CHEMISTRY LETTERS, pp. 1335-1338, 1982. © The Chemical Society of Japan

SYNTHESIS OF OPTICALLY ACTIVE N-[(N-ACETYL)- α -AMINOACYL]- β -AMINO ALCOHOLS BY HOMOGENEOUS AND HETEROGENEOUS ASYMMETRIC HYDROGENATIONS

Iwao OJIMA* and Momoko YATABE Sagami Chemical Research Center, Nishi-Ohnuma 4-4-1, Sagamihara, Kanagawa 229

Asymmetric hydrogenations of N-(N-acetyldehydrophenylalanyl)- β amino alcohol benzyl ethers were carried out by using either rhodium complexes with chiral and achiral phosphines or 10% palladium on carbon. The effects of the chiral center in the β -amino alcohol moiety on simple as well as double asymmetric induction are described.

Of late years, it has been disclosed that i) the asymmetric hydrogenations of dehydrodipeptides of the type 1 or 2 catalyzed by chiral rhodium complexes give the corresponding optically active dipeptides with desired configuration, 1,2 and ii) the type 1 dehydrodipeptides are very good substrates achieving quite high stereoselectivities¹ while the type 2 dehydrodipeptides realize only moderate to good stereoselectivities.² In the present communication, we would like to report the asymmetric hydrogenations of dehydrodipeptide analog, N-(N-acetyldehydrophenylalanyl)- β -amino alcohol benzyl ethers (3) catalyzed by rhodium complexes or 10% palladium on carbon (10% Pd-C)(eq. 1), and describe a considerably large asymmetric induction due to the chiral center in the β -amino alcohol moiety.

The asymmetric hydrogenation of 3 on 10% Pd-C proceeded at 25°C and 1 atm of hydrogen to give 5 directly in quantitative yield.^{3,10} When the reaction was carried out at lower temperature, the HPLC analysis of the reaction mixture revealed that the reaction proceeded stepwise, i.e., 4 was the primary product, which was further converted to 5.

Table 1 summarizes the results of simple asymmetric hydrogenation of 3 catalyzed by dppb-Rh⁺ [dppb = 1,4-bis(diphenylphosphino)butane] and 10% Pd-C. As a matter of course, the stereoelectronic character of substituents in chiral β -amino alcohol moiety exerts a large influence on stereoselectivity, viz., the formation of (S,S)-isomer is preferred for 3a-3c while (R,S)-isomer is predominantly formed in the case of 3d. It is clearly indicated that palladium catalyst is more sensitive to the stereoelectronic effect of the substituent than dppb-Rh⁺.

Table 1. Asymmetric Hydrogenation of N-(N-Acetyldehydrophenylalanyl)- β -amino Alcohols (3) Catalyzed by 10% Pd-C or dppb-Rh^{+ α}

Substrate	R	Catalyst ^b	Conditions H ₂ press., Temp., Tim	(R,S)/(S,S) e (HPLC) <i>d</i> , <i>e</i>	% Asymmetric Induction
3a ∕∕∕	CH ₂ Ph	10% Pd-C dppb-Rh ⁺	1 atm, 25°C, 40 5 atm, 40°C, 40	h 43.0/57.0 h 39.6/60.4	14.0 (S) 20.8 (S)
3Þ.	сн ₂ сн(сн ₃) ₂	10% Pd-C 10% Pd-C 10% Pd-C dppb-Rh ⁺	1 atm, 25°C, 40 1 atm, 2°C, 17 1 atm, -15°C, 17 5 atm, 40°C, 40	h 28.8/71.2 h 28.3/71.7 h 27.0/73.0 h 41.3/58.7	42.4 (S) 43.4 (S) 46.0 (S) 17.4 (S)
3ç	сн(сн ₃) ₂	10% Pd-C 10% Pd-C ^C 10% Pd-C ^C dppb-Rh ⁺	1 atm, 25°C, 40 1 atm, 2°C, 20 1 atm, -15°C, 20 5 atm, 40°C, 40	h 29.3/70.7 h 24.5/75.7 h 23.8/76.2 h 27.1/72.9	41.4 (S) 51.0 (S) 52.4 (S) 45.8 (S)
3d	сн ₂ сн ₂ scн ₃	10% Pd-C 10% Pd-C [°] dppb-Rh ^{+g}	1 atm, 25°C, 20 H 1 atm, 2°C, 48 H 10 atm, 40°C, 46 H	h 78.2/21.8 f h 80.6/19.4 f h 50.8/49.2 f	56.4 (R) 61.2 (R) 1.6 (R)

