetrarhodium complex, [RhI4(CO)4- $(pqdi)_4(s-pqdi)_2^{1^{2+}}$ (4) (s-pqdi = 9,10-phenanthrosemiquinone diimine; pqdi = 9,10-phenanthroquinone diimine), was prepared by the oxidative dimerization of the dirhodium complex of [Rh^I(CO)₂(s-pqdi)]₂ (3) (eq 2).¹⁸ Mixed-valent oligomers of platinum,¹⁹⁻²¹ rhodium,²² and iridium²³ were also reported. Another synthetic method was mixing transition-metal complexes with different oxidation states: the reaction of a dipalladium(I) isonitrile complex, $[Pd_2(CH_3NC)_6]^{2+}$, with a monopalladium(0) complex, $[Pd(CH_3NC)_x]$, resulted in the selective formation of a mixed-valent linear homotrinuclear Pd3 complex, $[Pd_3(CH_3NC)_8]^{2+.24}$

In category (2), an approach for constructing one-dimensional materials comprised of multiply-bonded dinuclear units using appropriate supporting ligands was studied by Chisholm and his co-workers.²⁵ They connected two quadruply-bonded Mo₂ units by a chelating ligand, the dianion of 2,7-dihydroxy-

naphthyridine, to give a dimer compound **5** with no direct bonding interaction between the inner Mo atoms, and an assembled paddle-wheel or lantern-type $M_2(O_2CR)_4$ core with long alkyl chain in the absence of neutral donor ligands to give liquid crystalline laddered complexes **6**, both complexes bearing an intermolecular oxygen-to-metal interaction (Chart 2).

Multidentate ligands have played an important role in preparing homoleptic one-dimensional transition-metal complexes.²⁶ Linearly aligned Ni₃ and Cu₃ complexes $[M_3(dpa)_4X_2]$ (7) (dpa = di(2-pyridyl)amide) were reported by Hathaway²⁷ and Pyrka.²⁸ Later, two independent groups of Peng and Cotton intensively investigated the same type of homoleptic linear trinuclear M₃ complexes 7 (M = Cu, Co, Ni, Cr, Ru, Rh, and so on) using dpa and related multidentate ligands (Chart 3).^{29–32} These complexes were crystallographi-

cally characterized, and some of them are an assembly of a dimer unit and a mononuclear unit; however, chemical oxidation induced the bond formation through all three metals. Peng and Cotton have also developed this line of chemistry to much longer metal oligomers by using $\text{oligo}(\alpha$ -pyridyl)-amido ligands as well as their analogs, synthesizing tetra-,³³ penta-,³⁴⁻⁴² hexa-,^{43,44} hepta-,^{45,46} octa-,⁴⁷ and nonanuclear chain^{48,49} of various metal atoms. Among them, a linear nona-chromium complex [Cr₉(μ ₉-N₉-mpz)₄(NCS)₂] (8) (N₉-mpz = *N*,*N'*-bis[6-(2-pyridylamino)-2-pyridyl]pyrazine-2,6-diaminato) is schematically drawn.⁴⁸

Bis(diphenylphosphinomethyl)phenylphosphine (dpmp) is a triphosphine ligand that is able to support three metals in a linear fashion. In fact, $[Pt_3(dpmp)_2(XyINC)_2](PF_6)_2$ (9) (XyINC = 2,6-dimethylphenyl isocyanide) was prepared (Chart 4),⁵⁰ and complex 9 was converted by excess NaBH₄ to a hydride-bridged dimer $[Pt_6(\mu$ -H)(dpmp)_4(XyINC)_2]^{3+} and then followed by chemical oxidation to give the dimer of 9, $[Pt_6(dpmp)_4(XyINC)_2]^{4+}$ (10).⁵¹ A hetero-tridentate P–As–P ligand, bis(diphenylphosphinomethyl)phenylarsine (bdppa), was used to prepare a tetranuclear Au₄ complex, $[Au_4Cl_2-(bdppa)_2]^{2+,52}$ Bridging bis(isocyanide) ligands, 1,3-diisocyanopropane (dpb) and 1,8-diisocyano-*p*-menthane (dmb), yielded a tetrarhodium complex, $[Rh_4Cl(dpb)_8]^{5+,53-55}$ and tetraplatinum and tetrapalladium compounds $[M_4(dmb)_4-(PPh_3)_2]Cl_2$ (11: M = Pd and Pt).⁵⁶

Conjugated polyenes and aromatic compounds acted as supporting ligands of multinuclear palladium complexes. Murahashi and Kurosawa reported that the combination of Pd⁰ and Pd^{II} precursors in the required ratio in the presence of conjugated polyenes afforded multinuclear mixed-valent palladium complexes **12** and **13** (Chart 5), which had entirely Pd–Pd bonds through the arrays, and conjugated aromatic compounds produced linear or planar palladium clusters.⁵⁷

The third category is based on the metallophilic interaction, where two closed-shell heavy late transition metals with d⁸ and d¹⁰ configurations have an attracting bonding interaction.⁵⁸ Such bonding interaction has been successfully used for forming a linearly aligned mixed-valent pentanuclear Au₅ complex [{RAu(CH₂PPh₂CH₂)₂Au}₂AuR₂]ClO₄ (**14**) and a hexanuclear Au₆ complex, [{RAu(CH₂PPh₂CH₂)₂Au}₂-{Au(CH₂PPh₂CH₂)₂Au}](ClO₄)₂ (**15**) (R = C₆F₅ and C₆F₃H₂) (Chart 6).⁵⁹

1.2 Heteroleptic Linear Transition-Metal Clusters. For the synthesis of linear hetero-multinuclear complexes of more than three metal atoms, a few non-bridged hetero multi-metal complexes have been reported. Yamaguchi and Ito prepared a linear pentanuclear complex, $[{Pt(thpy)_2}{Ag(acetone)}]_n$ - $[ClO_4]_n$ (thpy = the anion of 2-(2-thienyl)pyridine), and an infinite helical compound, $[{Pt(phy)_2}{Ag(acetone)}]_n[ClO_4]_n$ (phyy = the anion of 2-phenylpyridine), both of which had a sequence of Pt and Ag and were connected by a Pt \rightarrow Ag

dative bond.⁶⁰ In sharp contrast, many research work has been investigated by appropriate multidentate ligands containing different elements as coordination sites for supporting two different kinds of metals (category 2). Pyridonato ligand and its derivatives have been applied to form a heterotrinuclear Pt₂Cu complex, *trans*-[(NH₃)₂Pt(C₅H₄NO)₂Cu(C₅H₄NO)₂Pt(NH₃)₂]²⁺ (**16**) (Chart 7),⁶¹ along with some related trinuclear Pt₂M complexes.⁶² By using $[CH_2P(S)Ph_2]^-$ (mtp), a linear trinuclear complex, $[Au_2Pt(mtp)_4]$ (**17**), was formed. Chemical oxidation of **17** produced a chlorinated complex, $[Au_2PtCl_2(mtp)_4]$ (**18**) (eq 3).⁶³ A similar heterotrinuclear complex $[Au_2Pb(mtp)_4]$ was also reported.⁶⁴

Balch and his co-workers used a tridentate ligand, bis-(diphenylphosphinomethyl)phenylarsine (bdppa), forming macrocycles **19** comprised of two metal ions in their ring system, and then added various metal ions to give heterotrinuclear M₂M'-type complexes **20** (eq 4), where M₂M' = Au₂Rh (d¹⁰d⁸d¹⁰), Au₂Ir (d¹⁰d⁸d¹⁰), Rh₂Au (d⁸d¹⁰d⁸), Ir₂Au (d⁸d¹⁰d⁸), Ir₂Ag (d⁸d¹⁰d⁸), and so on,⁶⁵ where closed-shell interaction is a key attracting force.

