This article was downloaded by: [The University of Manchester Library] On: 11 November 2014, At: 06:41 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/gpss20</u>

INDOL-1-YL-UND-(PYRROL-1-YL)-CYCLODI-UND-TRISILAZANE-SYNTHESE UND RINGKONTRAKTION

A. Frenzel^a, R. Herbst-irmer^a, U. Klingebiel^a & M. Scháfer^a ^a Institut für Anorganische Chemie der Universität Göttingen, Tammannst. 4, D-37077, Göttingen, Germany Published online: 04 Oct 2006.

To cite this article: A. Frenzel , R. Herbst-irmer , U. Klingebiel & M. Schäfer (1996) INDOL-1-YL-UND-(PYRROL-1-YL)-CYCLODI-UND-TRISILAZANE-SYNTHESE UND RINGKONTRAKTION, Phosphorus, Sulfur, and Silicon and the Related Elements, 112:1-4, 155-169, DOI: <u>10.1080/10426509608046359</u>

To link to this article: <u>http://dx.doi.org/10.1080/10426509608046359</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

INDOL-1-YL- UND -(PYRROL-1-YL)-CYCLODI-UND-TRISILAZANE—SYNTHESE UND RINGKONTRAKTION

A. FRENZEL, R. HERBST-IRMER, † U. KLINGEBIEL‡ und M. SCHÄFER†

Institut für Anorganische Chemie der Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany

(Received October 10, 1995; in final form October 27, 1995)

Dichloro(indol-1-yl)silanes react with lithium-tert.-butylamide to mono- and bis(amino)-(indol-1-yl)silanes 1-3. In addition to this dichlorobis(pyrrol-1-yl)silane and lithium-tert.-butylamide give the bis(amino)-bis(pyrrol-1-yl)silane 4, however, with tert.-butylamine the mono(amino)-chlorobis(pyrrol-1-yl)silane 5 is formed. 3 and 5 are two more examples for the rare NH-functional chlorosilanes. Depending on the stoichiometry the methylamino(pyrrol-1-yl)silanes 6 and 7 are formed in the reaction of dichlorobis(pyrrol-1-yl)silane and methylamine. 7 is formed with displacement of the pyrrolyl-substituent by the more basic methylamino-group. 1 and 2 can be dilithiated and added to difluorosilanes leading to the cyclodisilazanes 8-10. 1.3.5-Tris(fluorodimethylsilyl)hexamethylcyclotrisilazane is an educt for pyrrol-1-yl-and (indol-1-yl)silhexamethylcyclotrisilazanes 11-14. It reacts with one equivalent of lithiumpyrrolide to 11 and 12 or with two or three equivalents of lithiumpyrrolide to 13 and 14. The 1.3-bis((N-(indol-1-yl)dimethylsilyl)aminodimethylsilyl)-2.4-bis(dimethyl)cyclodisilazane 15 is formed in the reaction of 1.5-bis(fluorodimethylsilyl)octamethylcycloterasilazane with lithiumindolide which catalyzes the ringcontraction. The crystal structure of 14 is reported.

Dichlor(indol-1-yl)silane lassen sich mit Lithium-tert.-butylamid zu den Mono- und Bis(amino)-(indol-1-yl)silanen 1-3 umsetzen. Entsprechend reagiert das Dichlorbis(pyrrol-1-yl)silan mit Lithium-tert.-butylamid zu dem Bis(amino)-bis(pyrrol-1-yl)silan 4 bzw. mit tert.-Butylamin zum Mono(amino)-chlorbis(pyrrol-1-yl)silan 5. 3 und 5 sind zwei weitere Exemplare der seltenen NH-funktionellen Chlorsilane. Je nach Wahl der Stöchiometrie entstehen bei der Umsetzung von Dichlorbis(pyrrol-1-yl)silan mit Methylamin die Methylamino(pyrrol-1-yl)silane 6 und 7. 7 wird unter Verdrängung des Pyrrolylsubstituenten durch die basischere Methylaminogruppe gebildet. 1 und 2 lassen sich durch Dilithiierung und Umsetzung mit Difluorsilanen in die Cyclodisilazane 8-10 überführen. Als Edukt für die Pyrrol-1-yl- und Indol-1-ylsilylhexamethylcyclotrisilazane 11-14 dient das 1.3.5-Tris(fluordimethylsilyl)hexamethylcyclotrisilazan. Dieses reagiert mit je einem Äquivalent Lithiumpyrrolid oder -indolid zu 11 und 12 bzw. mit zwei oder drei Äquivalenten Lithiumpyrrolid zu 13 und 14. Das 1.3-Bis((N-(indol-1-yl)dimethylsilyl)aminodimethylsilyl)-2.4-bis(dimethyl)cyclodisilazan 15 entsteht in der Umsetzung von 1.5-Bis(flurdimethylsilyl)octamethylcyclotetrasilazan mit Lithiumindolid, welches die Ringkontraktion katalysiert. Die röntgenographische Untersuchung von 14 wird vorgestellt.

Key words: Cyclosilazanes, aminopyrrolylsilanes, aminoindolylsilanes, ringcontraction.

EINLEITUNG

Cyclosilazane können auf verschiedenen Synthesewegen dargestellt werden:

Zum einen können Diaminosilane als Bausteine für die Synthese von Cyclodisilazanen verwendet werden.¹⁻⁴ Durch Lithiierung mit *n*-Butyllithium und Umsetzung mit Difluorsilanen erfolgt der Ringschluß zum $(SiN)_2$ -Vierring. Die Substituenten

[†] Kristallstruktur.

[‡]Korrespondenzauthor.

umfassen in diesem Fall Fluoratome am Ring-Silicium sowie unsubstituierte NH-Einheiten bzw. Alkyl- oder Silylgruppen am Ring-Stickstoff.