a All reactions were run with 0.30 mmol of substrate and 100-120 mg (0.10-0.12 mmol) of 10% Pd-C or 1.0 x 10^{-3} mmol of dppb-Rh⁺ in ethanol unless otherwise noted. Chemical yields were almost quantitative in all cases. *b* dppb-Rh⁺ was prepared in situ by mixing dppb (3.0 x 10^{-3} mmol) and [Rh(NBD)₂]ClO₄ (NBD = norbornadiene)(3.0 x 10^{-3} mmol) in degassed ethanol. *c* 300 mg (0.30 mmol) of 10% Pd-C was used. *d* HPLC analyses were carried out by using reversed phase column packed with TOYO SODA LS 410K (ODS SIL) and aqueous methanol as eluant. *e* The diastereomeric ratios were determined for 5 unless otherwise noted. *f* The ratio was determined for 4d. *g* 6.0 x 10^{-3} mmol of the catalyst was used.

Substrate	R	Chiral Ligand ^b	Conditions H ₂ press., Temp.,	Time	(R,S)/(S,S) (HPLC)⊘	% Asymmetric Induction
3a ^⁄	CH ₂ Ph	Ph-CAPP ^e (+)BPPM (+)DIOP (-)DIOP	5 atm, 40°C, 5 atm, 40°C, 5 atm, 40°C, 5 atm, 40°C,	40 h 40 h 68 h 68 h	97.4/2.6 0.9/99.1 11.3/88.7 87.7/12.3	94.8 (R) 98.2 (S) 77.4 (S) 75.4 (R)
3Þ.	сн ₂ сн(сн ₃) ₂	Ph-CAPP ^e (+)BPPM (+)DIOP (-)DIOP	5 atm, 40°C, 5 atm, 40°C, 5 atm, 40°C, 5 atm, 40°C,	42 h 40 h 48 h 48 h	98.7/1.3 0.9/99.1 5.5/94.5 84.2/15.8	97.4 (R) 98.2 (S) 89.0 (S) 68.4 (R)
3c	сн(сн ₃) ₂	Ph-CAPP ^e (+)BPPM (+)DIOP (-)DIOP	5 atm, 40°C, 5 atm, 40°C, 5 atm, 40°C, 5 atm, 40°C,	43 h 40 h 43 h 43 h	94.4/5.6 1.4/98.6 6.7/93.3 75.1/24.9	88.8 (R) 97.2 (S) 86.6 (S) 50.2 (R)
રત	сн ₂ сн ₂ scн ₃	Ph-CAPP ^d , ^e (+)BPPM ^d (+)DIOP ^d (-)DIOP ^d	5 atm, 40°C, 5 atm, 40°C, 10 atm, 40°C, 10 atm, 40°C,	46 h 46 h 48 h 48 h	90.7/9.3 4.5/95.5 10.6/89.4 82.5/17.5	81.4 (R) 91.0 (S) 78.8 (S) 65.0 (R)

Table. 2 Asymmetric Hydrogenation of N-(N-Acetyldehydrophenylalanyl)- β -amino Alcohols (3) Catalyzed by Chiral Rhodium Complexes^{α}

a All reactions were run with 0.30 mmol of substrate and 3.0 x 10^{-3} mmol of chiral catalyst in ethanol and chemical yields were almost quantitative. *b* Chiral catalysts were prepared in situ by reacting chiral ligands (3.0 x 10^{-3} mmol) with [Rh(NBD)₂]ClO₄ (3.0 x 10^{-3} mmol) in degassed ethanol unless otherwise noted. *c* See, Table 1 footnote. *d* 6.0 x 10^{-3} mmol of chiral catalyst was used. *e* [(PhCAPP)Rh(COD)]ClO₄ (COD = 1,5-cyclooctadiene) was used.

As for the asymmetric hydrogenation of <u>cyclic</u> dehydrodipeptides on Pd-C, Izumiya et al. reported extremely high asymmetric inductions.⁴ However, only low stereoselectivities (0-20% asymmetric induction) have been realized in the <u>open-</u> <u>chain</u> dehydrodipeptides as far as the reported data and our experiments are concerned.⁵ Accordingly, the asymmetric inductions of 46.0%, 52.4%, and 61.2 achieved in the reactions of 3b, 3c, and 3d, respectively, are remarkably good values for the simple <u>open chain</u> systems.

