Inorganic Chemistry

Facile Synthetic Method of Na[BH₃(NH₂BH₂)₂H] Based on the Reactions of Sodium Amidoborane (NaNH₂BH₃) with NiBr₂ or CoCl₂

Ming-Yue Ju, Yu Guo, Xi-Meng Chen,* and Xuenian Chen*

Cite This: https://doi.org/10.1021/acs.inorgchem.1c00071

Article Recommendations

٨٥	CECC	1
40	UESS	

III Metrics & More

ABSTRACT: The reactions of sodium amidoborane $(NaNH_2BH_3)$ with NiBr₂ have been investigated, and the results showed that black precipitate 1 including the NiBNH_x composites could be obtained. From the aqueous solution of the precipitate 1, the hydrolysis product Ni–B (2) was isolated and characterized. Both the in situ formed precipitate 1 and the hydrolysis product 2 can catalyze the formation of $Na[BH_3(NH_2BH_2)_2H]$. CoCl₂ showed comparable performance with NiBr₂. Based on these results, a facile method for the synthesis of $Na[BH_3(NH_2BH_2)_2H]$ has been developed. This work provides insights into studying experimental methods for the synthesis of long B/N chain complexes and developing boron and nitrogen chemistry.

1. INTRODUCTION

Ammonia borane (NH₃BH₃) was synthesized for the first time by Shore and Parry in 1955.¹ Recently, the study on NH₃BH₃ has attracted more attention because it can release H₂ by thermolysis under mild conditions or by metal-catalyzed routes, both homogeneous and heterogeneous and promote both lower temperature release of H₂²⁻⁸ and also the formation of increasingly well-defined B/N-polymeric materials, as reported by Manners.^{2a,b} As a derivative of NH₃BH₃, NaNH₂BH₃ is also considered as a promising solid hydrogen storage material which can evolve 7.5 wt % hydrogen at lower temperature,⁹ exhibiting significantly improved dehydrogenation properties in contrast to NH₃BH₃ such as increased dehydrogenation kinetics and decreased dehydrogenation temperature with no volatile byproduct borazine exhaust.^{9,10}

NaNH₂BH₃ was first synthesized in 1938 by Schlesinger and Burg through the reaction of $(CH_3)_2OBH_3$ and Na in liquid ammonia.^{11,12} In 2008, its structure was characterized,⁹ and subsequently, two alternative synthetic approaches were developed through solid-state mechanical milling^{9,13,14} and wet-chemistry synthesis.¹⁰ Convenient synthetic methods facilitate further to explore its applications and reactivities.

Different types of reactions could take place on either NaNH₂BH₃ or amidoborane anion $(NH_2BH_3^{-})$ due to the lone pair electrons on the nitrogen atom and the active B–H bonding pair electrons.^{15–17} It can act as a ligand,^{18–20} a reducing reagent,^{21–25} a Brønsted and Lewis base, or even an initiator for the dehydropolymerization of NH₃BH₃.⁷ In 2010, Wolstenholme, McGrady, and co-workers have isolated a paramagnetic Ti(III) amidoborane complex, Cp₂TiNH₂BH₃,²⁶ Subsequently, Manners found that Cp₂TiNMe₂BH₃ and Cp₂ZrNMe₂BH₃ can also be formed by using LiNMe₂BH₃ instead of LiNH₂BH₃.²⁷ Y(NH₂BH₃)₃ was successfully synthesized by ball-milling YCl₃ with 3 equiv. of LiNH₂BH₃.²⁸

In 2012, Chen's group has examined the reduction of aromatic aldehydes by using LiNH₂BH₃ as a reductant.²⁹ They have also investigated the metathesis reaction of alkali-metal amidoborane with FeCl₃ in tetrahydrofuran (THF), indicating the formation of polymeric product [Fe(HN=BH)₃]_n.³⁰ In 2017, our group studied the reactivities of NaNH2BH2 as a Brønsted and Lewis base. We found that the NaNH₂BH₃ can react with different types of compounds such as acids, bases, amines, alcohols, and cyclopentadiene in which it acts as a proton acceptor and a hydride donor as well.^{31,32} We also found that NaNH₂BH₃ plays an important role in the serial formation of B/N chain complexes Na[BH₃NH₂BH₃], Na-[BH₃(NH₂BH₂)₂H], Na[BH₃(NH₂BH₂)₃H], and Na[BH- $(NH_2BH_2)_3$].^{33a} These five- or seven-membered B/N chain complexes were first reported by Sneddon in 2011 through the reactions of NH₃BH₃ with Verkade's base in which the NH₂BH₃⁻ anion also plays an important role.^{33b}

Though MNH_2BH_3 (M = Li or Na) can react with lanthanide and metallocene salts by simple metathesis reactions, it is found that the reactions are complicated and hard to predict with transition metal salts. Therefore, we studied reactions of NaNH₂BH₃ with NiBr₂ and CoCl₂ in this work, and the results indicated that NiBNH_x and CoBNH_x composites were formed in situ, which catalyze the formation of Na[BH₃(NH₂BH₂)₂H], yet the simply metathetical formation of Ni[NH₂BH₃]₂ and Co[NH₂BH₃]₂ was not

Received: January 9, 2021

Figure 1. Characteristics of the hydrolysis product 2: XRD pattern (a); XPS survey spectrum (b); Ni 2p XPS spectra (c); and B 1s XPS spectra (d).

observed. Based on this discovery, a facile method for the synthesis of $Na[BH_3(NH_2BH_2)_2H]$ has been developed.