Zum anderen können Hexamethylcyclotrisilazan (HMCTS) und Octamethylcyclotetrasilazan (OMCTS), welche aus der Reaktion von Dichlordimethylsilan und Ammoniak gewonnen werden, als Edukte für Substitutions- und Ringkontraktionsreaktionen dienen. ^{5,6} HMCTS und OMCTS lassen sich durch Lithiierung mit *n*-Butyllithium und Zugabe von (auch mehrfach) fluorfunktionellen Silanen an den Stickstoff-Ringatomen durch Silylgruppen derivatisieren.⁶⁻⁸ Sowohl OMCTS als auch HMCTS unterliegen bei Lithiierung unter dem Einfluß von erhöhten Reaktionstemperaturen und großen Substituenten einer Ringkontraktion. Dabei kann OMCTS über einen (SiN)₃-Sechsring als Zwischenstufe in einen asymmetrischen oder einen symmetrischen (SiN)₃-Vierring übergehen.^{4,6,7,9,10} Im Gegensatz dazu läßt sich OMCTS bei Wahl geeigneter Reaktionsbedingungen, d.h. bei tiefer Temperatur und im Fall kleiner Substituenten, auch ohne Ringkontraktion derivatisieren.⁸

Durch Heteroaromaten substituierte Cyclosilazane sind bislang unbekannt. An dieser Stelle werden erstmals durch Indol und Pyrrol substituierte Cyclodi- und -trisilazane synthetisiert und charakterisiert und ein durch eine Fluorsilyl-Gruppe substituiertes Cyclotetrasilazan durch Lithiumindolid katalytisch in ein viergliedriges Isomer überführt.

ERGEBNISSE UND DISKUSSION

1. Synthese von Amino(indol-1-yl)- und -(pyrrol-1-yl)silanen

1.1 Synthese von Amino(indol-1-yl)silanen. Dichlor(indol-1-yl)phenylsilan¹¹ bzw. Dichlorbis(indol-1-yl)silan¹² reagieren bei der Umsetzung mit zwei Äquivalenten Lithium-tert.-butylamid zu den Bis(amino)silanen 1 und 2 (Gleichung 1).

R = Ph(1), Indol-1-yl(2)

1, 2

Bei der Reaktion des Dichlor(indol-1-yl)phenylsilans entsteht als Nebenprodukt 3, ein asymmetrisch substituiertes Silan (Gleichung 2).

1.2 Synthese von Aminopyrrolylsilanen. Von den bei der Reaktion von Tetrachlorsilan mit Lithiumpyrrolid entstehenden Bis-, Tris- und Tetrakis(pyrrol-1yl)silanen¹² eignet sich das vorwiegend gebildete Dichlorbis(pyrrol-1-yl)silan als Edukt für die Synthese von Amino(pyrrol-1-yl)silanen. Dichlorbis(pyrrol-1-yl)silan reagiert mit zwei Äquivalenten Lithium-tert.-butylamid zu 4 (Gleichung 3).

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array}$$
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array}
\begin{array}{c}
\end{array} \\
\end{array}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}

} \\
\end{array}
\end{array}

} \\
\end{array}

} \\
\end{array} \\
\end{array}
\end{array}

} \\
\end{array}

} \\
\end{array} \\
\end{array}

} \\
\end{array}
} \\
\end{array}

} \\
\end{array}

} \\
\end{array}

} \\
\end{array}

} \\

} \\
\end{array}

} \\

} \\
\end{array}

} \\
\end{array}

} \\

} \\
\end{array}

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

Im Gegensatz dazu erfolgt bei der Reaktion mit zwei Äquivalenten *tert.*-Butylamin unter Bildung von 5 der Austausch nur eines Chloratoms gegen eine Aminogruppe (Gleichung 4). 5 gehört wie auch 3 zur Klasse der seltenen NH-funktionellen Chlorsilane und zeichnet sich durch seine thermische Stabilität aus. 3 und 5 konnten ohne Kondensation destillativ gereinigt werden.

$$\begin{array}{c}
\begin{array}{c}
Cl\\
N-Si-N\\
-\\
Cl\\
\end{array} + 2 H_2 NC(CH_3)_3 \\
- H_2 Nt Bu * HCl} \\
CH_3)_3 C - N \\
H
\end{array} Si Cl$$
(4)

Auch der Einsatz von Methylamin führt in der Umsetzung mit Dichlorbis(pyrrol-1-yl)silan je nach Wahl der Reaktionsbedingungen zu zwei verschiedenen Produkten.

Wird das Dichlorsilan im stöchiometrischen Verhältnis von 1:4 mit Methylamin in Diethylether umgesetzt, entsteht das Bis(amino)-bis(pyrrol-1-yl)silan 6 (Gleichung 5).

Die Verwendung von Methylamin im Überschuß führt zur Bildung des Tris-(amino)-(pyrrol-1-yl)silans 7 (Gleichung 6). Diese Umsetzung stellt ein Beispiel für die Verdrängungsreaktion eines Substituenten aus einem Molekül durch eine stärker basische Gruppe dar.

7 gehört zur Verbindungsklasse der seltenen, stabilen Tris(methylamino)silane.¹³

2. Bis(amino)-(indol-1-yl)silane als Precursor für Cyclodisilazane

1 und 2 können durch erneute Lithiierung und anschließende Umsetzung mit Difluorsilanen in die Cyclodisilazane 8-10 überführt werden (Gleichungen 7 und 8).

8 liegt aufgrund seiner asymmetrischen Substitution an den Siliciumatomen als cis- und trans-Isomer vor.

Im Fall von 9 führen der Indol-1-yl- und der Phenylsubstituent zu nicht äquivalenten Fluoratomen der SiF₂-Einheit. Dies entfällt wegen gleicher Silylsubstitution bei der Reaktion von 2 zu 10 (Gleichung 8).

Auch Bis(amino)-bis(pyrrol-1-yl)silane sollten wegen ihrer sterisch relativ anspruchslosen Substituenten gute Vorstufen für Cyclodisilazane und Spirocyclen darstellen. Es gelang jedoch nicht, 4 nach Dilithierung durch *n*-Butyllithium mit Dichlorbis(pyrrol-1-yl)silan zum entsprechenden Cyclodisilazan umzusetzen.

3. Substitutionen des Hexamethylcyclotrisilazans und des Octamethylcyclotetrasilazans durch Pyrrol und Indol

3.1 Pyrrolyl- und Indolylcyclotrisilazane. Neben den unter 2. erwähnten Cyclodisilazanen lassen sich mit den Verbindungen 11–14 Pyrrolyl- und Indolyl-substituierte Cyclotrisilazane synthetisieren. 1.3.5-Tris(fluordimethylsilyl)hexamethylcyclotrisilazan^{1,4} reagiert mit je einem Äquivalent des Lithiumpyrrolids bzw. -indolids zu den Monosubstitutionsprodukten 11 und 12 (Gleichung 9).

11, 12

R = Pyrrol-1-yl (11), Indol-1-yl (12)

Eine Kopplung von zwei verschiedenen Heteroaromaten an ein Cyclotrisilazan gelang auf gleichem Reaktionsweg bislang nicht. Durch Einsatz von zwei bzw. drei Äquivalenten Lithiumpyrrolid wurden jedoch die Cyclotrisilazane 13 und 14 synthetisiert (Gleichung 10).