On the other hand, the asymmetric hydrogenation of 3 catalyzed by chiral rhodium complexes proceeded smoothly at 40°C and 5-10 atm of hydrogen to give the corresponding dipeptide analog (4) in quantitative yield, ⁶ which was further transformed to N-[(N-acetyl)phenylalanyl]- β -amino alcohol (5) by the hydrogenolysis of benzyl protecting group on 10% Pd-C.¹⁰

Table 2 summarizes the results on using Ph-CAPP, 7 (+)BPPM, 8 (+)DIOP, 9 and (-)-DIOP 9 as chiral ligands.

As Table 2 shows, a large double asymmetric induction was observed in the case of 3b, 3c, and 3d, the (S,S)-isomer being preferred, while the effect of chiral

center in $\mathfrak{Z}_{\mathfrak{A}}$ turned out to be virtually negligible. The (R,S)-isomer with high optical purities were produced by the entry of Ph-CAPP. At any rate, it is demonstrated that chiral dipeptide analogs, \mathfrak{A} and \mathfrak{H} , with high optical purities can be obtained with the proper choice of chiral ligands.

Further investigation on the asymmetric synthesis of oligopeptides bearing chiral β -amino alcohol residue at the C-terminus by using the present method is now actively underway.

References

- (a) I. Ojima and T. Suzuki, Tetrahedron Lett., <u>21</u>, 1239 (1980). (b) I. Ojima, T. Kogure, N. Yoda, T. Suzuki, M. Yatabe, and T. Tanaka, J. Org. Chem., <u>47</u>, 1329 (1982). (c) D. Meyer, J.-P. Poulin, H. B. Kagan, H. Levine-Pinto, J.-L. Morgat, and P. Fromageot, J. Org. Chem., <u>45</u>, 4680 (1980). (d) H. Levine-Pinto, J. L. Morgat, P. Fromageot, D. Meyer, J. C. Poulin, and H. B. Kagan, Tetrahedron, <u>38</u>, 119 (1982). (e) K. Onuma, T. Ito, and A. Nakamura, Chem. Lett., 1980, 481.
- 2. A. Kleemann, J. Martens, M. Samson, and W. Bergstein, Synthesis, 740 (1981).
- 3. The structures of the products (5) were identified by NMR and IR spectra. In the case of 3d, the reaction afforded 4d instead of 5d at 25°C.
- 4. (a) N. Izumiya, S. Lee, T. Kanmera, and H. Aoyagi, J. Am. Chem. Soc., <u>99</u>, 8346 (1977).
 (b) S. Lee, T. Kanmera, H. Aoyagi, N. Izumiya, Int. J. Peptide Protein Res., <u>13</u>, 207 (1979).
- 5. For example, Ac-ΔPhe-(S)-Phe-OMe: 10% Pd-C, 1 atm of H₂, 25°C, (R,S)/(S,S) = 60.2/39.8 [See also ref. 1 (c)]; Ac-ΔPhe-(S)-Phe-OH: 10% Pd-C, 1 atm of H₂, 25°C, (R,S)/(S,S) = 60/40 [See ref. 1 (c)]; Ac-ΔPhe-(S)-Val-OMe: 10% Pd-C, 1 atm of H₂, 25°C, (R,S)/(S,S) = 44.1/55.9, -15°C, (R,S)/(S,S) = 47.8/52.2; Ac-ΔPhe-(S)-Val-OH: 10% Pd-C, 1 atm of H₂, 25°C, (R,S)/(S,S) = 47.6/52.4; ^tBOC-(S)-Leu-ΔAla-OMe: Pd black, 1 atm of H₂, 25°C, (R,S)/(S,S) = 50/50 [See ref. 4 (b)].
- 6. The structures of the products (4) were identified by NMR and IR spectra.
- Ph-CAPP stands for (2S,4S)-N-(N-phenylcarbamoyl)-4-diphenylphosphino-2-diphenylphosphinomethylpyrrolidine: I. Ojima and N. Yoda, Tetrahedron Lett., <u>21</u>, 1051 (1980).
- (+) BPPM stands for (2R,4R)-N-(t-butoxycarbonyl)-4-diphenylphosphino-2-diphenylphosphinomethylpyrrolidine: G. L. Baker, S. J. Fritschel, J. R. Stille, and J. K. Stille, J. Org. Chem., 46, 2954 (1981); See also ref. 1 (b).
- DIOP stands for 2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane: H. B. Kagan and T.-P. Dang, J. Am. Chem. Soc., 94, 6429 (1972).
- 10. As for 4d, the benzyl group could not be removed by hydrogenolysis on 10% Pd-C. Thus, hydrogen bromide-acetic acid was empolyed for deblocking follwed by the treatment with 1N sodium hydroxide in methanol to give 5d in high yield.

(Received June 14, 1982)