Concerning the strategy depicted in Scheme 1, synthetic studies of linear heteroleptic complexes bearing multiplybonded dinuclear units have not been well-developed yet. By using di(2-pyridyl)formamidinate (dpyf), heteronuclear $[Mo_2Co(dpyf)_4][CoCl_4]$ (21) was obtained (Chart 8),⁶⁶ and the use of the anion of 2,6-di(phenylimino)piperidine (dPhip) resulted in the formation of a tetranuclear complex $[M_2Cu_2-(dPhip)_4(CH_3CN)][CuCl_2]_2$ (22: M = Cr and Mo), in which the Cu atoms have only weak interactions with the M atoms.³² We have focused our attention on synthesizing heterometallic

Figure 1. Strategy to synthesize a linear tetranuclear complex, metalla-2-butyne, as decreasing bond order of multiple bond of M₂ and forming new M–M' single bonds.

tetrametal complexes with the multiply-bonded unit in an array and elucidating their fundamental chemical properties. We have thus chosen a tridentate ligand. Hpvphos (6-diphenvlphosphino-2-pyridone), because this has unique coordinating sites comprised of three elements, i.e., phosphorus, nitrogen, and oxygen, in almost linear fashion. The most attractive aspect of our synthetic strategy is illustrated in the reaction outlined schematically in Figure 1, where the addition of two unpaired transition metals M' to the multiply-bonded M₂ moiety generated new tetrametal compounds with decrease of bond-multiplicity at the central M2 and the formation of M-M' bonds. This account discloses unique tetranuclear complexes bearing a skeleton of M'-M-M-M', where M are molybdenum and chromium and M' are group 9 and 10 metals, by using tridentate pyphos (6-diphenylphosphino-2pyridonato) ligand.

2. Synthesis of Dinuclear Complexes Supported by pyphos Ligands

Based on the soft-hard combination of elements of the pyphos ligand with metals, the pyridone served as a supporting ligand of multiply-bonded dinuclear moieties, while the phosphine favorably coordinated to late transition metals, leading to heterotetrametal complexes (Figure 1). Furthermore, the P-N bridge has a suitable distance to support the single bond between transition metals, and the N-O bridge is best fit to a shorter multiple bond such as a quadruple bond in the dinuclear complexes of group 6 metals. In fact, the N-O coordination of mhp ligand (mhp = the anion of 2-hydroxy-6-methylpyridine) was utilized for supporting quadruply-bonded dinuclear complexes of chromium, molvbdenum, and tungsten.⁶⁷⁻⁶⁹ A typical N-P bridging ligand, 2-(diphenylphosphino)pyridine, coordinates to later transition metal atoms such as rhodium, palladium, and platinum to form dinuclear complexes with rather long metal-to-metal distances.70

At first, we prepared the dinuclear molybdenum complex 23 by treating $Mo_2(OAc)_4$ with the sodium salt of the pyphos ligand. Complex 23 has four pyphos ligands for supporting a quadruple Mo–Mo bond and two axial positions are suitable for the coordination of two soft, late transition metals (eq 5).

Similarly, reaction of $[Re_2Cl_8]^{2-}$ with an excess amount of Hpyphos in refluxing acetonitrile solution afforded $[Re_2Cl_4(py-phos)_2]$ (24) (Chart 9), whose Re–Re bond was determined by X-ray analysis to be a quadruple bond.⁷¹

In contrast, treatment of pyphos ligand with palladium and platinum precursors resulted in the formation of two dinuclear complexes of palladium(I) $[Pd_2(Hpyphos)_2(pyphos)_2]$ (25), which has a Pd–Pd single bond surrounded by two pyphos ligands and two Hpyphos ligands, and platinum(II), $[Pt_2(pyphos)_4]$ (26), which has no metal–metal bond (Chart 10).⁷² Our tridentate ligand mainly coordinated by its phosphorus moiety to a ruthenium(II) center.⁷³

Figure 2. Synthetic strategies for tetrametal cluster with a new triple bond.

3. Synthesis and Chemical Properties of Tetranuclear M–Mo–Mo–M Complexes

Using the complex **23** as a starting material, we prepared two types of tetrametal complexes Mo_2M_2 (M = Pt and Pd) and Mo_2M_2 (M = Ir and Rh). For group 10 metals, reduction of M^{II} to M^I afforded fully metal–metal bonded tetrametal complexes, while oxidation of group 9 metals from M^I to M^{II} resulted in the formation of the corresponding tetrametal complexes as schematically described in Figure 2. Of interest, both products have the triply-bonded Mo₂ core of $(\pi^2 \delta)$ component, being in sharp contrast to $(\sigma \pi^2)$ component of the carbon–carbon triple bond.

3.1 Mo_2M_2 (M = Pt and Pd) Complexes. Linearly aligned tetrametal complexes $[Mo_2Pt_2(pyphos)_4X_2]$ (29) (a: X = Cl, b: X = Br, and c: X = I) and $[Mo_2Pd_2(pyphos)_4X_2]$ (30) (a: X = Cl, **b**: X = Br, and **c**: X = I) have fully metal-to-metal bonded fragments of M-Mo \equiv Mo-M (M = Pt and Pd) supported by four pyphos ligands (eq 6).74,75 As the first step of preparing 29 and 30, the corresponding M^{II} tetranuclear complexes, $[Mo_2M_2(pyphos)_4X_4]$ (M = Pt (27), Pd (28); a: X = Cl, **b**: X = Br, and **c**: X = I), were prepared. These complexes 27 and 28 have two d⁸ group 10 metals in the line of the axial vector of the Mo-Mo unit; however, there were no bonding interaction of two metal ions with the quadruply-bonded Mo2 and the square planes of two group 10 ions were perpendicular to the vector of the Mo₂ core. Chemical, thermal, or irradiative reduction of 27 and 28 afforded the corresponding complexes 29 and 30, in which each metal ion interacts with a molybdenum atom

Figure 3. Schematically equation for reductive formation of a Pd–Mo=Mo–Pd complex 30b from 28b.

to significantly elongate the Mo–Mo distance and the molybdenum atom occupies one corner of the square planer of each metal ions (Figure 3). Entirely metal-to-metal bonded tetrametal complexes with longer conjugated systems show thirdorder nonlinear optical properties.^{76,77} Such reductive transformation was not observed for trinuclear [Mo₂Pt(OCOR)₂-(pyphos)₂X₂].⁷⁸

We tried two approaches for assembling tetrametal units by alkyne coupling and coordination polymerization. We introduced alkyne groups at both of the axial positions of a linear Mo₂Pt₂ fragment: an acetylide complex, [Mo₂Pt₂(C=CSiMe₃)₂-(pyphos)₄] (**31**), was prepared by treating [Mo₂Pt₂Cl₂(pyphos)₄] (29a) with two equivalents of lithium trimethylsilylacetylide (eq 7).⁷⁹ Desilylation followed by spontaneous oxidation coupling gave solid, which was assumed to be a poly(yne) polymer containing a Mo₂Pt₂ moiety in its backbone, though its characterization was hampered by its low solubility.⁷⁹ Recently, Ren reported that bis(ferrocenylethynyl) dinuclear complexes containing a Ru₂ unit showed significant electronic couplings of ferrocenyl moieties through the Ru₂ unit.⁸⁰ Reaction of the lithium salt of 1-ferrocenylacetylene with [Co₃(dpa)₄(NCCH₃)₂][PF₆]₂ afforded the bis-ferrocenylacetylide derivative bearing a Co₃(dpa)₄ fragment,⁸¹ and its triruthenium derivative also was reported.82

Figure 4. Crystal stucture of $[Mo_2Pd_2(pyphos)_4-(NCCH_3)_2]^{2+}$ (32).

The second approach was the coordination polymerization of a dicationic complex, $[Mo_2Pd_2(pyphos)_4(NCCH_3)_2]^{2+}$ (**32**), whose crystal structure is depicted in Figure 4, with a bidentate ligand, pyrazine (=pyz), to give $[Mo_2Pd_2(pyphos)_4-(pyz)]_n[BF_4]_{2n}$ (**33**) (eq 8).⁷⁹

Scheme 2. Some reactions of [Mo₂Pd₂(pyphos)₄] (34).