2. RESULTS AND DISCUSSION

The reaction of NaNH₂BH₃ with NiBr₂ in a 2:1 ratio was carried out with anticipation of the synthesis of Ni[NH₂BH₃]₂. However, it was found that this reaction is not a simple metathesis reaction. When the THF solution of NaNH₂BH₃ was dropwise added into the solution of NiBr₂ with a rate of 0.1 mmol/min, only the NH₃BH₃ signal was observed in the ¹¹B NMR of the reaction mixture, indicating that NH₃BH₃ is the only boron-containing product in the solution in this case (Figure S1). At the same time, a large amount of black precipitate 1 was formed rapidly, which was isolated and characterized. X-ray diffraction (XRD) determination proved that the precipitate 1 contains NaBr (Figure S2), and Fourier transform infrared spectroscopy (FTIR) confirmed the existence of N-H, B-H, and B-N stretches (Figure S3).³⁰ Furthermore, the precipitate 1 was not soluble in polar organic solvents such as CH₃CN, dimethylformamide, and dimethyl sulfoxide, but partially soluble in water. The aqueous solution was monitored by ¹¹B NMR in which a single peak that appeared at δ 12.0 ppm could be assigned to borate (Figure S4). Thus, the precipitate 1 could be considered as a mixture of Ni(0), a complex of Ni(II) with BNH, besides NaBr, noted as NiBNH_x. The formation of NiBNH_x in this reaction is similar to the formation of $[Fe(NHBH)_3]_n$ in the reaction of LiNH₂BH₃ with FeCl₃.³⁰ The hydrolysis product 2 was isolated and characterized when the precipitate 1 was washed thoroughly with water. XRD of the hydrolysis product 2 showed a wide broad peak at $2\theta = 45^{\circ}$ (Figure 1a), implying its amorphous structure.³⁴ The X-ray photoelectron spectroscopy (XPS) survey spectrum showing peaks of Ni 2p, B 1s, and O 1s (Figure 1b) and the Ni 2p and B 1s XPS spectra (Figure 1c,d) indicated that the hydrolysis product 2 contains nickel boride

and nickel borate,³⁵ noted as Ni–B, which is formed in the hydrolysis of the formed NiBNH_x. This result indicated that the reaction of NaNH₂BH₃ with NiBr₂ is complicated in which NiBNH_x and NH₃BH₃ are formed.

It was further found that the products of the reaction are kinetically affected by the addition rate of NaNH₂BH₃. When NaNH₂BH₃ was introduced into the reaction at a higher rate (0.2 and 0.4 mmol/min, Figures S5 and S6) or directly mixed with NiBr₂ first and then the solvent was added (Figure S7), Na[BH₃(NH₂BH₂)₂H] was obtained as the major product with a small amount of NH₃BH₃. We speculated that the slow increment of NaNH₂BH₃ concentration resulted in a NaNH₂BH₃-insufficient environment, allowing NaNH₂BH₃ to be converted into NH₃BH₃ and NiBNH_x instantaneously by the excessive NiBr₂. On the other hand, when NaNH₂BH₃ was introduced into the reaction at a higher rate or two reactants were just directly mixed, excessive NaNH₂BH₃ to produce Na-[BH₃(NH₂BH₂)₂H].

To verify this hypothesis, a series of reactions with different ratios of NaNH₂BH₃ and NH₂BH₃ in the presence of NiBr₂ were carried out (Figures S8-S10). It was found that both NaNH₂BH₃ and NH₃BH₃ could be consumed completely, and a sole product, Na[BH₃(NH₂BH₂)₂H], was observed in ¹¹B NMR (Figure S10) when mixing NaNH₂BH₃ and NH₃BH₃ at a ratio of 2:1. Furthermore, an isotopic investigation was performed. When NH₃BD₃ was used to react with NaNH₂BH₃ at a 1:2 ratio, the deuterium atom appeared in the chemical shift of the BD₂ and BD₃ groups in $Na[BD_3(NH_2BD_2)_2D]$ in ²H NMR (Figure 2), suggesting that NaNH₂BH₃ rapidly reacted with NH₃BD₃ under NiBNH_x catalysis. When a reaction of NH₃BH₃ and NaNH₂BD₃ was conducted, similar results were obtained (Figures S11 and S12). This observation supports the hypothesis that the forming NH3BH3 would further react with NaNH₂BH₃ to form a five-membered B/N

Figure 2. 2 H NMR spectrum of the solution mixture of 2NaNH₂BH₃ + NH₃BD₃ + 0.2NiBr₂ in THF at room temperature.

chain in which the forming NiBNH_x can in situ catalyze the dehydrocoupling between NaNH₂BH₃ and NH₃BH₃. The BH/BD exchange was observed, but the NH/BD exchange was not observed (Figure 2 and Figures S23–S27). These results are reminiscent of the formation of polymers by dehydropolymerization of amine boranes using transition metal catalysts, as reported by Ian Manners³⁶ and Weller^{37,38} in which the BH/BD scrambling occurred during the dehydrocoupling reaction. However, the fact that the NH/BD scrambling is not observed in these cases is inconsistent with the formation mechanism of aminodiborane.³⁹ This observation implies that the formation of polymeric complexes and aminodiborane through dehydrocoupling reaction of amine borane underwent different mechanisms.

When NaNH₂BH₃ reacted with a catalytic amount of NiBr₂ (0.1 equiv.), Na[BH₃(NH₂BH₂)₂H] was obtained in approximately 2 h, and no NH₃BH₃ was detected until NaNH₂BH₃ was consumed completely (Figure S13). However, once NaNH₂BH₃ was completely consumed (the signal of NaNH₂BH₃ was disappeared), the peak of NH₃BH₃ was observed in 30 min (Figure S14). This indicated that Na[BH₃(NH₂BH₂)₂H] could decompose to form NH₃BH₃ under the catalysis of NiBNH_x. It is worthy to note that byproduct Na[BH₃NH₂BH₃] (Figure S15) was detected in a large-scale reaction, probably due to the aggregated heat in large scale from its exothermic nature.³²

Hence, the reaction of NaNH₂BH₃ with NiBr₂ is believed to follow three steps. First, NaNH₂BH₃ reacted with NiBr₂ to form NiBNH_x (in which Ni(0) may be included as the black precipitate) as well as NH₃BH₃ (Eq. 1). Second, the formed NiBNH_x in situ catalyze excessive NaNH₂BH₃ to react with the first-step-product NH₃BH₃ to form Na[BH₃(NH₂BH₂)₂H] (Eq. 2). Finally, NiBNH_x catalyzed the second-step-product Na[BH₃(NH₂BH₂)₂H], which decomposed to form NH₃BH₃ and other unknown species in the absence of NaNH₂BH₃ (Eq. 3). On the other hand, alternative pathways should be considered. For example, the reaction of NaNH₂BH₃ with NiBr₂ seems to be violent (step 1) in which step (2) and (3)

may be involved as the elementary steps. Only when the concentration of NiBr_2 is low, the reaction will be ceased after step (2), and the products of the step (2) were obtained. Therefore, these interesting observations and possible mechanisms inspired us to develop a facile synthetic method of $\operatorname{Na}[\operatorname{BH}_3(\operatorname{NH}_2\operatorname{BH}_2)_2\operatorname{H}]$ based on this catalytic reaction.

