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A new type of catalyst system using ruthenium and carbox-
ylic acid is useful for the tail-to-tail dimerization of acrylonitrile,
proceeding without the formation of undesired by-product
propionitrile. Carboxylic acids having pKa 3.5–5 are suitable
as co-catalysts for the dimerization of acrylonitrile. The relation-
ship between the logarithm of the relative rate in the dimer
formation and the pKa of m- and p-substituted benzoic acids
(Br�nsted plot) was linear (R2 ¼ 0:946) with a slope of
�0:199. The role of the carboxylic acids can be considered to
be effective protonation in the protonolysis of the carbon–ruthe-
nium bond of an intermediate Ru complex.

The regioselective tail-to-tail dimerization of acrylonitirile
(AN) has provided an attractive alternative route toward the for-
mation of hexamethylenediamine, which is one of the monomers
used in the production of Nylon-6,6.1,2 Ruthenium-based cata-
lysts are important candidates for this reaction due to the high
reactivity [the catalyst turnover number (TON) has been about
1000] and the high selectivity for the linear dimers 1–3.3,4

Komiya and his co-workers found that zero-valent ruthenium
complexes are effective catalyst precursors for the tail-to-tail di-
merization of AN. In their Ru-catalytic system, the inevitable
use of hydrogen as an extra agent to keep the reaction catalytic
resulted in the formation of a large amount of propionitrile 5 as
an undesirable by-product.3i

Recently, we found that the catalytic system of [RuCl2-
(DMSO)4/CH3CH2COONa/DMSO/carboxylic acid] gives lin-
ear dimers of AN (TON ¼ 1206) without the formation of 5
(Scheme 1).5

In order to investigate the protonolysis step, we have studied
the relationship between catalytic activity and the acidity of car-
boxylic acids in this catalytic system. Reported herein are the re-
sults. Table 1 shows TON values for the Ru-catalyzed dimeriza-
tion of AN at 150 �C for 6 h in the presence of various substituted
benzoic acids. Products were analyzed by gas chromatography.

The main product was 1,4-dicyanobutene.
The TON in the catalyzed reactions by m- and p- substituted

benzoic acids increased with smaller pKa (stronger acid). The ef-
fective acidity of carboxylic acids for optimal TON is around
pKa 3.5 and the use of o-benzoylbenzoic acid as the co-catalyst
gave rise to the highest TON of all the carboxylic acids exam-
ined in the present experiments. Phenol as well as p-toluene sul-
fonic acid and trifluoroacetic acid were ineffective as co-cata-
lysts for the dimerization.8 It can be assumed that the active
Ru-catalyst for the dimerization is produced in the presence of
carboxylic acids of pKa ¼ 3:5{5, while in the presence of strong
acids such as sulfonic acid and trifluoroacetic acid, such active
catalysts either are not formed or are destroyed. A plausible
mechanism containing both the hydrogenation and the proton-
ation steps is shown in Scheme 2.5

The reaction at 120 �C proceeded for 24 h at the same
rate without deactivation of catalyst. The relationship between
the logarithm of VX=VH [VX: dimer production per second
(mmol/s) for m- and p-substituted benzoic acids, VH: dimer
production per second (mmol/s) for benzoic acid] and the pKa

of carboxylic acids is shown in Figure 1. The plots for m- and
p-substituted benzoic acids showed a good linear correlation
with a slope of �0:199. Since the slope is related to the free
energy of activation in the rate-determining step, it could be
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Table 1. TON for dimerization of acrylonitrile at 150 �C for 6 h
in the presence of substituted benzoic acidsa

Carboxylic acid pKa TONb

PhCO2H 4.20c 636
p-Substituted benzoic acid
p-ClC6H4CO2H 3.83c 616
p-MeC6H4CO2H 4.24c 355
p-MeOC6H4CO2H 4.47c 346

m-Substituted benzoic acid
m-NCC6H4CO2H 3.60c 778
m-ClC6H4CO2H 3.99c 705
m-MeOC6H4CO2H 4.09c 443
m-MeC6H4CO2H 4.34c 379

o-Substituted benzoic acid
o-PhCOC6H4CO2H 3.54d 960
o-MeC6H4CO2H 3.91c 442
o-MeOC6H4CO2H 4.09c 195

aReaction conditions: AN 283mmol, anisole (internal stand-
ard for gas chromatography) 18.5mmol, DMSO 6.4mmol,
RuCl2(DMSO)4 0.0381mmol, sodium propionate 0.306
mmol, acid 5.70mmol, 150 �C, and 6 h. bTON ¼ ½2�
(combined mol of dimers 1{3)�=[mol of Ru]. cpKa values
taken from Ref. 6. dpKa values taken from Ref. 7.
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supposed that proton-transfer in the protonolysis process is
rate-determining. The small value for the slope (�0:199) in
the Br�nsted relationship suggests that the protonolysis step
has a very early transition state. The deviation of the plot for
o-benzoylbenzoic acid from the fitted line is probably related
to favorable steric factors in the protonation step.

Further investigations on the mechanism, reaction condi-
tions and the catalysts in the acrylonitrile dimerization are in
progress.
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Figure 1. Relationship between logðVX=VHÞ and pKa of substi-
tuted benzoic acids at 120 �C. : m- and p-substituted benzoic
acid, : o-benzoylbenzoic acid.
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