It was to our surprise that coordinatively unsaturated Pd⁰ tetrametal complex, [Mo₂Pd₂(pyphos)₄] (34), could be obtained by treating $[Mo_2Pd_2(pyphos)_4X_2]$ (30) with appropriate alkylating reagents, in sharp contrast to the successful isolation of the alkynyl derivative. Alternatively, complex 34 was obtained in high yield by the reaction of $[Mo_2(pyphos)_4]$ (23) with a Pd^0 source such as $[Pd(dba)_2]$ (dba = dibenzylideneacetone).⁸³ Once isolated, such coordinatively unsaturated Pd⁰ complex was found to be rather stable due to the presence of $Pd^0 \rightarrow Mo^{II}$ dative bonds. Since there were two zero-valent palladium atoms at both axial positions of a quadruply-bonded Mo₂ core of **34**, some typical reactivities due to the Pd⁰ species were observed. The reaction of 34 with various π -ligands (L) such as olefins, alkyne, isocyanides, carbon monoxide, and phosphine afforded the corresponding adducts, [Mo₂Pd₂(L)₂- $(pyphos)_4$ (35) (a: L = acrylonitrile, b: L = fumaronitrile, c: L = tetracyanoethylene (=tcne), **d**: L = diisopropyl fumarate, e: L = diethyl fumarate, f: L = dimethyl fumarate, g: L =dimethyl maleate, h: L = 2,6-xylyl isocyanide, i: L = tertbutyl isocyanide, j: L = dimethyl acetylenedicarboxylate, **k**: L = 1,4-benzoquinone, **l**: L = 1,4-naphthoquinone, **m**: L =carbon monooxide, and \mathbf{n} : L = triphenylphosphine) (Scheme 2 and Figure 5).^{83,84} Similar Pt⁰ complexes coordinated by phosphine and phosphite have been obtained.85

Figure 5. Crystal structure of [Mo₂Pd₂(pyphos)₄(tcne)₂] (**35c**).

We examined oxidative addition reactions of 34.83,84 Disulfides and benzoyl peroxide added in a 1,4-fashion to the Pd^0 centers of 34 to give the corresponding Pd^I complexes $[Mo_2Pd_2(pyphos)_4(SAr)_2]$ (36: Ar = C₆H₅, 4-Me₃CC₆H₄, 4- MeC_6H_4 , and $4-NO_2C_6H_4$) and $[Mo_2Pd_2(OCOPh)_2(pyphos)_4]$ (37), respectively (Scheme 2). The reactions of alkyl and aryl halides to 34 gave rise to two different reaction patterns: excess amounts of benzyl halides BnX (X = Cl, Br, and I), PhCl, and PhBr. and 2 equiv of PhI reacted with **34** to give Pd^I complexes $[Mo_2Pd_2(pyphos)_4X_2]$ (30). The most notable reactivity was that the Pd⁰ atom surrounded by two phosphine atoms and one molybdenum exhibited unexpected high reactivity toward CH₂Cl₂, resulting in the isolation of double oxidative addition product of Pd^{II} , $[Mo_2{PdCl(CH_2Cl)}_2(pyphos)_4]$ (38) (Scheme 2 and Figure 6), in contrast to oxidative reaction of a dinuclear Pd⁰ complex, $[Pd_2(\mu\text{-dppm})_3]$ [dppm = bis(diphenylphosphino)methane], with CH2Cl2 resulted in a A-shape dinuclear Pd^{II} product having a bridged methylene group.⁸⁶ The reactions of 34 with excess amounts of CH₃I and PhI also afforded similar Pd^{II} complexes, $[Mo_2{Pd(CH_3)I}_2(pyphos)_4]$ (39) and $[Mo_2{Pd(Ph)I}_2(pyphos)_4]$ (40), respectively (Schemes 2 and 3).

Scheme 3. Reactions of 34 with alkyl and aryl halides.

Figure 6. Crystal structure of [Mo₂{PdCl(CH₂Cl)}₂-(pyphos)₄] (**38**).

It was still difficult to explain such unique reaction modes with oxidants; however we were able to measure the electrochemical characteristics of 34. Cyclic voltammetry of 34 in acetonitrile and THF displayed two reversible waves at -490 and -650 mV vs. Ag/Ag⁺ ($\Delta E_{1/2} = 160 \text{ mV}$) in acetonitrile and -200 and -415 mV vs. Ag/Ag⁺ ($\Delta E_{1/2} = 215 \text{ mV}$) in THF, the electrochemical properties depending on the solvent due to the coordination of solvent molecules to the Pd^I species during oxidation. Thus, it was reasonably assumed that the first one-electron oxidation of 34 gave a mixed-valence monocationic species [34]⁺, where two palladium atoms electrochemically communicated through a Mo2 unit, and the second one-electron oxidation resulted in the formation of $[34]^{2+}$, i.e., complex 32 in acetonitrile (Scheme 4). Chemical oxidation of 34 with 2 equiv of [Fe(Cp)₂][BF₄] in other donor molecules afforded dicationic Pd^{I} complexes $[Mo_2Pd_2(L')_2-$ $(pyphos)_4$ [BF₄]₂ [L' = acetonitrile (32), dimethyl sulfoxide, THF, benzonitrile, p-methoxybenzonitrile, p-trifluoromethylbenzonitrile, pyridine, and p-(dimethylamino)pyridine], suggesting that there was an attractive bonding interaction between a closed-shell d¹⁰ Pd⁰ with Mo₂ core. Such solvent effect is consistent with the known evidence that the metal-metal bonding nature of paddle-wheel-type dinuclear complexes are sensitive to axial ligands.⁸⁷ Chemical oxidation of Pt⁰ complexes, $[Mo_2Pt_2(PR_3)_2(pyphos)_4]$, also proceeded in a stepwise manner.85 Referring to such bonding interaction, it should be pointed out that there are d¹⁰ closed shell dinuclear palladium complexes, $[Pd_2(\mu-dppm)_3]$,^{88,89} $[Pd_2(\mu-dmpm)_3]$ $[dmpm = bis(dimethylphosphino)methane],^{90}$ [Pd₂(µ-MeN- $\{P(OPh)_2\}_2)_3$,⁹¹ $[Pd_2(\mu-dafo)\{1,4-C_6H_4(=O)_2\}_2]$ (dafo = 4,5diazafluorene-9-one),⁹² and $[Pd_2{\mu-CH_2(PR_2)_2}]$ (R = ^{*i*}Pr and c-C₆H₁₁),^{93,94} which have been reported to have unique attractive bonding interaction between two Pd⁰ atoms through d-p mixed σ -bonding orbitals.

3.2 Mo₂M₂ (M = Ir and Rh) Complexes. Other linear hetero tetrametallic Mo₂M₂ (M = Ir^I and Rh^I) complexes were prepared and their unique oxidative reactions to form metalmetal bonding in metal arrays were studied. Reaction of [Mo₂(pyphos)₄] (**34**) with [M₂(CO)₄Cl₂] (M = Ir and Rh) gave linear tetranuclear complexes of the formula, [Mo₂M₂(CO)₂-Cl₂(pyphos)₄] (**41**: M = Ir and **42**: M = Rh), which were further treated by 'BuNC and XyINC to yield the corresponding dicationic complexes [Mo₂M₂(pyphos)₄('BuNC)₄]Cl₂ (**43a**: M = Ir and **44a**: M = Rh) and [Mo₂Ir₂(pyphos)₄(XyINC)₄]Cl₂ (**43b**: M = Ir and **44b**: M = Rh) with the release of CO (eq 9). Crystallographic studies of Mo₂M₂ complexes **41–44** confirmed that there was no direct σ bonding interaction between M^I atoms and the Mo₂ core.^{95,96}

mixed valence intermediate

Figure 7. Schematically equation for oxidative formation of a Ir-Mo=Mo-Ir complex 45a from 43a.