$$NaNH_{2}BH_{3} + NiBr_{2}$$

$$\rightarrow NiBNH_{x}(s) + NH_{3}BH_{3} + NaBr(s) + H_{2}(g) \qquad (1)$$

$$NaNH_{2}BH_{3} + 2NH_{3}BH_{3} \xrightarrow{\text{NiBNH}_{x}} Na[BH_{3}(NH_{2}BH_{2})_{2}H] + NH_{3}(g) + H_{2}(g)$$
(2)

$$Na[BH_{3}(NH_{2}BH_{2})_{2}H] \xrightarrow{NiBNH_{3}} NH_{3}BH_{3} + unknown species$$
(3)

In our previous work,³² it took five days to obtain $Na[BH_3(NH_2BH_2)_2H]$ from the reaction of $NaNH_2BH_3$ with 2 equiv. of NH₃BH₃. Inspired by the fast reaction between NaNH₂BH₃ and NiBr₂, we inferred that the in situ formed precipitate 1 acts as a catalyst to facilitate the formation of $Na[BH_3(NH_2BH_2)_2H]$. Therefore, the precipitate 1 was recycled from the reaction mixture by a simple filtration manipulation and could be reused for as many as 4 times without compromising its catalytic performance (Figure S16). To further prove the catalytic role of NiBNH, rather than NaBr, we have conducted the experiment of NaNH₂BH₃ and NH₃BH₃ with NaBr (Figure S17). The results show that NaBr cannot catalyze this reaction. These results indirectly prove the catalytic role of NiBNH_x. The reaction of pure NaNH₂BH₃ in THF solution can generate a small amount of Na- $[BH_3(NH_2BH_2)_2H]$, but the process is very slow (Figure S18). Based on this inference, we tried to develop a rapid synthetic method of $Na[BH_3(NH_2BH_2)_2H]$ by optimizing the reaction conditions. Results show that the reaction of $NaNH_2BH_3$ with 0.05 equiv. of $NiBr_2$ at 0 $^\circ C$ could produce $Na[BH_3(NH_2BH_2)_2H]$ (Figure 3) in 10 h with 60% yield, which is comparable with the yield obtained using the method reported in the literature, which took five days.³

It is worth to note that NiBNH_x and the hydrolysis product 2 were characterized by NMR, IR, XRD, and XPS, but their compositions are not exactly determined. Hence, the catalytic mechanism of this reaction is not clear. Considering the catalytic effect of the hydrolysis product 2 in the hydrolysis of NaBH₄,⁴⁰ we further examined the catalytic behavior of the hydrolysis product 2. When the catalytic amount of the hydrolysis product 2 was used in the reaction, the formation of Na[BH₃(NH₂BH₂)₂H] was confirmed in 68% yield (Figure S19). It was found that the hydrolysis product 2 could also

Figure 3. ¹¹B NMR (a), ¹¹B{¹H} NMR (b), ¹H NMR (c), and ¹H{¹¹B} NMR (d) spectra of the prepared Na[BH₃(NH₂BH₂)₂H] in CD₃CN.

catalyze the conversion of Na[BH₃(NH₂BH₂)₂H] into NH₃BH₃ (Figure S20). In general, it is proved that the in situ formed NiBNH_x and the hydrolysis product 2 have the similar catalytic behavior for this reaction.

We also studied the reactions of $NaNH_2BH_3$ with $CoCl_2$ under the same conditions. The similar results with the reaction of $NaNH_2BH_3$ with $NiBr_2$ were obtained, but yields were lower (Figures S28–S41).

3. CONCLUSIONS

In this work, we systematically studied the reactions of NaNH₂BH₃ with NiBr₂ and CoCl₂ in different conditions. The reaction is complicated, and it is likely a catalytic reaction rather than a simple metathesis reaction. It was found that NiBNH_x and CoBNH_x composites were first formed from the reactions of NaNH2BH3 with NiBr2 and CoCl2, and their catalytic behavior on Na[BH₃(NH₂BH₂)₂H] and NaNH₂BH₃ was investigated, for example, catalyzing the formation of Na[BH₃(NH₂BH₂)₂H] from NaNH₂BH₃ and the decomposition of Na[BH₃(NH₂BH₂)₂H] into NH₃BH₃ in the absence of NaNH2BH3. Based on these results, further optimization was carried out and a rapid synthetic method of $Na[BH_3(NH_2BH_2)_2H]$ was developed. The Ni-B and Co-B composites were isolated and characterized by XRD and XPS. Investigation showed that their catalytic behavior is similar to those of the in situ formed NiBNH_x and CoBNH_y composites.

4. EXPERIMENTAL SECTION

4.1. General Procedures. All manipulations were carried out by using Schlenk-line techniques or in a glovebox filled with high-purity nitrogen. ¹¹B NMR spectra were obtained at 193 MHz and externally referenced to BF₃·OEt₂ in C₆D₆ ($\delta = 0.00$ ppm). FTIR spectra were measured by a Spectrum 400F. XRD data were collected on a Rigaku D/max 2500 diffractometer by using Cu-K α radiation ($\lambda = 0.1542$ nm, 45 kV, 40 mA). XPS patterns were studied by X-ray Photoelectron Spectrometer Microprobe (150 W, 5 kV at 1486.6 eV, monochromatic Al K α radiation). THF was dried over sodium/ benzophenone and freshly distilled prior to use. The metal salts used were stored under a nitrogen atmosphere or in a desiccator. NaNH₂BH₃ was synthesized according to the literature.³²

4.2. Reaction of NaNH₂BH₃ with NiBr₂ (2:1). In a glovebox, a 25 mL flask was charged with NiBr₂ (0.219 g, 1.0 mmol), and then the flask was connected to a vacuum line and 5 mL of THF was condensed into it. The suspension of NaNH2BH3 (0.106 g, 2.0 mmol) in THF was dropwise added (the drop rate is 0.1 mmol/min) to the flask at room temperature, and the reaction was rapidly initiated. A large amount of ammonia and H₂ was released (Figure S21), and a black precipitate was observed. The reaction solution was monitored by ¹¹B NMR in which a quartet peak appeared at δ –22.3 ppm, assigned to NH₃BH₃ (Figure S1). The black precipitate was filtered, noted as precipitate 1, and then dried under vacuum. XRD determination of the precipitate 1 indicated that it contains NaBr (Figure S2), and FTIR confirmed the existence of N-H, B-H, and B-N stretches (Figure S3). The solvent of the filtration was removed to give a white NH₃BH₃ powder. ¹¹B NMR (193 MHz, THF), δ -22.3 ppm (q, J_{B-H} = 96.5 Hz) (Figure S1). ¹H NMR (600 MHz, C_6D_6): δ 4.47 ppm (s, H₂) (Figure S21). FTIR (cm⁻¹): 3400 (s), 3230 (s), 2400 (w), 1629 (w), 1410 (s), 1187(w), 1037(w), 710(w) (Figure S3).