3.2 Kristallstruktur des Cyclotrisilazans 14. Es wurden bei Raumtemperatur farblose Kristalle von 14 aus Hexan erhalten. 14 kristallisiert in der triklinen Raumgruppe $P\bar{I}$ mit zwei unabhängigen Molekülen in der asymmetrischen Einheit. In Abbildung 1 und 2 sind die beiden Moleküle 1 und 2 abgebildet, Tabelle I gibt die ausgewählten Bindungslängen und -winkel wieder.

In den beiden Molekülen 1 und 2 von 14 hat der zentrale Silicium-Stickstoff-Sechsring Twist-Konformation. Anhand der Länge der exocyclischen und endocy-

ABBILDUNG 1 Kristallstruktur von 14 (Molekül 1).

ABBILDUNG 2 Kristallstruktur von 14 (Molekül 2).

clischen Silicium-Stickstoff-Bindungen von im Mittel 172.4 pm bzw. 175.7 pm wird deutlich, daß die Stickstoffatome des zentralen Sechsrings mit ihrem freien Elektronenpaar in die exocyclischen Bindungen zum Silicium rückbinden. Daraus ergibt sich eine nahezu planare Umgebung der Stickstoffatome. Die Bindungen zwischen den exocyclischen Siliciumatomen und den Stickstoffatomen der Pyrrolylsubstituenten liegen im Bereich reiner Einfachbindungen, da das freie Elektronenpaar des Stickstoffs aufgrund seines Einbaus in das aromatische 6π -System des Pyrrols nicht zur Rückbindung zum Silicium genutzt werden kann.

Die Moleküle 1 und 2 unterscheiden sich nur unwesent lich in der Twist-Konformation der beiden (SiN)₃-Sechsringe. In Abbildung 3 wird durch einen least-squares-fit dieser Zu-

CYCLOSILAZANES

Si(1)-N(5)	175.4(2)	Si(1)-N(1)	176.6(2)
N(1)-Si(2)	172.3(2)	N(1)-Si(3)	175.0(2)
Si(2)-N(2)	177.5(2)	Si(3)-N(3)	175.5(2)
N(3)-Si(4)	172.7(2)	N(3)-Si(5)	176.9(2)
Si(4)-N(4)	177.2(2)	Si(5)-N(5)	175.2(2)
Si(6)-N(6)	176.6(2)	Si(7)-N(11)	174.6(2)
Si(7)-N(7)	175.4(2)	N(7)-Si(8)	172.9(2)
N(7)-Si(9)	176.1(2)	Si(8)-N(8)	177.1(2)
Si(9)-N(9)	176.2(2)	N(9)-Si(10)	172.3(2)
N(9)-Si(11)	174.2(2)	Si(10)-N(10)	176.3(2)
Si(11)-N(11)	176.9(2)	N(11)-Si(12)	172.2(2)
Si(12)-N(12)	177.1(2)		
N(5)-Si(1)-N(1)	106.28(9)	Si(2)-N(1)-Si(3)	124.78(11)
Si(2)-N(1)-Si(1)	120.76(11)	Si(3)-N(1)-Si(1)	114.25(10)
N(1)-Si(2)-N(2)	106.61(9)	N(1)-Si(3)-N(3)	103.36(9)
Si(4)-N(3)-Si(3)	124.39(11)	Si(4)-N(3)-Si(5)	120.48(11)
Si(3)-N(3)-Si(5)	114.92(10)	N(3)-Si(4)-N(4)	108.24(9)
N(5)-Si(5)-N(3)	106.69(9)	Si(6)-N(5)-Si(5)	126.16(11)
Si(6)-N(5)-Si(1)	120.97(11)	Si(5)-N(5)-Si(1)	112.56(10)
N(5)-Si(6)-N(6)	107.32(9)	N(11)-Si(7)-N(7)	103.95(9)
Si(8)-N(7)-Si(7)	122.17(11)	Si(8)-N(7)-Si(9)	121.00(11)
Si(7)-N(7)-Si(9)	116.44(10)	N(7)-Si(8)-N(8)	109.07(9)
N(7)-Si(9)-N(9)	108.86(9)	Si(10)-N(9)-Si(11)	128.65(12)
Si(10)-N(9)-Si(9)	118.57(11)	Si(11)-N(9)-Si(9)	112.78(11)
N(9)-Si(10)-N(10)	108.19(9)	N(9)-Si(11)-N(11)	105.88(9)
Si(12)-N(11)-Si(7)	126.76(11)	Si(12)-N(11)-Si(11) 119.05(11)

 TABELLE I

 Ausgewählte Bindungslängen [pm] und -winkel [°] für 14

sammenhang deutlich. Werden das N(1)-, Si(3)- und N(3)-Atom auf dem N(7)-, Si(7)- und N(11)-Atom fixiert, so orientieren sich die jeweils restlichen drei Ringatome der beiden zentralen Sechsringe in der jeweiligen Twist-Konformation in entgegengesetzte Richtungen. Neben dem bislang einzigen bekannten, planaren 1.3.5-Tris(bis(trimethylsilyl)aminofluorboryl)-hexamethylcyclotrisilazan¹⁴ stellt **14** en weiteres Beispiel für ein dreifach, symmetrisch substituiertes Cyclotrisilazan dar, welches einen nicht planaren (SiN)₃-Sechsring aufweist.

ABBILDUNG 3 Least-squares-fit von 14 (Molekül 1 gestrichelt gezeichnet).

3.3 Substitutionen an Octamethylcyclotetrasilazanen durch Lithiumindolid. Bei der Umsetzung von OMCTS mit *n*-Butyllithium und anschließender Zugabe von zwei Äquivalenten Fluor(indol-1-yl)dimethylsilan¹⁵ erfolgt nicht die erwünschte Einführung von zwei Indol-1-yl-dimethylsilyl-Gruppen am OMCTS in 1- und 5-Position, sondern eine Umlithiierungsreaktion vom Dilithiumderivat des OMCTS zum Stickstoffatom des Indols. Unsubstituiertes OMCTS wird aus der Reaktion zurückgewonnen sowie das durch Reaktion des Lithiumindolids mit dem eingesetzten Fluor(indol-1-yl)dimethylsilan entstandene Bis(indol-1-yl)dimethylsilan¹⁵ (Gleichung 11).