Oxidation of these complexes by either two equiv of $[Fe(Cp)_2][PF_6]$ or excess I₂ afforded the corresponding M^{II} complexes, $[Mo_2M_2(L)_4(pyphos)_4X_2]^{2+}$ (45: M = Ir and 46: M = Rh; **a**: L = 'BuNC and **b**: L = XyINC; X = Cl, Br, and I) (eq 10), in which the bond order of the Mo–Mo moiety decreased to three as shown in Figure 7. It is obvious that the square plane around the M^I (M = Ir and Rh) fragments supported by $[Mo_2(pyphos)_4]$ system is perpendicular to the Mo–Mo vector, and hence the contribution of the direct σ -

bonding interaction between the two M^I atoms and the Mo_2 cores in these tetranuclear complexes is neglected, though its distance was not as long as found for the Pd^{II} complexes $[Mo_2Pd_2(pyphos)_4X_4]$ (28). Chemical oxidation of both group 9 metals M^I (M = Ir and Rh) to M^{II} spontaneously proceeded with the formation of M–Mo bonds and decreased the bond order of the Mo_2 moiety. The resulting M^{II} ions favorably adopted octahedral geometry, in which one corner of each M^{II} ion was occupied by a Mo atom.

Some alkyl halides oxidatively reacted with the Ir^I complexes 43a and 43b to give unique 1,4-oxidative addition products, while the corresponding rhodium complexes 44a and 44b did not react under the same conditions. Reaction of the Ir^I complexes 43a and 43b with CH₂I afforded unique "1.4oxidative addition" products of methyl iodide, [Mo₂Ir₂(CH₃)-(^tBuNC)₄I(pyphos)₄]Cl₂ (47a) and [Mo₂Ir₂(CH₃)(XylNC)₄I-(pyphos)₄]Cl₂ (47b), respectively (eq 11). It was of interest that there were no homo-substituted Ir^{II} products, such as diiodo and dimethyl complexes. Similar 1,4-oxidative addition product $[Mo_2Ir_2(CH_2CI)(^{t}BuNC)_4CI(pyphos)_4]Cl_2$ (48) was obtained in the reaction of dichloromethane with 43a. Kinetic analysis of the reaction of 43a with CH3I suggested that the 1,4-oxidative addition to the Ir^I complex proceeded by a S_N2 reaction mechanism. Similarly, oxidative addition of diaryl disulfides afforded bis(thiolato) Ir^{II} complexes [Mo₂Ir₂-(^tBuNC)₄(pyphos)₄(SAr)₂]Cl₂, in accord with the 1,4-oxidative addition to Pd⁰ complex.

Cyclic voltammogram of the Mo_2Ir_2 complex **45a** measured in TBACl/MeCN solution at room temperature with a positively-directed sweep showed a reversible, two-electron wave at -970 mV (vs. Fc/Fc⁺), which was determined to be an Ir^IIr^I/Ir^{II} r^{II} redox. Thus, the oxidation of **45a** was a more thermodynamically favorable process in comparison with that of the corresponding rhodium complex **46a** (-660 mV vs. Fc/ Fc⁺), which might explain the difference in the oxidative addition reactions between iridium **45a** and rhodium tetrametal complexes **46a**.

3.3 Raman Spectra of M-Mo-Mo-M (M = Pt, Pd, Ir, and **Rh)** Complexes. For discussion of the bonding nature of the linear skeleton comprised of M-Mo-Mo-M (M = Pt and Pd), single-crystal X-ray analysis is the best method to determine bonding distances. On the other hand, since we could not obtain crystals of all of them, Raman spectral data of ν (Mo-Mo) frequency served as a highly useful spectroscopic probe of elucidating the bonding nature. Figure 8 shows the plot of ν (Mo–Mo) frequency and the corresponding Mo–Mo distance determined by X-ray analyses. The frequency assigned to the quadruple Mo–Mo bond of M^{II} complexes and [Mo₂(pyphos)₄] (23) were observed at 403–404 and 394 cm^{-1} , respectively, while the M^I complexes displayed a frequency assignable to ν (Mo–Mo) at 381–387 cm⁻¹, a lower wavenumber, being consistent with the longer Mo-Mo triple bond. The most attractive discussion concerns the Pd⁰ and Pt⁰ complexes, whose Raman spectral data are diverged in the range of 389-404 cm⁻¹, suggesting that the dative bond, $M^0 \rightarrow Mo^{II}$ was strong enough to elongate the Mo-Mo bond.

Among olefin-coordinated Pd^0 complexes $[Mo_2Pd_2(L)_2-(pyphos)_4]$ (**35**) (**a**: L = acrylonitrile, **b**: L = fumaronitrile, and **c**: L = tetracyanoethylene), the wavenumber of ν (Mo–Mo) increased with an increase in the number of CN groups on the substrates, in the order of **35a** {389 cm⁻¹, comparable to that of the triply-bonded Mo₂ complexes, $[Mo_2Pd_2(pyphos)_4X_2]$ (**30a**–

Figure 8. Plots of ν(Mo–Mo) (cm⁻¹) vs. bond distance of Mo–Mo (Å) for [Mo₂(pyphos)₄] (23) and linear tetrametal complexes of M–Mo–Mo–M arrays (M = Pt, Pd, Ir, and Rh) including Pd⁰ complex, [Mo₂Pd₂(pyphos)₄] (34).

30c) $(386-387 \text{ cm}^{-1})$ < **35b** (399 cm^{-1}) < **35c** $\{404 \text{ cm}^{-1},$ comparable to that of the quadruply-bonded Mo₂ complexes such as 23 (394 cm^{-1}) and Pd^{II} complexes. [Mo₂Pd₂- $(pyphos)_{4}X_{4}$ (28a–28c) (403 cm⁻¹), with no Mo–Pd bond}.⁸⁴ Thus, the increase in the number of electron-withdrawing substituents on the alkenes, acting as stronger π -acceptors, weakened the interaction between Pd⁰ and Mo^{II}, as a consequence of the deformation of the palladium atoms from the axial vector of the Mo₂ core. Based on these argument, it is assumed that Pd^0 compounds 34 (389 cm⁻¹) and 35a $(389 \text{ cm}^{-1})^{84}$ and Pt⁰ complexes $(382-388 \text{ cm}^{-1})^{85}$ were in the range observed for M^I complexes, suggesting that the dative bond between M⁰ and Mo^{II} is a rather strong bonding interaction. Compared with the group 10 metal series, plots for Ir^I and Rh^I complexes are close to those for Ir^{II} and Rh^{II} complexes, strongly suggesting that dative bonding interaction between M^I and Mo^{II} atoms are significantly contributed. One rational explanation for such interaction between M^I with Mo₂ core is ascribed to the contribution of dative bonding between M^I and Mo^{II}, the same as the bonding interaction between $M^0 \rightarrow Mo^{II}$ found for group 10 metals. Thus, the bonding nature of the tetrametal cluster systems could be evaluated based on data taken by Raman spectroscopy.

3.4 $\operatorname{Cr}_2 M_2$ (M = Pt and Pd) Complexes. Dichromium complex, [Cr₂(pyphos)₄] (49) (Chart 11), analog to dimolybdenum complex 23, was prepared in a similar manner applied to the synthesis of 23.^{97–99} The quadruply bonded Cr₂ moiety is known to be quite sensitive to the axially coordinating organic donor ligands,¹⁰⁰ however, there was no precedent example of axial coordination of metal ions. As a first trial, we started studying the influence of various d⁸ Pt^{II} ions placed at axial positions of the Cr₂ moiety. Three Pt^{II} tetranuclear complexes, [Cr₂Pt₂Cl₄(pyphos)₄] (50), [Cr₂Pt₂Cl₂Me₂(pyphos)₄] (51), and

Chart 12.