A similar procedure was repeated with the drop rate increased to 0.2 mmol/min (Figure S5) and 0.4 mmol/min (Figure S6), or the two solid reactants were directly mixed (Figure S7) and then 10 mL of THF was added to the flask. All afforded $Na[BH_3(NH_2BH_2)_2H]$ as the major product with a small amount of NH_3BH_3 .

The black precipitate 1 partially dissolved in water showed a single peak in ¹¹B NMR assigned to borate (Figure S4). The hydrolysis

product 2 was isolated, dried under vacuum, and then characterized by XRD. A broad peak appeared at $2\theta = 45^{\circ}$ (Figure 1a).

4.3. Reaction of NaNH₂BH₃ with NH₃BH₃ and NiBr₂ (1:1:0.1). NaNH₂BH₃ (0.106 g, 2.0 mmol) and NH₃BH₃ (0.062 g, 2.0 mmol) were charged in a two-necked 25 mL flask with a magnetic stir bar, and THF (10 mL) was injected into the flask. Then, the mixture was added to the THF solution of NiBr₂ (0.043 g, 0.2 mmol) at room temperature. A black precipitate was formed immediately. After 1.5 h, NaNH₂BH₃ was completely converted to Na[BH₃(NH₂BH₂)₂H] and mixed with unreacted NH₃BH₃ (Figure S8).

4.4. Reaction of NaNH₂BH₃ with NH₃BH₃ and NiBr₂ (1:2:0.1). NaNH₂BH₃ (0.053 g, 1.0 mmol) and NH₃BH₃ (0.062 g, 2.0 mmol) were charged in a two-necked 25 mL flask with a magnetic stir bar, and THF (10 mL) was injected into the flask. Then, the mixture was added to the THF solution of NiBr₂ (0.043 g, 0.2 mmol) at room temperature. A black precipitate was formed immediately. After 1.5 h, NaNH₂BH₃ was completely converted to Na[BH₃(NH₂BH₂)₂H] and mixed with unreacted NH₃BH₃ (Figure S9).

4.5. Reaction of NaNH₂BH₃ with NH₃BH₃ and NiBr₂ (2:1:0.1). NaNH₂BH₃ (0.106 g, 2.0 mmol) and NH₃BH₃ (0.031 g, 1.0 mmol) were charged in a two-necked 25 mL flask with a magnetic stir bar, and THF (10 mL) was injected into the flask. Then, the mixture was added to the THF solution of NiBr₂ (0.043 g, 0.2 mmol) at room temperature. A black precipitate was formed immediately. After 1.5 h, both NaNH₂BH₃ and NH₃BH₃ were consumed completely and pure Na[BH₃(NH₂BH₂)₂H] was obtained (Figure S10).

4.6. Reaction of NaNH₂BD₃ with NH₃BH₃ and NiBr₂ (2:1:0.1). NaNH₂BD₃ was prepared by the reaction of NH₃BD₃ with NaH in THF. ²H NMR (ppm; THF) δ 1.46 (*br*, BD₃) (Figure S11).

 $NaNH_2BD_3$ (0.112 g, 2.0 mmol) and NH_3BH_3 (0.031 g, 1.0 mmol) were charged in a two-necked 25 mL flask with a magnetic stir bar, and THF (5 mL) was injected into the flask at room temperature. Then, the mixture was added to the THF solution of NiBr₂ at room temperature. A black precipitate was formed immediately. After 1.5 h, deuterium signals were determined by ²H NMR and assigned to BD₂ and BD₃ groups of Na[BD₃(NH₂BD₂)₂D] (Figure S12).

4.7. Reaction of NaNH₂BH₃ with NiBr₂ (10:1). NaNH₂BH₃ (0.106 g, 2.0 mmol) and NiBr₂ (0.044 g, 0.2 mmol) were placed in a two-necked 25 mL flask with a magnetic stir bar, and THF (10 mL) was injected into the flask at room temperature. This reaction mixture was stirred for 3 h and monitored by ¹¹B NMR (Figures S13 and S14).

4.8. Cycle Reaction of NaNH₂BH₃ with NiBr₂. NaNH₂BH₃ (0.106 g, 2.0 mmol) and NiBr₂ (0.044 g, 0.2 mmol) were placed in a two-necked 25 mL flask with a magnetic stir bar, and THF (10 mL) was injected into the flask at room temperature. After 2 h, NaNH₂BH₃ converted to Na[BH₃(NH₂BH₂)₂H] completely. The filtrate was filtered, the precipitate was washed with THF, and then the THF solution of NaNH₂BH₃ (0.106 g, 2.0 mmol) was added to the precipitate again. The same process was repeated five times (Figure S16).

4.9. Reaction of NaNH₂BH₃ with NH₃BH₃ and NaBr. NaNH₂BH₃ (0.106 g, 2.0 mmol) and NH₃BH₃ (0.031 g, 1.0 mmol) were charged in a two-necked 25 mL flask with a magnetic stir bar, and THF (5 mL) was injected into the flask. Then, the mixture was added to the THF solution of NaBr (0.0206 g, 0.2 mmol) at room temperature. The reaction solution was monitored by ¹¹B NMR (Figure S17).

4.10. Reaction of NaNH₂BH₃ in THF. NaNH₂BH₃ (0.053 g, 1.0 mmol) was charged in a two-necked 10 mL flask with a magnetic stir bar, and THF (3 mL) was injected into the flask at room temperature. The reaction solution was monitored by ¹¹B NMR (Figure S18).