Die aus diesem Grund nötige inverse Reaktionsführung, d.h. die Umsetzung von lithiiertem Indol mit 1.5-Bis(fluordimethylsilyl)octamethylcyclotetrasilazan,⁸ führt zu 15 (Gleichung 12).

Das Cyclotetrasilazan kontrahiert in diesem Fall unter Katalyse durch das Lithiumindolid über einen (SiN)₃-Sechsring zum symmetrischen Cyclodisilazan.^{8,9}

Als begünstigende Faktoren für die in Gleichung 12 beschriebene Ringkontraktion wirken sich die sterisch anspruchsvollen Silylsubstituenten sowie die zur Reaktion benötigten erhöhten Reaktionstemperaturen aus.

EXPERIMENTELLER TEIL

Alle Versuche wurden unter Inertgas durchgeführt. Die Reinheit der Substanzen wurde kernresonanzspektroskopisch überprüft. ¹H-, ¹³C-, ¹⁵N-, ¹⁹F-, ²⁹Si-NMR-Spektren: 30%ige Lösungen in CDCl₃, TMS int., C₆F₆ und CH₃NO₂ ext.: Bruker AM 250- bzw. 400-Kernresonanzspektrometer und Bruker MSL 400-Kernresonanzspektrometer (¹⁹F-NMR). Die Molmassenbestimmungen wurden massenspektroskopisch mit einem Varian CH-5-Gerät order einem Finnigan MAT 8200-bzw. 9500-Gerät bei einer Elektronenanregungsenergie von 70 eV vorgenommen.

Amino(indol-1-yl)silane 1-3. 0.2 mol tert.-Butylamin werden in 50 ml *n*-Hexan und 30 ml THF gelöst und mit der äquimolaren Menge an *n*-Butyllithium versetzt. Es wird 1 h unter Rückfluß erwärmt und anschließend eine Lösung von 0.1 mol Dichlor(indol-1-yl)phenylsilan¹¹ (1), 0.1 mol Dichlorbis(indol-1yl)silan¹² (2) bzw. 0.2 mol Dichlor(indol-1-yl)phenylsilan¹¹ (3) in jeweils 50 ml *n*-Hexan mit der Lithiumamid-Lösung versetzt. Es wird 5 h unter Rückfluß erwärmt, vom Lithiumchlorid abgetrennt und die entstehenden Rohprodukte fraktioniert destilliert.

Bis(tert.-butylamino)-(indol-1-yl)phenylsilan (1).

C₂₂H₃₁N₃Si (365.58) Ber. C 72.27 H 8.55 N 11.50 Gef. C 71.97 H 8.51 N 11.56

Ausbeute: 28.52 g (78%); Spd.: 145°C (0.02 mbar); MS (El-Messung): m/z = 365 (84) M⁺, 350 (100) [M-CH₃]⁺; ¹H-NMR: δ 1.22 (C(CH₃)₃, 18 H), 1.64 (NH, 2 H), 6.66 (H-3, 1 H, d, d, ³J_{HH} = 3.21 Hz, ⁴J_{HH} = 0.82 Hz), 7.13-7.79 (H-2, H-4-H-7, Ph, 10 H, m); ¹³C-NMR: δ 33.34 (C(<u>CH₃</u>)₃), 49.88 (<u>C</u>(CH₃)₃), 104.44 (C-3), 115.09 (C-7), 119.81/120.39/121.00 (C-4/C-5/C-6), 127.81 (C-2', C-6'/C-3', C-5'), 129.78 (C-2/C-4'), 131.88 (C-4'/C-2), 131.99 (C-1'), 134.68 (C-3', C-6'/C-2, C-5'), 136.70 (C-9/C-8), 140.54 (C-8/C-9); ¹⁵N-NMR: δ -318.47 (NH, ¹J_{NH} = 73.3 Hz); ²⁹Si-NMR: δ -40.34.

Bis(tert.-butylamino)bis(indol-1-yl)silan (2).

C₂₄H₃₂N₄Si (404.62) Ber. C 71.24 H 7.97 N 13.85 Gef. C 71.03 H 7.94 N 13.78

Ausbeute: 12.95 g (32%); Sdp. 175 °C (0.01 mbar); MS (El-Messung): m/z (%) = 404 (100) M⁺; ¹H-NMR: δ 1.10 (C(CH₃)₃, 18 H), 1.83 (NH, 2 H), 6.64 (H-3, 2 H, d, d, ³J_{HH} = 3.30 HZ, ⁴J_{HH} = 0.83 Hz), 7.16–7.23 (H-5, H-6, 4 H, m), 7.32 (H-2, 2 H, d, ³J_{HH} = 3.29 Hz), 7.65–7.90 (H-4, H-7, 4 H, m); ¹³C-NMR: δ 32.96 (C(CH₃)₃), 49.99 (C(CH₃)₃), 105.75 (C-3), 114.81 (C-7), 120.57/120.66/121.72 (C-4/C-5/C-6), 131.24 (C-2), 131.96 (C-9/C-8), 139.84 (C-8/C-9); ¹⁵N-NMR: δ –318.00 (NH, ¹J_{NH} = 73.9 Hz); ²⁹Si-NMR: δ –52.02.

tert.-Butylaminochlor(indol-1-yl)phenylsilan (3). $C_{18}H_{21}CIN_2Si$ (328.90); Ausbeute: 6.91 g (21%); Sdp. 133°C (0.02 mbar); MS (El-Messung): m/z (%) = 328 (62) M⁺, 196 (100) [M-C₉H₈N]⁺; ¹H-NMR: δ 1.21 (C(CH₃)₃, 9 H), 1.95 (NH, 1 H), 6.59 (H-3, 1 H, d, d, ³J_{HH} = 2.44 Hz, ⁴J_{HH} = 0.89 Hz), 7.08–7.79 (H-2, H-4–H-7, Ph, 10 H, m); ¹³C-NMR: δ 32.70 (C(CH₃)₃), 51.06 <u>C</u>(C(CH₃)₃), 106.14 (C-3), 114.60 (C-7), 120.91/120.93/122.07 (C-4/C-5/C-6), 128.41 (C-2', C-6'/C-3', C-5'), 131.14 (C-1'/C-4'), 131.53 (C-4'/C-1'), 132.17 (C-2), 132.64 (C-9/C-8), 134.51 (C-3', C-5'/C-2', C-6'), 140.17 (C-8/C-9); ¹⁵N-NMR: δ –315.66 (NH), ²⁰Si-NMR: δ –27.27.