 $[Cr_2Pt_2Me_4(pyphos)_4]$ (52) were prepared by the reaction of 49 with platinum(II) units such as PtCl₂, PtMeCl, and PtMe₂, respectively. Magnetic measurements of 50–52 along with the crystallographic study for the complex 52 revealed that the bond distances of the quadruply bonded Cr–Cr depended on the kind of substituents (Cl or Me) on the Pt atoms. Noteworthy was that PtMe₂ datively interacted with Cr₂ core to significantly elongate the Cr–Cr distance (2.389(9)Å). Such donating property of dialkyl- or diarylplatinum was already used for constructing heterometal clusters.⁶⁰

We found that reduction of $[Cr_2Pt_2Cl_4(pyphos)_4]$ (50) with NaBHEt₃ afforded $[Cr_2Pt_2Cl_2(pyphos)_4]$ (53) (Chart 12), while a tetranuclear Pt⁰ complex $[Cr_2Pt_2(PPh_3)_2(pyphos)_4]$ (54) was prepared by the reaction of complex 49 with $[Pt(PPh_3)_4]$ in THF, in consistent with the observed complexation of the molybdenum analogs. Complexes 53 and 54 were not isolated and accordingly characterized by only spectroscopic methods.

4. Conclusion

As briefly summarized in the introduction, over the last decades, several remarkable achievements in this attractive research field have been obtained and recently the research has been oriented toward molecular-based nanotechnology including molecular devices. We started this work in the early 90s. Polymerization of multiple bonded dinuclear metal complexes was considered as an ideal reaction for constructing such onedimensional strings, however it was obviously quite difficult. As a consequence, our approaches have been directed to much shorter tetrametal systems, where we could find interesting chemistry for linearly aligned tetrametal complexes including multiple metal-metal bond in their skeletons. The addition of two metal units with unpaired orbitals to the quadruply-bonded Mo₂ core resulted in the formation of fully metal-to-metal bonded tetrametal fragments, M-Mo≡Mo-M, which are metalla-2-butyne. Most attractive feature of these complexes was the new triple bond at Mo–Mo moiety with a component of $(\pi^2 \delta)$. The author thus hopes that this account will become a hint for new ideas in this research field.

The author expresses his profound gratitude to Professors A. Nakamura, K. Tani, K. Yamaguchi, S. Takeda, and W. Mori for their discussions and suggestions, and his collaborators listed in the references, in particular Drs. H. Nakano, M. Tanaka, T. Rüffer, M. Ohashi, and A. Shima for their considerable experimental contributions on this work.

References

1 *Multiple Bonds Between Metal Atoms*, 3rd ed., ed. by F. A. Cotton, C. A. Murio, R. A. Walton, Springer Science and Business Media, Oxford, **2005**.

2 J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruña, P. L. McEuen, D. C. Ralph, *Nature* **2002**, *417*, 722.

3 W. Liang, M. P. Shores, M. Bockrath, J. R. Long, H. Park, *Nature* **2002**, *417*, 725.

4 D.-H. Chae, J. F. Berry, S. Jung, F. A. Cotton, C. A. Murillo, Z. Yao, *Nano Lett.* **2006**, *6*, 165.

5 I.-W. P. Chen, M.-D. Fu, W.-H. Tseng, J.-Y. Yu, S.-H. Wu, C.-J. Ku, C.-h. Chen, S.-M. Peng, *Angew. Chem., Int. Ed.* **2006**, *45*, 5814.

6 J.-D. Chen, F. A. Cotton, J. Am. Chem. Soc. 1991, 113, 5857.

7 F. A. Cotton, E. V. Dikarev, J. Cluster Sci. 1995, 6, 411.

8 R. N. McGinnis, T. R. Ryan, R. E. McCarley, J. Am. Chem. Soc. 1978, 100, 7900.

9 T. R. Ryan, R. E. McCarley, Inorg. Chem. 1982, 21, 2072.

10 F. A. Cotton, G. L. Powell, Inorg. Chem. 1983, 22, 871.

11 R. T. Carlin, R. E. McCarley, Inorg. Chem. 1989, 28, 3432.

12 F. A. Cotton, B. Hong, M. Shang, *Inorg. Chem.* **1993**, *32*, 4876.

13 M. H. Chisholm, D. L. Clark, K. Folting, J. C. Huffman, Angew. Chem., Int. Ed. Engl. 1986, 25, 1014.

14 K. Krogmann, Angew. Chem., Int. Ed. Engl. 1969, 8, 35.

15 M.-N. Collomb-Dunand-Sauthier, A. Deronzier, R. Ziessel, J. Chem. Soc., Chem. Commun. **1994**, 189.

16 M.-N. Collomb-Dunand-Sauthier, A. Deronzier, R. Ziessel, *Inorg. Chem.* **1994**, *33*, 2961.

17 G. M. Finniss, E. Canadell, C. Campana, K. R. Dunbar, Angew. Chem., Int. Ed. Engl. 1996, 35, 2772; M. E. Prater, L. E. Pence, R. Clérac, G. M. Finniss, C. Campana, P. Auban-Senzier, D. Jérome, E. Canadell, K. R. Dunbar, J. Am. Chem. Soc. 1999, 121, 8005.

18 S.-S. Chern, G.-H. Lee, S.-M. Peng, J. Chem. Soc., Chem. Commun. 1994, 1645.

 J. K. Barton, H. N. Rabinowitz, D. J. Szalda, S. J. Lippard, J. Am. Chem. Soc. 1977, 99, 2827; S. J. Lippard, Science 1982, 218, 1075; L. S. Hollis, S. J. Lippard, J. Am. Chem. Soc. 1983, 105, 3494; L. S. Hollis, S. J. Lippard, Inorg. Chem. 1983, 22, 2600; T. V. O'Halloran, M. M. Robert, S. J. Lippard, Inorg. Chem. 1986, 25, 957.

K. Matsumoto, K. Fuwa, J. Am. Chem. Soc. 1982, 104,
 897; K. Matsumoto, H. Takahashi, K. Fuwa, Inorg. Chem. 1983,
 22, 4086; K. Sakai, K. Matsumoto, J. Am. Chem. Soc. 1989, 111,
 3074; K. Matsumoto, K. Sakai, K. Nishio, Y. Tokisue, R. Ito, T.
 Nishide, Y. Shichi, J. Am. Chem. Soc. 1992, 114, 8110; K. Sakai,
 M. Takeshita, Y. Tanaka, T. Ue, M. Yanagisawa, M. Kosaka, T.

Tsubomura, M. Ato, T. Nakano, *J. Am. Chem. Soc.* **1998**, *120*, 11353; K. Sakai, Y. Tanaka, Y. Tsuchiya, K. Hirata, T. Tsubomura, S. Iijima, A. Bhattacharjee, *J. Am. Chem. Soc.* **1998**, *120*, 8366; K. Sakai, E. Ishigami, Y. Konno, T. Kajiwara, T. Ito, *J. Am. Chem. Soc.* **2002**, *124*, 12088.

21 G. Trötscher, W. Micklitz, H. Schölhorn, U. Thewalt, B. Lippert, *Inorg. Chem.* **1990**, *29*, 2541.

22 A. L. Balch, M. M. Olmstead, J. Am. Chem. Soc. 1979, 101, 3128.

23 C. Tejel, M. A. Ciriano, J. A. López, F. J. Lahoz, L. A. Oro, Angew. Chem., Int. Ed. Engl. **1998**, 37, 1542; C. Tejel, M. A. Ciriano, L. A. Oro, Chem.—Eur. J. **1999**, 5, 1131; C. Tejel, M. A. Ciriano, B. Eva Villarroya, R. Gelpi, J. A. López, F. J. Lahoz, L. A. Oro, Angew. Chem., Int. Ed. **2001**, 40, 4084; C. Tejel, M. A. Ciriano, B. Eva Villarroya, J. A. López, F. J. Lahoz, L. A. Oro, Angew. Chem., Int. Ed. **2003**, 42, 529.