4.11. Reaction of NaNH₂BH₃ with Ni–B. The hydrolysis product **2** was separated from the black precipitate **1**. The black precipitate **1** was washed with ethanol and water, and then the residue material was dried in vacuum at 100 °C for 6 h to obtain the hydrolysis product **2**. In a glovebox, a 200 mL flask was charged with a magnetic stir bar and the hydrolysis product **2** (0.056 g), and then the flask was connected to a vacuum line and ca. THF (15 mL) was condensed into it. The suspension of NaNH₂BH₃ (0.424 g, 8.0

mmol) in THF was injected into the flask, and the reaction mixture was vigorously stirred for 7 h at 15 °C. Pure $Na[BH_3(NH_2BH_2)_2H]$ was isolated through the same method as described above (Figure S19). The yield was 68%.

4.12. Reaction of Na[BH_3(NH_2BH_2)_2H] with Ni–B. Na-[BH₃(NH₂BH₂)₂H] (0.096 g, 1.0 mmol) and Ni–B (0.014 g) were placed in a two-necked 25 mL flask with a magnetic stir bar, and THF (10 mL) was injected into the flask at room temperature. After stirring for 1 h, the reaction mixture was monitored by ¹¹B NMR (Figure S20).

4.13. Reaction of NaNH₂BH₃ with NH₃BD₃ and NiBr₂ (2:1:0.1). NH₃BD₃ was prepared by a method reported in the literature.⁴¹ ¹¹B NMR (193 MHz, D₈-THF): δ –22.28 ppm (*br s*, BD₃) (Figure S22a). ¹¹B{¹H} NMR (193 MHz, D₈-THF): δ –22.28 ppm (*br s*, BD₃) (Figure S22b). ¹H NMR (600 MHz, D₈-THF): δ 3.94 (*t*, 3 H of NH₃, J_{N-H} = 42 Hz) (Figure S23a). ¹¹H{¹¹B} NMR (600 MHz, D₈-THF): δ 3.94 (*t*, 3 H of NH₃, J_{N-H} = 42 Hz) (Figure S23a). ¹¹H{¹¹B} NMR (600 MHz, D₈-THF): δ 3.94 (*t*, 3 H of NH₃, J_{N-H} = 42 Hz) (Figure S23b).²H NMR (ppm; THF) δ 1.40 (*br*, BD₃) (Figure S24). We also characterized NH₃BD₃ in CD₃CN, and it shows a multiplet in ¹¹B NMR (Figure S25a).

 $NaNH_2BH_3$ (0.106 g, 2.0 mmol) and NH_3BD_3 (0.034 g, 1.0 mmol) were charged in a two-necked 25 mL flask with a magnetic stir bar, and THF (5 mL) was injected into the flask at room temperature. Then, the mixture was added to the THF solution of NiBr₂ at room temperature. A black precipitate was formed immediately. After 1.5 h, deuterium signals were determined by ²H NMR and assigned to BD₂ and BD₃ groups of Na[BD₃(NH₂BD₂)₂D] (Figure 2). ¹¹B NMR and ¹H NMR showed that the BD₂ and BD₃ groups are only partially deuterated (Figures S26 and S27).

4.14. Reaction of NaNH2BH3 with NiBr2 (20:1). In a glovebox, a 200 mL flask was charged with NiBr₂ (0.109 g, 0.5 mmol), and then the flask was connected to a vacuum line and ca. 15 mL THF was condensed into it. Another flask was charged with NaNH₂BH₃ (0.530 g, 10.0 mmol), and ca. 50 mL THF was condensed into it. Then, the THF solution of NaNH2BH3 was added to the THF solution of NiBr2 at 0 °C. After 10 h, the black precipitate was filtered, and then, 120 mL of n-hexane was added to the filtrate. A large amount of white solid precipitate was formed. The mixture was filtered again, and the white solid was dried under vacuum to give a white power product $Na[BH_3(NH_2BH_2)_2H]$ (0.191 g, 60%). ¹¹B NMR (193 MHz, CD₃CN): δ -8.3 (*t*, J_{B-H} = 100 Hz, BH₂), -21.8 ppm (*q*, J_{B-H} = 91 Hz, BH₃) (Figure 3a). ¹¹B{¹H} NMR (193 MHz, CD₃CN): δ -8.3 (s, BH₂), -21.8 ppm (s, BH₃) (Figure 3b). ¹H NMR (600 MHz, CD₃CN): δ 2.04 (*br t*, 4 H of 2 NH₂, J_{N-H} = 33 Hz), 1.87 (q, 2 H of BH_{2} , $J_{B-H} = 98$ Hz), 1.23 (q, 6 H of 2 BH_{3} , $J_{B-H} = 91$ Hz) ppm (Figure 3c). ${}^{1}H{}^{11}B{}$ NMR (600 MHz, CD₃CN): δ 2.04 (*br t*, 4 H of 2 NH_2 , $J_{\text{N-H}} = 33 \text{ Hz}$), 1.87 (q, 2 H of BH₂, $J_{\text{B-H}} = 4 \text{ Hz}$), 1.23 (br t, 6 H of 2 BH₃, $J_{B-H} = 82$ Hz) ppm (Figure 3d).

4.15. Reaction of NaNH₂BH₃ with CoCl₂ (2:1). A similar reaction was observed in the reaction of NaNH2BH3 with CoCl2. When the suspension of NaNH₂BH₃ (0.106 g, 2.0 mmol) in THF was dropwise added (the drop rate is about 0.1 mmol/min) to the flask filled with CoCl₂ (0.129 g, 1.0 mmol) at room temperature, a rapid reaction was initiated and the black precipitate was observed. A pungent smelling gas was also released during the reaction which was determined as ammonia and H_2 (Figure S28). The reaction solution was monitored by the $^{11}\mathrm{B}$ NMR in which a quartet peak appeared at δ -22.6 ppm, assigned to NH₃BH₃ (Figure S29). The black precipitate was filtered, noted as the precipitate 3, and then dried under vacuum. XRD determination of the precipitate 3 indicated that it contains NaCl (Figure S30), and FTIR confirmed the existence of N-H, B-H, and B-N stretches (Figure S31). The solvent of the filtration was removed to give a white $\rm NH_3BH_3$ powder. $^{11}\rm B$ NMR (193 MHz, THF), δ –22.6 ppm (q, J_{B-H} = 96.5 Hz) (Figure S29). ¹H NMR (600 MHz, C_6D_{6}): δ 4.47 ppm (s, H₂) (Figure S28). FTIR (cm⁻¹): 3410 (s), 3220 (s), 2440 (w), 1630 (w), 1410 (s), 1190(w), 1030(w), 696 (w) (Figure S31).