Bis(tert.-butylamino)bis(pyrrol-1-yl)silan (4). 0.2 mol tert.-Butylamin werden in 40 ml n-Hexan und 10 ml THF gelöst und mit der äquimolaren Menge an n-Butyllithium versetzt. Es wird 1 h unter Rückfluß erwärmt und anschließend mit 0.1 mol Dichlorbis(pyrrol-1-yl)silan¹² in 50 ml n-Hexan versetzt. Nach vierstündigem Erhitzen unter Rückfluß wird vom Lithiumchlorid abgetrennt und das erhaltene Rohprodukt durch fraktionierte Destillation rein erhalten.

C₁₆H₂₈N₄Si (304.51) Ber. C 63.10 H 9.27 N 18.40 Gef. C 62.87 H 9.31 N 18.26

Ausbeute: 24.06 g (79%); Sdp. 85°C (0.02 mbar), Schmp. 49°C; MS (El-Messung): m/z (%) = 304 (88) M⁺, 166 (100) [M-C₈H₁₄N₂]⁺; ¹H-NMR: δ 1.22 (C(CH₃)₃, 18 H), 1.68 (NH, 2 H), 6.35 (CH—C, 4 H, t,§ ³J_{HH} = 2.04 Hz), 6.96 (CH—N, 4 H, t,§ ³J_{HH} = 2.02 Hz); ¹³C-NMR: δ 33.04 (C(CH₃)₃), 49.76 (C(CH₃)₃), 111.28 (CH—C), 124.35 (CH—N); ¹⁵N-NMR: δ -320.07 (NH, ¹J_{NH} = 73.80 Hz); ²⁶Si-NMR: δ -51.96.

Tert.-butylaminochlorbis(pyrrol-1-yl)silan (5). 0.1 mol Dichlorbis(pyrrol-1-yl)silan¹² werden in 60 ml Diethylether gelöst und mit 0.2 mol tert.-Butylamin versetzt. Es wird 2 h unter Rückfluß erwärmt, vom entstandenen tert.-Butylammoniumhydrochlorid abgetrennt und der Rückstand mit 50 ml Diethylether gewaschen. Die vereinigten Etherphasen werden eingeengt und das verbleibende Rohprodukt durch fraktionierte Destillation rein erhalten.

 $\begin{array}{c} C_{12}H_{18}CIN_3Si~(267.83)\\ Ber.~C~53.81 & H~6.77 & N~15.69\\ Gef.~C~53.78 & H~6.72 & N~15.62 \end{array}$

Ausbeute: 22.23 g (83%); Sdp. 93°C (0.01 mbar); MS (El-Messung): m/z (%) = 267 (68) M⁺, 185 (100) [M-C₃H₈N]⁺; ¹H-NMR: δ 1.34 (C(CH₃)₃, 9 H), 2.11 (NH, 1 H), 6.45 (CH--C, 4 H, t,§ ³J_{HH} = 2.07 Hz), 6.99 (CH--N, 4 H, t,§ ³J_{HH} = 2.07 Hz); ¹³C-NMR: δ 32.41 (C(CH₃)₃), 50.62 (C(CH₃)₃), 112.53 (CH--C), 123.92 (CH--N); ¹⁵N-NMR: δ -316.56 (NH); ²⁹Si-NMR: δ -42.09.

Methylamino(pyrrol-1-yl)silane 6 und 7. Bei einer Temperatur von -78° C werden 0.4 mol Methylamin (6) bzw. Methylamin im Überschuß (7) im Reaktionskolben einkondensiert, mit 30 ml Diethylether und mit 0.1 mol Dichlorbis(pyrrol-1-yl)silan¹² versetzt. Die Aceton-Trockeneis-Kühlung wird entfernt, so daß die Reaktionslösung unter Kryostatenkühlung am Rückflußkühler bei -8° C für 1 h siedet. Anschließend wird noch 2 h unter Rückfluß auf 35°C erwärmt. Die Lösung wird vom entstandenen Methylammoniumhydrochlorid abgetrennt, der Rückstand mit 40 ml Diethylether gewaschen und die vereinigten flüssigen Phasen fraktioniert destilliert.

Bis(methylamino)-bis(pyrrol-1-yl)silan (6).

 $\begin{array}{c} C_{10}H_{16}N_4Si~(220.35)\\ Ber.~C~54.50 & H~7.32 & N~25.43\\ Gef.~C~54.39 & H~7.28 & N~25.50 \end{array}$

Ausbeute: 18.51 g (84%); Sdp 90°C (0.01 mbar); MS (FI-Messung): m/z (%) = 220 (100) M⁺; ¹H-NMR: δ 1.29 (NH, 2 H), 2.55 (CH₃, 6 H, d, ³J_{HH} = 6.48 Hz), 6.28 (CH—C, 4 H, t_s ³J_{HH} = 2.03 Hz), 6.77 (CH—N, 4 H, t_s ³J_{HH} = 2.03 Hz); ¹³C-NMR: δ 27.12 (CH₃), 111.14 (<u>CH</u>—C), 123.36 (<u>CH</u>—N); ¹⁵N-NMR: δ -372.71 (NH); ²⁹Si-NMR: δ -43.01.

[§]Pseudotriplett.

Tris(methylamino)-(pyrrol-1-yl)silan (7). C₇H₁₆N₄Si (184.32); Ausbeute: 15.11 g (82%); Sdp. 57°C (0.02 mbar); MS (Fl-Messung): m/z (%) = 184 (100) M⁺; ¹H-NMR: δ 1.00 (NH, 3 H), 2.63 (CH₃, 9 H), 6.36 (CH—C, 2 H, t§ ³J_{HH} = 1.99 Hz), 6.97 (CH—N, 2 H, t§ ³J_{HH} = 1.98 Hz); ¹³C-NMR: δ 27.23 (CH₃), 109.96 (CH—C), 123.26 (CH—N); ²⁸Si-NMR: δ - 39.28.

Cyclodisilazane 8-10. 0.1 mol 1 (8, 9) bzw. 0.1 mol 2 (10) werden in 50 ml *n*-Hexan und 30 ml THF gelöst und mit 0.2 mol *n*-Butyllithium versetzt. Die Reaktionslösung wird 2 h unter Rückfluß erwärmt und anschließend auf -78° C abgekühlt und mit 0.05 mol Tetrafluorsilan (8, 10) bzw. bei Raumtemperatur mit 0.05 mol Trifluorphenylsilan (9) versetzt. Im Fall von 8 und 10 wird auf Raumtemperatur gebracht. Es wird in allen Fällen 5 h Rückfluß erwärmt, das Rohprodukt vom Lithiumfluorid abgetrennt und durch fraktionierte Destillation rein erhalten.