24 A. L. Balch, J. R. Boehm, H. Hope, M. M. Olmstead, J. Am. Chem. Soc. 1976, 98, 7431.

25 R. H. Cayton, M. H. Chisholm, J. C. Huffman, E. B. Lobkovsky, J. Am. Chem. Soc. **1991**, 113, 8709; D. V. Baxter, R. H. Cayton, M. H. Chisholm, J. C. Huffman, E. F. Putilina, S. L. Tagg, J. L. Wesemann, J. W. Zwanziger, F. D. Darrington, J. Am. Chem. Soc. **1994**, 116, 4551; M. H. Chisholm, Acc. Chem. Res. **2000**, 33, 53; M. H. Chisholm, N. J. Patmore, Acc. Chem. Res. **2007**, 40, 19.

26 A. L. Balch, Pure Appl. Chem. 1988, 60, 555; A. L. Balch, Prog. Inorg. Chem. 1994, 41, 239.

27 S. Aduldecha, B. Hathaway, J. Chem. Soc., Dalton Trans. 1991, 993; L.-P. Wu, P. Field, T. Morrissey, C. Murphy, P. Nagle, B. Hathaway, C. Simmons, P. Thornton, J. Chem. Soc., Dalton Trans. 1990, 3835.

28 G. J. Pyrka, M. El-Mekki, A. A. Pinkerton, J. Chem. Soc., Chem. Commun. 1991, 84.

29 M.-S. Tsai, S.-M. Peng, J. Chem. Soc., Chem. Commun.
1991, 514; E.-C. Yang, M.-C. Cheng, M.-S. Tsai, S.-M. Peng, J. Chem. Soc., Chem. Commun. 1994, 2377; J.-T. Sheu, C.-C. Lin, I. Chao, C.-C. Wang, S.-M. Peng, Chem. Commun. 1996, 315; W.-H. Chan, S.-M. Peng, C.-M. Che, J. Chem. Soc., Dalton Trans. 1998, 2867; H. Li, G.-H. Lee, S.-M. Peng, Inorg. Chem. Commun. 2003, 6, 1; T.-B. Tsao, G.-H. Lee, C.-Y. Yeh, S.-M. Peng, Dalton Trans.
2003, 1465; H. Li, G.-H. Lee, S.-M. Peng, J. Mol. Struct. 2004, 707, 179; M.-Y. Huang, C.-Y. Yeh, G.-H. Lee, S.-M. Peng, Dalton Trans.
2006, 5683; R. H. Ismayilov, W.-Z. Wang, G.-H. Lee, R.-R. Wang, I. P.-C. Liu, C.-Y. Yeh, S.-M. Peng, Dalton Trans. 2007, 2898; C.-K. Kuo, I. P.-C. Liu, C.-Y. Yeh, C.-H. Chou, T.-B. Tsao, G.-H. Lee, S.-M. Peng, Dalton Trans. 2007,

30 M.-M. Rohmer, M. Bénard, J. Am. Chem. Soc. 1998, 120, 9372.

31 F. A. Cotton, L. M. Daniels, C. A. Murillo, I. Pascual, J. Am. Chem. Soc. 1997, 119, 10223; F. A. Cotton, L. M. Daniels, G. T. Jordan, IV, C. A. Murillo, J. Am. Chem. Soc. 1997, 119, 10377; F. A. Cotton, L. M. Daniels, C. A. Murillo, Chem. Commun. 1998, 39; F. A. Cotton, L. M. Daniels, C. A. Murillo, X. Wang, C. A. Murillo, Chem. Commun. 1999, 2461; R. Clérac, F. A. Cotton, K. R. Dunbar, C. A. Murillo, I. Pascual, X. Wang, Inorg. Chem. 1999, 38, 2655; R. Clérac, F. A. Cotton, L. M. Daniels, K. R. Dunbar, C. A. Murillo, X. Wang, Inorg. Chem. 2001, 40, 1256; R. Clérac, F. A. Cotton, L. M. Daniels, K. R. Dunbar, C. A. Murillo, H.-C. Zhou, Inorg. Chem. 2000, 39, 3414; R. Clérac, F. A. Cotton, L. M. Daniels, K. R. Dunbar, C. A. Murillo, I. Pascual, Inorg. Chem. 2000, 39, 748; R. Clérac, F. A. Cotton, L. M. Daniels, K. R. Dunbar, K. Kirschbaum, C. A. Murillo, A. A. Pinkerton, A. J. Schultz, X. Wang, J. Am. Chem. Soc. 2000, 122, 6226; R. Clérac, F. A. Cotton, K. R. Dunbar, T. Lu, C. A. Murillo, X. Wang, Inorg. Chem. 2000, 39, 3065; R. Clérac, F. A. Cotton, S. P. Jefferv, C. A. Murillo, X. Wang, Inorg. Chem. 2001, 40, 1265; R. Clérac, F. A. Cotton, L. M. Daniels, K. R. Dunbar, C. A. Murillo, I. Pascual, Inorg. Chem. 2000, 39, 752; R. Clérac, F. A. Cotton, K. R. Dunbar, T. Lu, C. A. Murillo, X. Wang, J. Am. Chem. Soc. 2000, 122, 2272; J. F. Berry, F. A. Cotton, L. M. Daniels, C. A. Murillo, J. Am. Chem. Soc. 2002, 124, 3212; J. F. Berry, F. A. Cotton, P. Lei, C. A. Murillo, Inorg. Chem. 2003, 42, 377; F. A. Cotton, P. Lei, C. A. Murillo, Inorg. Chim. Acta 2003, 349, 173; F. A. Cotton, P. Lei, C. A. Murillo, Inorg. Chim. Acta 2003, 351, 183; J. F. Berry, F. A. Cotton, L. M. Daniels, C. A. Murillo, X. Wang, Inorg. Chem. 2003, 42, 2418; J. F. Berry, F. A. Cotton, T. Lu, C. A. Murillo, B. K. Roberts, X. Wang, J. Am. Chem. Soc. 2004, 126, 7082; M. Bénard, J. F. Berry, F. A. Cotton, C. Gaudin, X. López, C. A. Murillo, M.-M. Rohmer, Inorg. Chem. 2006, 45, 3932; J. F. Berry, F. A. Cotton, C. A. Murillo, Inorg. Chim. Acta 2004, 357, 3847.

32 F. A. Cotton, L. M. Daniels, P. Lei, C. A. Murillo, X. Wang, *Inorg. Chem.* **2001**, *40*, 2778.

33 X. López, M.-Y. Huang, G.-C. Huang, S.-M. Peng, F.-Y. Li, M. Bénard, M.-M. Rohmer, *Inorg. Chem.* **2006**, *45*, 9075.

34 S.-J. Shieh, C.-C. Chou, G.-H. Lee, C.-C. Wang, S.-M. Peng, Angew. Chem., Int. Ed. Engl. 1997, 36, 56.

35 C.-C. Wang, W.-C. Lo, C.-C. Chou, G.-H. Lee, J.-M. Chen, S.-M. Peng, *Inorg. Chem.* **1998**, *37*, 4059.

36 H.-C. Chang, J.-T. Li, C.-C. Wang, T.-W. Lin, H.-C. Lee, G.-H. Lee, G.-H. Lee, S.-M. Peng, *Eur. J. Inorg. Chem.* **1999**, 1243.

37 C.-Y. Yeh, C.-H. Chou, K.-C. Pan, C.-C. Wang, G.-H. Lee,

Y. O. Su, S.-M. Peng, J. Chem. Soc., Dalton Trans. 2002, 2670.
 38 C.-Y. Yeh, Y.-L. Chiang, G.-H. Lee, S.-M. Peng, Inorg.

Chem. **2002**, *41*, 4096.