A similar procedure was repeated with the drop rate increased to 0.2 mmol/min (Figure S32) and 0.4 mmol/min (Figure S33) or the two solid reactants were directly mixed (Figure S34) and then 10 mL

of THF was added to the flask. All afforded $Na[BH_3(NH_2BH_2)_2H]$ as the major product with a small amount of NH_3BH_3 .

The black precipitate 3 dissolved in water showed a single peak at δ 12.8 ppm in ¹¹B NMR, assigned to borate (Figure S35). Some insoluble black precipitates were isolated and then dried under vacuum, noted as Co–B (4), which were characterized by XRD (Figure S36) and XPS (Figures S37 and 38).⁴²

4.16. Reaction of NaNH₂BH₃ with CoCl₂ (20:1). In a glovebox, a 200 mL flask was charged with CoCl₂ (0.065 g, 0.5 mmol), and then the flask was connected to a vacuum line and ca. THF (15 mL) was condensed into it. Another flask was charged with NaNH₂BH₃ (0.530 g, 10.0 mmol), and ca. 50 mL of THF was condensed into it. Then, the THF solution of NaNH₂BH₃ was added to the THF solution of CoCl₂ at 0 °C. After 8 h, the black precipitate was filtered, and then, 120 mL of *n*-hexane was added to the filtrate. A large amount of white solid precipitate was formed. The mixture was filtered again, and the white solid was dried under vacuum to give a white power product Na[BH₃(NH₂BH₂)₂H] (0.131 g, 41%) (Figure S39).

4.17. Reaction of NaNH₂BH₃ with Co–B. The hydrolysis product 4 was separated from the black precipitate 3. The black precipitate 3 was washed with ethanol and water, and then, the insoluble material was dried in vacuum at 100 °C for 6 h to obtain the hydrolysis product 4. In a glovebox, a 200 mL flask was charged with a magnetic stir bar and the hydrolysis product 4 (0.112 g), and then the flask was connected to a vacuum line and ca. THF (15 mL) was condensed into it. The suspension of NaNH₂BH₃ (0.424 g, 8.0 mmol) in THF was injected into the flask, and the reaction mixture was vigorously stirred for 15 h at 15 °C. This reaction was monitored by ¹¹B NMR. Pure Na[BH₃(NH₂BH₂)₂H] was isolated through the same method as mentioned above. The yield was 32% (Figure S40).

4.18. Cycle Reaction of NaNH₂BH₃ + CoCl₂. NaNH₂BH₃ (0.106 g, 2.0 mmol) and CoCl₂ (0.026 g, 0.2 mmol) were placed in a two-necked 25 mL flask with a magnetic stir bar, and THF (10 mL) was injected into the flask at room temperature. After 2 h, NaNH₂BH₃ was converted to Na[BH₃(NH₂BH₂)₂H] completely. The filtrate was filtered, the precipitate was washed with THF, and then the THF solution of NaNH₂BH₃ (0.106 g, 2.0 mmol) was added to the precipitate again. The same process was repeated five times (Figure S41).

ASSOCIATED CONTENT

1 Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00071.

NMR, PXRD, FTIR, XPS, and additional catalytic experiments (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Xi-Meng Chen School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China; Email: chenximeng@ htu.edu.cn
- Xuenian Chen School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China; Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China; orcid.org/0000-0001-9029-1777; Email: xnchen@htu.edu.cn

Authors

Ming-Yue Ju – School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China

Yu Guo – School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.1c00071

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21771057 to X.C. and 22001061 to X.-M.C.) and China Postdoctoral Science Foundation (Grant No. 2020M682309 to X.-M.C.). The authors would like to thank Prof. Qingchun Xia and Pengtao Qiu from Henan Normal University for valuable discussion on the XPS spectra analysis.

REFERENCES

(1) Shore, S. G.; Parry, R. W. The Crystalline Compound Ammonia Borane, H₃NBH₃. *J. Am. Chem. Soc.* **1955**, 77, 6084–6085.

(2) (a) Robertson, A. P. M.; Suter, R.; Chabanne, L.; Whittell, G. R.; Manners, I. Heterogeneous Dehydrocoupling of Amine-Borane Adducts by Skeletal Nickel Catalysts. *Inorg. Chem.* 2011, 50, 12680–12691. (b) Stubbs, N. E.; Robertson, A. P. M.; Leitao, E. M.; Manners, I. Amine-borane Dehydrogenation Chemistry: Metalfree Hydrogen Transfer, New Catalysts and Mechanisms, and the Synthesis of Polyaminoboranes. *J. Organomet. Chem.* 2013, 730, 84– 89. (c) Cui, C.; Ma, Y.; Zhang, J.; Chen, X. The Different Thermal Decomposition Behaviors of Amine Boranes. *Chem. Res.* 2019, 30, 454–462.

(3) Li, C.; Zhou, J.; Gao, W.; Zhao, J.; Liu, J.; Zhao, Y.; Wei, M.; Evans, D. G.; Duan, X. Binary Cu-Co Catalysts Derived from Hydrotalcites with Excellent Activity and Recyclability Towards NH₃BH₃ Dehydrogenation. *J. Mater. Chem. A* 2013, *1*, 5370–5376.
(4) Durak, H.; Gulcan, M.; Zahmakiran, M.; Ozkar, S.; Kaya, M. Hydroxyapatite-Nanosphere Supported Ruthenium(0) Nanoparticle Catalyst for Hydrogen Generation from Ammonia-Borane Solution: Kinetic Studies for Nanoparticle Formation and Hydrogen Evolution. *RSC Adv.* 2014, *4*, 28947–28955.

(5) (a) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. Transition Metal-Catalyzed Formation of Boron-Nitrogen Bonds: Catalytic Dehydrocoupling of Amine-Borane Adducts to Form Aminoboranes and Borazines. J. Am. Chem. Soc. 2003, 125, 9424–9434. (b) Han, D.; Anke, F.; Trose, M.; Beweries, T. Recent Advances in Transition Metal Catalysed Dehydropolymerisation of Amine Boranes and Phosphine Boranes. Coord. Chem. Rev. 2019, 380, 260–286.