1.3-Di-tert.-butyl-2-fluor-4-(indol-1-yl)-2.4-diphenylcyclodisilazan (8).

C₂₈H₃₄FN₃Si₂ (487.76) Ber. C 68.94 H 7.03 N 8.62 Gef. C 68.27 H 6.84 N 8.73

Ausbeute: 15.61 g (32%); Sdp. 216°C (0.05 mbar); MS (El-Messung): m/z (%) = 487 (26) M⁺, 472 (100) [M-CH₃]⁺. Anhand der NMR-Daten ist zu erkennen, daß das Cyclodisilazan als cis- und trans-Isomer (I/II) vorliegt. Deshalb können für das ¹³C-NMR-Spektrum im Aromatenbereich nur die Bereiche der Verschiebungen angegeben werden. ¹H-NMR: δ 1.00 (C(CH₃)₃, 18 H), 6.72–8.21 (H-2–H-7, Ph, 16 H, m); ¹³C-NMR: δ 33.21 (C(<u>C</u>H₃)₃ (I)), 33.32 (C(<u>C</u>H₃)₃ (II)), 50.73 (<u>C</u>(CH₃)₃ (I)), 50.74 (<u>C</u>(CH₃)₃ (II)), 106.23–140.49 (C-2–C-9 (*I*/II), Ph (*I*/II), m); ¹⁹F-NMR: δ 32.74 (F (I)), 32.84 (F (II)); ²⁹Si-NMR: δ -39.23 (PhSiF, d, ¹J_{SIF} = 304.63 Hz), -26.85 (PhSi, d, ³J_{SIF} = 4.04 Hz).

1.3-Di-tert.-butyl-2.2-difluor-4-(indol-1-yl)-4-phenylcyclodisilazan (9). $C_{22}H_{29}F_2N_3Si_2$ (429.66); Ausbeute: 27.50 g (64%); Sdp. 141°C (0.02 mbar); MS (EI-Messung): m/z (%) = 429 (36) M⁺, 414 (100) [M-CH₃]⁺; ¹H-NMR: δ 1.02 (C(CH₃)₃, 18 H), 6.70 (H-3, 1 H, d, d, ³J_{HH} = 3.20 Hz, ⁴J_{HH} = 1.00 Hz), 7.07-8.02 (H-2, H-4-H-7, Ph, 10 H, m); ¹³C-NMR: δ 32.93 (C(CH₃)₃), 50.68 (C(CH₃)₃, 1, § ³J_{CF} = 1.58

[§]rseudotriplett.

Hz), 106.89 (C-3), 115.13 (C-7), 120.67/120.97/122.25 (C-4/C-5/C-6), 127.84 (C-1'/C-4'), 128.44 (C-2', C-6'/C-3', C-5'), 131.14 (C-4'/C-1'), 131.50 (C-2), 132.11 (C-9/C-8), 136.19 (C-3', C-5'/C-2', C-6'), 140.46 (C-8/C-9); ¹⁹F-NMR: δ 23.42 (F (A), d, ²J_{FF} = 87.46 Hz), 28.03 (F (B), d); ²⁹Si-NMR: δ -73.82 (SiF, d, d, ¹J_{SiF(A)} = 269.83 Hz, ¹J_{SiF(B)} = 266.32 Hz), -40.25 (SiPh, d, d, ³J_{SiF(A)} = 8.35 Hz, ³J_{SiF(B)} = 2.88 Hz).

1.3-Di-tert.-butyl-2.2-diftuor-4.4-bis(indol-1-yl)cyclodisilazan (10). C₂₄H₃₀F₂N₄Si₂ (468.69); Ausbeute: 20.62 g (44%); Sdp. 160°C (0.02 mbar); MS (El-Messung): m/z (%) = 468 (18) M⁺, 117 (100) [M-C₈H₁₈F₂N₂Si₂]⁺; ¹H-NMR: δ 0.99 (C(CH₃)₃, 18 H), 6.78 (H-3, 2 H, d, d, ³J_{HH} = 3.40 Hz, ⁴J_{HH} = 0.85 Hz), 7.16-7.21 (H-5, H-6, 4 H, m), 7.52 (H-2, 2 H, d, ³J_{HH} = 3.40 Hz), 7.63-7.69 (H-4, H-7, 4 H, m); ¹³C-NMR: δ 32.61 (C(CH₃)₃), 50.99 (C(CH₃)₃, t, ³J_{CF} = 1.44 Hz), 108.32 (C-3), 115.02 (C-7), 121.02/121.61/122.89 (C-4/C-5/C-6), 130.68 (C-2), 132.23 (C-9/C-8), 139.86 (C-8/C-9); ¹⁹F-NMR: δ 23.01; ²⁹Si-NMR: δ -72.86 (SiF, t, ¹J_{SIF} = 265.67 Hz), -55.54 (Si, t, ³J_{SIF} = 9.31 Hz).

Cyclotrisilazane 11-14. 0.1 mol 1.3.5-Tris(fluordimethylsilyl)hexamethylcyclotrisilazan^{1.4} werden in 60 ml *n*-Hexan gelöst und mit 0.1 mol Lithiumpyrrolid¹¹ (11), 0.1 mol Lithiumindolid¹² (12), 0.2 mol (13) bzw. 0.3 mol Lithiumpyrrolid¹¹ (14) als Suspension in *n*-Hexan/THF versetzt. Es wird 5 h unter Rückfluß erwärmt und anschließend das Rohprodukt vom Lithiumfluorid abgetrennt. Durch fraktionierte Destillation (11-13) bzw. durch Umkristallisation (14) werden die Produkte rein erhalten.