39 W.-Z. Wang, R. H. Ismayilov, G.-H. Lee, I. P.-C. Liu, C.-Y. Yeh, S.-M. Peng, *Dalton Trans.* **2007**, 830.

40 C. Yin, G.-C. Huang, C.-K. Kuo, M.-D. Fu, H.-C. Lu, J.-H. Ke, K.-N. Shih, Y.-L. Huang, G.-H. Lee, C.-Y. Yeh, C.-H. Chen,

S.-M. Peng, J. Am. Chem. Soc. 2008, 130, 10090.

41 J. F. Berry, F. A. Cotton, P. Lei, T. Lu, C. A. Murillo, *Inorg. Chem.* **2003**, *42*, 3534.

42 I. P.-C. Liu, M. Bénard, H. Hasanov, I.-W. P. Chen, W.-H. Tseng, M.-D. Fu, M.-M. Rohmer, C.-h. Chen, G.-H. Lee, S.-M. Peng, *Chem.—Eur. J.* **2007**, *13*, 8667.

43 T.-B. Tsao, S.-S. Lo, C.-Y. Yeh, G.-H. Lee, S.-M. Peng, *Polyhedron* **2007**, *26*, 3833.

44 C.-H. Chien, J.-C. Chang, C.-Y. Yeh, G.-H. Lee, J.-M. Fang, S.-M. Peng, *Dalton Trans.* **2006**, 2106.

45 Y.-H. Chen, C.-C. Lee, C.-C. Wang, G.-H. Lee, S.-Y. Lai, F.-Y. Li, C.-Y. Mou, S.-M. Peng, *Chem. Commun.* **1999**, 1667.

46 S.-Y. Lai, T.-W. Lin, Y.-H. Chen, C.-C. Wang, G.-H. Lee, M.-H. Yang, M.-K. Leung, S.-M. Peng, J. Am. Chem. Soc. 1999, 121, 250.

47 H. Hasan, U.-K. Tan, G.-H. Lee, S.-M. Peng, *Inorg. Chem. Commn.* **2007**, *10*, 983.

48 R. H. Ismayilov, W.-Z. Wang, R.-R. Wang, C.-Y. Yeh, G.-H. Lee, S.-M. Peng, *Chem. Commun.* **2007**, 1121.

49 S.-M. Peng, C.-C. Wang, Y.-L. Jang, Y.-H. Chen, F.-Y. Li, C.-Y. Mou, M.-K. Leung, *J. Magn. Magn. Mater.* **2000**, *209*, 80.

50 Y. Yamamoto, T. Tanase, H. Ukaji, M. Hasegawa, T. Igoshi, K. Yoshimura, *J. Organomet. Chem.* **1995**, *498*, C23; T. Tanase, E. Goto, R. A. Begum, M. Hamaguchi, S. Zhan, M. Iida, K. Sakai,

Organometallics 2004, 23, 5975.

51 E. Goto, R. A. Begum, S. Zhan, T. Tanase, K. Tanigaki, K. Sakai, *Angew. Chem., Int. Ed.* **2004**, *43*, 5029.

52 A. L. Balch, E. Y. Fung, M. M. Olmstead, J. Am. Chem. Soc. 1990, 112, 5181.

53 V. M. Miskowski, I. S. Sigal, K. R. Mann, H. B. Gray, S. J. Milder, G. S. Hammond, P. R. Ryason, *J. Am. Chem. Soc.* **1979**, *101*, 4383.

54 I. S. Sigal, K. R. Mann, H. B. Gray, J. Am. Chem. Soc. 1980, 102, 7252.

55 K. R. Mann, M. J. DiPierro, T. P. Gill, J. Am. Chem. Soc. 1980, 102, 3965.

56 T. Zhang, M. Drouin, P. D. Harvey, *Inorg. Chem.* **1999**, *38*, 1305; T. Zhang, M. Drouin, P. D. Harvey, *Inorg. Chem.* **1999**, *38*, 957.

57 T. Murahashi, E. Mochizuki, Y. Kai, H. Kurosawa, J. Am. Chem. Soc. 1999, 121, 10660; T. Murahashi, Y. Higuchi, T. Katoh, H. Kurosawa, J. Am. Chem. Soc. 2002, 124, 14288; T. Murahashi, H. Nakashima, T. Nagai, Y. Mino, T. Okuno, M. Abdul Jalil, H. Kurosawa, J. Am. Chem. Soc. 2006, 128, 4377; T. Murahashi, T. Uemura, H. Kurosawa, J. Am. Chem. Soc. 2003, 125, 8436; T. Murahashi, S. Ogoshi, H. Kurosawa, Chem. Rec. 2003, 3, 101; Y. Tatsumi, T. Naga, H. Nakashima, T. Murahashi, H. Kurosawa, Chem. Commun. 2004, 1430; Y. Tatsumi, T. Murahashi, M. Okada, S. Ogoshi, H. Kurosawa, Chem. Commun. 2008, 477; T. Murahashi, M. Fujimoto, Y. Kawabata, R. Inoue, S. Ogoshi, H. Kurosawa, Angew. Chem., Int. Ed. 2007, 46, 5440; T. Murahashi, M. Fujimoto, M. Oka, Y. Hashimoto, T. Uemura, Y. Tatsumi, Y. Nakao, A. Ikeda, S. Sakaki, H. Kurosawa, Science 2006, 313, 1104; T. Murahashi, N. Kato, T. Uemura, H. Kurosawa, Angew. Chem., Int. Ed. 2007, 46, 3509; T. Murahashi, Y. Hashimoto, K. Chiyoda, M. Fujimoto, T. Uemura, R. Inoue, S. Ogoshi, H. Kurosawa, J. Am. Chem. Soc. 2008, 130, 8586; T. Murahashi, R. Inoue, K. Usui, S. Ogoshi, J. Am. Chem. Soc. 2009, 131, 9888.

58 P. Pyykkö, Chem. Rev. 1997, 97, 597.

59 R. Usón, A. Laguna, M. Laguna, J. Jiménez, P. G. Jones, Angew. Chem., Int. Ed. Engl. **1991**, 30, 198; A. Laguna, M. Laguna, J. Jimenez, F. J. Lahoz, E. Olmos, Organometallics **1994**, 13, 253.

60 T. Yamaguchi, F. Yamazaki, T. Ito, J. Am. Chem. Soc. 2001, 123, 743.

61 A. Schreiber, O. Krizanovic, E. C. Fusch, B. Lippert, F. Lianza, A. Albinati, S. Hill, D. M. L. Goodgame, H. Stratemeier, M. A. Hitchman, *Inorg. Chem.* **1994**, *33*, 6101.

62 D. M. L. Goodgame, R. W. Rollins, B. Lippert, *Polyhedron* **1985**, *4*, 829; D. Neugebauer, B. Lippert, *J. Am. Chem. Soc.* **1982**, *104*, 6596; B. Lippert, U. Thewalt, H. Schöllhorn, D. M. L. Goodgame, R. W. Rollins, *Inorg. Chem.* **1984**, *23*, 2807; B. Lippert, W. Micklitz, O. Renn, G. Trötscher, I. Dieter, G. Frommer, *Pure Appl. Chem.* **1990**, *62*, 1075.

63 H. H. Murray, D. A. Briggs, G. Garzón, R. G. Raptis, L. C. Porter, J. P. Fackler, Jr., *Organometallics* **1987**, *6*, 1992.