(6) (a) Colebatch, A. L.; Weller, A. S. Amine-Borane Dehydropolymerization: Challenges and Opportunities. *Chem. Eur. J.* 2019, 25, 1379–1390. (b) Rossin, A.; Peruzzini, M. Ammonia-Borane and Amine-Borane Dehydrogenation Mediated by Complex Metal Hydrides. *Chem. Rev.* 2016, 116, 8848–8872.

(7) (a) Stephens, F. H.; Baker, R. T.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Acid Initiation of Ammonia-Borane Dehydrogenation for Hydrogen Storage. Angew. Chem. Int. Ed. 2007, 46, 746–749.
(b) Himmelberger, D. W.; Yoon, C. W.; Bluhm, M. E.; Carroll, P. J.; Sneddon, L. G. Base-Promoted Ammonia Borane Hydrogen-Release. J. Am. Chem. Soc. 2009, 131, 14101–14110. (c) Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. Base Metal Catalyzed Dehydrogenation of Ammonia-Borane for Chemical Hydrogen Storage. J. Am. Chem. Soc. 2007, 129, 1844–1845.

(8) (a) Coles, N. T.; Webster, R. L. Iron Catalyzed Dehydrocoupling of Amine- and Phosphine-Boranes. *Isr. J. Chem.* 2017, 57, 10701081. (b) Lau, S.; Gasperini, D.; Webster, R. L. Amine-Boranes as Transfer Hydrogenation and Hydrogenation Reagents: A Mechanistic Perspective. *Angew. Chem. Int. Ed.* **2021**, *60*, 2–25.

(9) Xiong, Z.; Yong, C. K.; Wu, G.; Chen, P.; Shaw, W.; Karkamkar, A.; Autrey, T.; Jones, M. O.; Johnson, S. R.; Edwards, P. P.; David, W. I. F. High-Capacity Hydrogen Storage in Lithium and Sodium Amidoboranes. *Nat. Mater.* **2008**, *7*, 138–141.

(10) Xiong, Z.; Wu, G.; Chua, Y. S.; Hu, J.; He, T.; Xu, W.; Chen, P. Synthesis of Sodium Amidoborane (NaNH₂BH₃) for Hydrogen Production. *Energy Environ. Sci.* **2008**, *1*, 360–363.

(11) Schlesinger, H. I.; Burg, A. B. Hydrides of Boron. VIII. The Structure of the Diammoniate of Diborane and its Relation to the Structure of Diborane. *J. Am. Chem. Soc.* **1938**, *60*, 290–299.

(12) Chua, Y.-S.; Chen, P.; Wu, G.; Xiong, Z. Development of Amidoboranes for Hydrogen Storage. *Chem. Commun.* 2011, 47, 5116–5129.

(13) Kang, X.; Fang, Z.; Kong, L.; Cheng, H.; Yao, X.; Lu, G.; Wang, P. Ammonia Borane Destabilized by Lithium Hydride: An Advanced On-Board Hydrogen Storage Material. *Adv. Mater.* **2008**, *20*, 2756–2759.

(14) Fijałkowski, K. J.; Grochala, W. Substantial Emission of NH₃ During Thermal Decomposition of Sodium Amidoborane, NaNH₂BH₃. J. Mater. Chem. **2009**, 19, 2043–2050.

(15) Zhao, Q.; Dewhurst, R. D.; Braunschweig, H.; Chen, X. A New Perspective on Borane Chemistry: The Nucleophilicity of the B-H Bonding Pair Electrons. *Angew. Chem. Int. Ed.* **2019**, *58*, 3268–3278.

(16) Chen, X.-M.; Ma, N.; Zhang, Q.-F.; Wang, J.; Feng, X.; Wei, C.; Wang, L.-S.; Zhang, J.; Chen, X. Elucidation of the Formation Mechanisms of the Octahydrotriborate Anion $(B_3H_8^-)$ through the Nucleophilicity of the B-H Bond. *J. Am. Chem. Soc.* **2018**, *140*, 6718–6726.

(17) Li, H.; Wang, R.; Xia, Q.; Yang, Q.; Wang, P.; Wei, C.; Ma, N.; Chen, X. The Reactivity of B-H Bond in $R \cdot BH_3$ Towards Phenol. *Chem. Res.* **2018**, *29*, 118–124.

(18) Forster, T. D.; Tuononen, H. M.; Parvez, M.; Roesler, R. Characterization of β -B-Agostic Isomers in Zirconocene Amidoborane Complexes. J. Am. Chem. Soc. **2009**, 131, 6689–6691.

(19) Zimmerman, P. M.; Paul, A.; Zhang, Z.; Musgrave, C. B. The Role of Free N-Heterocyclic Carbene (NHC) in the Catalytic Dehydrogenation of Ammonia-Borane in the Nickel NHC System. *Angew. Chem. Int. Ed.* **2009**, *48*, 2201–2205.

(20) Tang, C. Y.; Thompson, A. L.; Aldridge, S. Rhodium and Iridium Aminoborane Complexes: Coordination Chemistry of BN Alkene Analogues. *Angew. Chem. Int. Ed.* **2010**, *49*, 921–925.

(21) Myers, A. G.; Yang, B. H.; David, K. J. Lithium Amidotrihydroborate, a Powerful New Reductant. Transformation of Tertiary Amides to Primary Alcohols. *Tetrahedron Lett.* **1996**, *37*, 3623–3626.

(22) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. Pseudoephedrine as a Practical Chiral Auxiliary for the Synthesis of Highly Enantiomerically Enriched Carboxylic Acids, Alcohols, Aldehydes and Ketones. J. Am. Chem. Soc. **1997**, *119*, 6496–6511.

(23) Xu, W.; Wang, R.; Wu, G.; Chen, P. Calcium Amidoborane, A New Reagent for Chemoselective Reduction of α , β -Unsaturated Aldehydes and Ketones to Allylic Alcohols. *RSC Adv.* **2012**, *2*, 6005–6010.