1-(Dimethyl(pyrrol-1-yl)silyl)-3.5-bis(fluordimethylsilyl)hexamethylcyclotrisilazan (11). $C_{16}H_{40}F_2N_4Si_6$ (495.05); Ausbeute: 16.83 g (34%); Sdp. 103°C (0.02 mbar); MS (El-Messung): m/z (%) = 494 (36) M⁺, 479 (100) [M-CH₃]⁺; ¹H-NMR: δ 0.32 (CH₃ (b), 12 H, d, ⁵J_{HF} = 1.16 Hz), 0.35 (CH₃ (c), 12 H, d, ³J_{HF} = 6.15 Hz), 0.44 (CH₃ (d), 6 H, t, ⁵J_{HF} = 1.77 Hz), 0.55 (CH₃ (a), 6 H), 6.32 (CH—C, 2 H, t,§ ³J_{HH} = 1.98 Hz), 6.84 (CH—N, 2 H, t,§ ³J_{HH} = 1.98 Hz); ¹³C-NMR: δ 3.21 (CH₃ (c), d, ²J_{CF} = 18.25 Hz), 3.95 (CH₃ (a)), 6.18 (CH₃ (b), d, ⁴J_{CF} = 2.57 Hz), 6.65 (CH₃ (d), t, ⁴J_{CF} = 3.43 Hz), 110.90 (CH—C), 122.77 (CH—N); ¹⁹F-NMR: δ 29.91 (sept, ³J_{FH} = 6.93 Hz); ²⁹Si-NMR: δ -4.68 (Si (b), d, ³J_{SF} = 5.10 Hz,), -4.39 (Si (a)), -2.67 (Si (d), t, ³J_{SF} = 5.17 Hz), 9.44 (Si (c), d, ¹J_{SF} = 268.20 Hz).

I-(*Dimethyl(indol-1-yl)silyl)-3.5-bis(fluordimethylsilyl)hexamethylcyclotrisilazan* (12). $C_{20}H_{42}F_2N_4Si_6$ (545.11); Ausbeute: 13.63 g (23%); Sdp. 153°C (0.01 mbar); MS (EI-Messung): m/z (%) = 544 (60) M⁺, 529 (100) [M-CH₃]⁺; ¹H-NMR: δ 0.41 (CH₃ (c), 12 H, d, ³J_{HF} = 7.70 Hz), 0.49 (CH₃ (b), 12 H, d, ⁵J_{HF} = 1.13 Hz); 0.64 (CH₃ (d), 6 H, t, ⁵J_{HF} = 1.72 Hz), 0.81 (CH₃ (a), 6 H), 6.78 (H-3, 1 H, d, d, ³J_{HH})

[§]Pseudotriplett.

= 3.18 Hz, ${}^{4}J_{HH}$ = 0.86 Hz), 7.24–7.42 (H-2, H-5, H-6, 3 H, m), 7.80–7.90 (H-4, H-7, 2 H, m); ${}^{13}C$ -NMR: δ 3.10 (CH₃ (c), d, ${}^{2}J_{CF}$ = 18.21 Hz), 3.93 (CH₃ (a)), 6.25 (CH₃ (b), d, ${}^{4}J_{CF}$ = 2.56 Hz), 6.71 (CH₃ (d), t, ${}^{4}J_{CF}$ = 3.40 Hz), 104.98 (C-3), 113.99 (C-7), 120.10/120.74/121.45 (C-4/C-5/C-6), 129.80 (C-2), 131.63 (C-9/C-8), 139.57 (C-8/C-9); ${}^{19}F$ -NMR: δ 30.12 (sept, ${}^{3}J_{FH}$ = 7.33 Hz); ${}^{29}Si$ -NMR: δ –4.85 (Si (a)), -4.73 (Si (b), d, ${}^{3}J_{SF}$ = 5.02 Hz), -2.31 (Si (d), t, ${}^{3}J_{SF}$ = 4.74 Hz), 9.80 (Si (c), d, ${}^{3}J_{SF}$ = 268.26 Hz).

1.3-Bis(dimethyl(pyrrol-1-yl)silyl)-5-(fluordimethylsilyl)hexamethylcyclotrisilazan (13). $C_{20}H_{44}FN_5Si_6$ (542.13); Ausbeute: 42.29 g (78%); Sdp. 145°C (0.01 mbar); MS (El-Messung): m/z (%) = 541 (48) M⁺, 459 (100) [M-C₅H₇N]⁺; ¹H-NMR: δ 0.02 (CH₃ (a), 12 H), 0.39 (CH₃ (c), 6 H, d, ³J_{HF} = 7.73 Hz), 0.44 (CH₃ (b), 12 H, d, ⁵J_{HF} = 1.56 Hz), 0.52 (CH₃ (d), 6 H), 6.28 (CH--C, 4 H, t§ ³J_{HH} = 2.02 Hz), 6.79 (CH--N, 4 H, t§ ³J_{HH} = 2.04 Hz); ¹³C-NMR: δ 3.34 (CH₃ (c), d, ²J_{CF} = 18.29 Hz), 4.13 (CH₃ (a)), 4.99 (CH₃ (d)), 7.28 (CH₃ (b), d, ⁴J_{CF} = 3.20 Hz), 110.81 (CH--C), 122.87 (CH-N); ¹⁹F-NMR: δ 30.84 (sept, ³J_{FH} = 7.73 Hz); ²⁹Si-NMR: δ -4.34 (Si (a)), -3.64 (Si (d)), -2.34 (Si (b), d, ³J_{SHF} = 4.02 Hz), 9.89 (Si (c), d, ¹J_{SHF} = 269.07 Hz).

1.3.5-Tris(dimethyl(pyrrol-1-yl)silyl)hexamethylcyclotrisilazan (14).

C₂₄H₄₈N₆Si₅ (589.21) Ber. C 48.92 H 8.21 N 14.27 Gef. C 48.90 H 8.18 N 14.23

Ausbeute: 27.10 g (46%); Schmp. 74°C; MS (El-Messung): m/z (%) = 588 (72) M⁺, 506 (100) [M-C₅H₇N]⁺; ¹H-NMR: δ 0.22 (CH₃ (a), 18 H), 0.52 (CH₃ (b), 18 H), 6.27 (CH---H, 6 H, t,§ ³J_{HH} = 2.02 Hz), 6.77 (CH---N, 6 H, t,§ ³J_{HH} = 2.04 Hz); ¹³C-NMR: δ 4.38 (CH₃ (a)), 6.79 (CH₃ (b)), 110.88 (CH---C), 123.06 (CH---N); ²⁹Si-NMR: δ -4.05 (Si (a)), -1.67 (Si (b)).

1.3-Bis((N-(indol-1-yl)dimethylsilyl)aminodimethylsilyl)-2.4-bis(dimethyl)cyclodisilazan (15). 0.2 mol Indol werden in 60 ml n-Hexan und 20 ml THF gelöst und mit der äquimolaren Menge n-Butyllithium versetzt. Nach einstündigem Erwärmen unter Rückfluß werden zu der Reaktionslösung 0.1 mol 1.5-Bis(fluordimethylsilyl)octamethylcyclotetrasilazan⁸ in 40 ml n-Hexan zugefügt. Nach dem Einengen der Lösung wird fünf Tage unter Rückfluß erhitzt. Das Rohprodukt wird vom entstandenen Lithiumfluorid abgetrennt und durch fraktionierte Destillation rein erhalten.