64 S. Wang, G. Garzón, C. King, J.-C. Wang, J. P. Fackler, Jr., Inorg. Chem. 1989, 28, 4623.

65 A. L. Balch, J. K. Nagle, M. M. Olmstead, P. E. Reedy, Jr., J. Am. Chem. Soc. **1987**, 109, 4123; A. L. Balch, J. K. Nagle, D. E. Oram, P. E. Reedy, J. Am. Chem. Soc. **1988**, 110, 454; A. L. Balch, M. M. Olmstead, D. E. Oram, P. E. Reedy, Jr., S. H. Reimer, J. Am. Chem. Soc. **1989**, 111, 4021; A. L. Balch, V. J. Catalano, M. M. Olmstead, J. Am. Chem. Soc. **1990**, 112, 2010; A. L. Balch, V. J. Catalano, B. C. Noll, M. M. Olmstead, J. Am. Chem. Soc. **1990**, 112, 7558; A. L. Balch, B. J. Davis, M. M. Olmstead, Inorg. Chem. **1990**, *29*, 3066; A. L. Balch, V. J. Catalano, M. A. Chatfield, J. K. Nagle, M. M. Olmstead, P. E. Reedy, Jr., *J. Am. Chem. Soc.* **1991**, *113*, 1252.

66 R. Clérac, F. A. Cotton, K. R. Dunbar, C. A. Murillo, X. Wang, *Inorg. Chem.* **2001**, *40*, 420.

67 F. A. Cotton, B. E. Hanson, *Inorg. Chem.* 1978, 17, 3237.
68 F. A. Cotton, P. E. Fanwick, R. H. Niswander, J. C. Sekutowski, *J. Am. Chem. Soc.* 1978, 100, 4725.

69 W. Clegg, C. D. Garner, L. Akhter, M. H. Al-Samman, *Inorg. Chem.* **1983**, *22*, 2466.

70 A. L. Balch, Prog. Inorg. Chem. 1994, 41, 239.

71 M. Tanaka, Ph.D. Thesis, Osaka University, Osaka, 1998.

72 K. Mashima, M. Tanaka, K. Tani, H. Nakano, A. Nakamura, *Inorg. Chem.* **1996**, *35*, 5244.

73 K. Mashima, Y. Kaneda, A. Fukumoto, M. Tanaka, K. Tani, H. Nakano, A. Nakamura, *Inorg. Chim. Acta* **1998**, *270*, 459.

74 K. Mashima, H. Nakano, A. Nakamura, J. Am. Chem. Soc. 1993, 115, 11632.

75 K. Mashima, H. Nakano, A. Nakamura, J. Am. Chem. Soc. **1996**, 118, 9083.

76 K. Mashima, M. Tanaka, Y. Kaneda, A. Fukumoto, H. Mizomoto, K. Tani, H. Nakano, A. Nakamura, T. Sakaguchi, K. Kamada, K. Ohta, *Chem. Lett.* **1997**, 411.

77 K. Kamada, K. Ohta, Y. Shimoyama, T. Miyabayashi, K. Mashima, *Opt. Mater.* **2004**, *27*, 573.

78 H. Nakano, A. Nakamura, K. Mashima, *Inorg. Chem.* **1996**, *35*, 4007.

79 H. Nakano, Ph.D. Thesis, Osaka University, Osaka, 1996.

80 G.-L. Xu, M. C. DeRosa, R. J. Crutchley, T. Ren, J. Am. Chem. Soc. 2004, 126, 3728.

81 J. F. Berry, F. A. Cotton, C. A. Murillo, *Organometallics* **2004**, *23*, 2503.

82 C.-K. Kuo, J.-C. Chang, C.-Y. Yeh, G.-H. Lee, C.-C. Wang, S.-M. Peng, *Dalton Trans.* **2005**, 3696.

83 K. Mashima, A. Fukumoto, H. Nakano, Y. Kaneda, K. Tani, A. Nakamura, *J. Am. Chem. Soc.* **1998**, *120*, 12151.

84 K. Mashima, A. Shima, K. Nakao, A. Fukumoto, Y. Kaneda, Y. Kusumi, *Inorg. Chem.* **2009**, *48*, 1879.

85 K. Mashima, Y. Shimoyama, Y. Kusumi, A. Fukumoto, T. Yamagata, M. Ohashi, *Eur. J. Inorg. Chem.* **2007**, 235.

86 A. L. Balch, C. T. Hunt, C.-L. Lee, M. M. Olmstead, J. P. Farr, J. Am. Chem. Soc. 1981, 103, 3764.

87 T. Kawamura, H. Katayama, H. Nishikawa, T. Yamabe, J. Am. Chem. Soc. 1989, 111, 8156; T. Kawamura, M. Maeda, M. Miyamoto, H. Usami, K. Imaeda, M. Ebihara, J. Am. Chem. Soc. 1998, 120, 8136.

88 E. W. Stern, P. K. Maples, *J. Catal.* **1972**, *27*, 134; E. W. Stern, P. K. Maples, *J. Catal.* **1972**, *27*, 120.

89 R. U. Kirss, R. Eisenberg, Inorg. Chem. 1989, 28, 3372.

90 T. Tsubomura, K. Sakai, Coord. Chem. Rev. 1998, 171, 107.

91 M. S. Balakrishna, S. S. Krishnamurthy, R. Murugavel, M. Nethaji, I. I. Mathews, *J. Chem. Soc., Dalton Trans.* **1993**, 477.

92 R. A. Klein, P. Witte, R. van Belzen, J. Fraanje, K. Goubitz, M. Numan, H. Schenk, J. M. Ernsting, C. J. Elsevier, *Eur. J. Inorg. Chem.* **1998**, 319.

93 Y. Pan, J. T. Mague, M. J. Fink, J. Am. Chem. Soc. 1993, 115, 3842.

94 A. Döhring, R. Goddard, G. Hopp, P. W. Jolly, N. Kokel, C. Krüger, *Inorg. Chim. Acta* **1994**, *222*, 179.

95 T. Rüffer, M. Ohashi, A. Shima, H. Mizomoto, Y. Kaneda, K. Mashima, J. Am. Chem. Soc. 2004, 126, 12244.

96 M. Ohashi, A. Shima, T. Rüffer, H. Mizomoto, Y. Kaneda,

K. Mashima, Inorg. Chem. 2007, 46, 6702.

97 K. Mashima, M. Tanaka, K. Tani, A. Nakamura, S. Takeda, W. Mori, K. Yamaguchi, J. Am. Chem. Soc. **1997**, 119, 4307.

98 M. Tanaka, K. Mashima, M. Nishino, S. Takeda, W. Mori,

K. Tani, K. Yamaguchi, A. Nakamura, Bull. Chem. Soc. Jpn. 2001,

74, 67.

99 Y. Kitagawa, S. Nakano, T. Kawakami, K. Mashima, K. Yamaguchi, *Polyhedron* **2003**, *22*, 2019.

100 F. A. Cotton, H. Chen, L. M. Daniels, X. Feng, J. Am. Chem. Soc. 1992, 114, 8980.

Kazushi Mashima received Ph.D. in 1986 from Osaka University under the supervision of Professor A. Nakamura. He became an assistant Professor at the Institute for Molecular Science, Okazaki National Institutes in 1983, working with the late Professor H. Takaya. He moved in 1989 to the Faculty of Engineering, Kyoto University as an assistant Professor, working with the late Professor H. Takaya, and then to the Faculty of Science, Osaka University in 1991, working with Professor A. Nakamura. He was promoted in 1994 to associate Professor at the Faculty of Engineering Science, Osaka University, and in 2003 to full Professor at the Graduate School of Engineering Science, Osaka University. He also worked with Professor M. A. Bennett, Australian National University in 1992 and then with Professor W. A. Herrmann, Technisch Universität München in 1993 (Humboldt foundation). He was an invited professor of Bergen University, Norway in 2006 and Ecole Nationale Supérieure de Chimie de Paris in 2007. He received the Progress Award in Synthetic Organic Chemistry, Japan in 1994, the BCSJ award (the best paper award of Bull. Chem. Soc. Jpn.) in 2000, The Chemical Society of Japan Award for Creative Work for 2008, and The 9th Green and Sustainable Chemistry Award Awarded by the Minister of Education, Culture, Sports, Science and Technology, Japan. His current research interests focus on the area of organometallic and inorganic chemistry, emphasizing directions to design and create catalysts of asymmetric reactions and polymerization, and recently to catalysis composed of polynuclear assembled metal clusters.