§ Pseudotriplett.

C₂₈H₅₀N₆Si₆ (639.27) Ber. C 52.60 H 7.88 N. 13.15 Gef. C 52.39 H 7.78 N 13.01

Ausbeute: 23.65 g (37%); Sdp. 210°C (0.01 mbar), Schmp. 72°C; MS (El-Messung): m/z (%) = 638 (90) M⁺, 522 (100) [M-C₈H₆N]⁺; ¹H-NMR: δ -0.03 (CH₃ (b), 12 H), 0.26 (CH₃ (a), 12 H), 0.56 (CH₃ (c), 12 H), 0.86 (NH, 2 H), 6.59 (H-3, 2 H, d, d, ³J_{HH} = 3.18 Hz, ⁴J_{HH} = 0.91 Hz), 7.13–7.18 (H-5, H-6, 4 H, m), 7.24 (H-2, 2 H, d, ³J_{HH} = 3.18 Hz), 7.59–7.66 (H-4, H-7, 4 H, m); ¹³C-NMR: δ 1.31 (CH₃ (b)), 3.19 (CH₃ (a)), 5.26 (CH₃ (c)), 104.37 (C-3), 113.60 (C-7), 119.87/120.68/121.23 (C-4/C-5/C-6), 130.01 (C-2), 131.72 (C-9/C-8), 139.90 (C-8/C-9); ²⁹Si-NMR: δ –11.69 (Si (b)), -3.88 (Si (c)), 3.82 (Si (a)).

Röntgenstrukturbestimmung der Verbindung 14

Datensammlung: Die Verbindung 14 wurde auf einem Stoe-Siemens-AED-Vierkreisdiffraktometer mit graphitchromatisierter Mo-K α -Strahlung ($\lambda = 71.073$ pm) gemessen. Der Kristall wurde in einem Inertöl auf einem Glasfaden schockgekühlt montiert und bei -120° C vermessen.¹⁶ Die Struktur wurde mit Direkten Methoden gelöst (SHELXS-90)¹⁷ und nach dem kleinste-Fehlerquadrate-Verfahren verfeinert (SHELXL-93).¹⁸

Strukturlösung und -verfeinerung: Kristalldaten von 14: $C_{24}H_{48}N_6Si_6$, M = 589.22, Kristallgröße = 0.80 \times 0.80 \times 0.70, triklin, Raúmgruppe P⁻, a = 1114.0(2), b = 1601.6(2), c = 1945.0(3) pm, α = 82.14(1), β = 80.05(1), γ = 70.17(1)°, V = 3.2816(9) nm³, Z = 4, D_x = 1.193 Mg/m³, μ = 0.278 mm⁻¹, F(000) = 1272, 2 Θ_{max} = 45°.

Von den 8706 gesammelten Reflexen waren 8414 unabhängig. Hiervon wurden 8412 unabhängige Reflexe zur Verfeinerung von 673 Parametern verwendet. Höchstes Maximum und Minimum der letzten Differenz-Fourier-Synthese: 352 bzw.-305 nm⁻³, R1(F > 4 σ (F)) = 0.0346 und wR2 (alle Daten) = 0.0946. Die Werte von R1 und wR2 sind definiert als R1 = $[\Sigma ||F_0| - |F_c||/\Sigma ||F_0|]$; wR2 = { $[\Sigma w(F_0^2 - F_0^2)^2]/[\Sigma w(F_0^2)]^{1/2}$. Alle Wasserstoff-Positionen wurden ideal positioniert und mit Hilfe des Reiter-Modells verfeinert.

Weitere Einzelheiten zur Kristalluntersuchung können beim Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-404518 angefordert werden.

LITERATUR

- 1. J. Haiduc und D. B. Sowbery, "The Chemistry of Inorganic Homo- and Hetercycles," Academic Press Inc., London, 1987; W. Fink, Angew. Chem., 78, 803-819 (1966).
- I. Hemme, U. Klingebiel, M. Noltemeyer, T. Mueller und Y. Ageloig, J. Organomet. Chem., 494, 133-142 (1995).
- N. Auner und J. Weis, "Organosilicon Chemistry, From Molecules to Materials," VCH Verlagsgesellschaft mbH, Weinheim, pp. 45-48, 1994.
- 4. U. Klingebiel, Nach. Chem. Tech. Lab., 35, 1042-1046 (1987).
- 5. S. D. Brewer und C. P. Haber, J. Am. Chem. Soc., 70, 3888-3891 (1948).
- 6. U. Klingebiel, Phosphorus, Sulfur, and Silicon, 41, 361-366 (1989).
- 7. E. Werner und U. Klingebiel, Phosphorus, Sulfur, and Silicon, 83, 9-20 (1993).
- K. Dippel, U. Klingebiel, T. Kottke, F. Pauer, G. M. Sheldrick und S. Stalke, Z. anorg. allg. Chem., 584, 84-104 (1990).
- 9. K. Dippel, E. Werner und U. Klingebiel, Phosphorus, Sulfur, and Silicon, 64, 15-24 (1992).
- 10. E. Werner und U. Klingebiel, J. Organomet. Chem, 470, 35-41 (1994).
- 11. A. Frenzel, M. Gluth, R. Herbst-Irmer und U. Klingebiel, J. Organomet. Chem., i. Druck.
- 12. A. Frenzel, R. Herbst-Irmer, U. Klingebiel, M. Noltemeyer und M. Schäfer, Z. Naturforsch, i. Druck.
- 13. E. Larsson, Chem. Abs., 50, 791 (1956); L. Tansjö, Acta Chem. Scand., 11, 1613-1621 (1957).
- S. Schaible, R. Riedel, R. Boese, E. Werner, U. Klingebiel und M. Nieger, Applied Organometallic Chemistry, 8, 491-498 (1994).
- 15. U. Klingebiel, W. Lüttke und M. Noltemeyer, J. Organomet. Chem., 455, 51-55 (1993).
- 16. T. Kottke und D. Stalke, J. Appl. Crystallogr., 26, 615-619 (1993).
- 17. G. M. Sheldrick, Acta Crystallogr., A, 46, 467-473 (1990).
- 18. G. M. Sheldrick, SHELX-93, Programm zur Kristallstrukturverfeinerung, Göttingen, 1993.