(24) Xu, W.; Wu, G.; Yao, W.; Fan, H.; Wu, J.; Chen, P. Metal Amidoboranes: Superior Double-Hydrogen-Transfer Agents in the Reduction of Ketones and Imines. *Chem. Eur. J.* **2012**, *18*, 13885–13892.

(25) Xu, W.; Zhou, Y.; Wang, R.; Wu, G.; Chen, P. Lithium Amidoborane, A Highly Chemoselective Reagent for the Reduction of α , β -Unsaturated Ketones to Allylic Alcohols. *Org. Biomol. Chem.* **2012**, *10*, 367–371.

(26) Wolstenholme, D. J.; Traboulsee, K. T.; Decken, A.; McGrady, G. S. Structure and Bonding of Titanocene Amidoborane Complexes: A Common Bonding Motif with Their β -Agostic Organometallic Counterparts. *Organometallics* **2010**, *29*, 5769–5772.

(27) Helten, H.; Dutta, B.; Vance, J. R.; Sloan, M. E.; Haddow, M. F.; Sproules, S.; Collison, D.; Whittell, G. R.; Lloyd-Jones, G. C.; Manners, I. Paramagnetic Titanium (III) and Zirconium (III) Metallocene Complexes as Precatalysts for the Dehydrocoupling/ Dehydrogenation of Amine-Boranes. *Angew. Chem. Int. Ed.* **2013**, *52*, 437–440.

(28) Genovaa, R. V.; Fijalkowski, K. J.; Budzianowski, A.; Grochala, W. Towards $Y(NH_2BH_3)_3$: Probing Hydrogen Storage Properties of YX_3/MNH_2BH_3 (X = F, Cl; M = Li, Na) and YH_{x-3}/NH_3BH_3 Composites. Journal of Alloys and Compounds **2010**, 499, 144–148.

(29) Xu, W.; Fan, H.; Wu, G.; Chen, P. Comparative Study on Reducing Aromatic Aldehydes by Using Ammonia Borane and Lithium Amidoborane as Reducing Reagents. *New J. Chem.* **2012**, *36*, 1496–1501.

(30) He, T.; Wang, J.; Chen, Z.; Wu, A.; Wu, G.; Yin, J.; Chu, H.; Xiong, Z.; Zhang, T.; Chen, P. Metathesis of Alkali-Metal Amidoborane and FeCl_3 in THF. *J. Mater. Chem.* **2012**, *22*, 7478–7483.

(31) Chen, X.-M.; Li, H.; Yang, Q.-Y.; Wang, R.-R.; Hamilton, E. J. M.; Zhang, J.; Chen, X. Brønsted and Lewis Base Behavior of Sodium Amidotrihydridoborate (NaNH₂BH₃). *Eur. J. Inorg. Chem.* **2017**, 4541–4545.

(32) Chen, X.-M.; Wang, J.; Liu, S.-C.; Zhang, J.; Wei, D.; Chen, X. Controllable Syntheses of B/N Anionic Aminoborane Chain Complexes by the Reaction of NH_3BH_3 with NaH and the Mechanistic Study. *Dalton Trans.* **2019**, *48*, 14984–14988.

(33) (a) Chen, X.-M.; Liu, S.-C.; Xu, C.-Q.; Jing, Y.; Wei, D.; Li, J.; Chen, X. Unravelling A General Mechanism of Converting Ionic B/N Complexes into Neutral B/N Analogues of Alkanes: $H^{\delta_+} \cdots H^{\delta_-}$ Dihydrogen Bonding Assisted Dehydrogenation. *Chem. Commun.* **2019**, *55*, 12239–12242. (b) Ewing, W. C.; Marchione, A.; Himmelberger, D. W.; Carroll, P. J.; Sneddon, L. G. Syntheses and Structural Characterizations of Anionic Borane-Capped Ammonia Borane Oligomers: Evidence for Ammonia Borane H₂ Release via a Base-Promoted Anionic Dehydropolymerization Mechanism. J. Am. *Chem. Soc.* **2011**, *133*, 17093–17099.

(34) Castaño, J. G.; Arias, S.; Galvis, O. High-Temperature Oxidation Resistance of Ni-P and Ni-B Electroless Coatings on Mild Steel after Long-Term Tests. *Corros. Eng. Sci. Technol.* **2020**, *55*, 83–89.

(35) Wu, F.; Zhang, Z.; Zhang, F.; Duan, D.; Li, Y.; Wei, G.; Liu, S.; Yuan, Q.; Wang, E.; Hao, X. Exploring the Role of Cobalt in Promoting the Electroactivity of Amorphous Ni-B Nanoparticles Toward Methanol Oxidation. *Electrochim. Acta.* **2018**, *287*, 115–123. (36) (a) Resendiz-Lara, D. A.; Whittell, G. R.; Leitao, E. M.; Manners, I. Catalytic Synthesis, Characterization, and Properties of Polyaminoborane Homopolymers and Random Copolymers. *Macromolecules* **2019**, *52*, 7052–7064. (b) LaPierre, E. A.; Patrick, B. O.; Manners, I. Trivalent Titanocene Alkyls and Hydrides as Well-Defined, Highly Active, and Broad Scope Precatalysts for Dehydropolymerization of Amine-Boranes. *J. Am. Chem. Soc.* **2019**, *141*, 20009–20015.

(37) (a) Johnson, H. C.; Leitao, E. M.; Whittell, G. R.; Manners, I.; Lloyd-Jones, G. C.; Weller, A. S. Mechanistic Studies of the Dehydrocoupling and Dehydropolymerization of Amine-Boranes Using a [Rh(Xantphos)]⁺ Catalyst. J. Am. Chem. Soc. **2014**, 136, 9078–9093. (b) Adams, G. M.; Ryan, D. E.; Beattie, N. A.; McKay, A. I.; Lloyd-Jones, G. C.; Weller, A. S. Dehydropolymerization of H₃B-NMeH₂ Using a [Rh(DPEphos)]⁺ Catalyst: The Promoting Effect of NMeH₂. ACS Catal. **2019**, 9, 3657–3666.

(38) (a) Colebatch, A. L.; Hawkey Gilder, B. W.; Whittell, G. R.; Oldroyd, N. L.; Manners, I.; Weller, A. S. A General, Rhodium-Catalyzed, Synthesis of Deuterated Boranes and N-Methyl Polyaminoboranes. *Chem. Eur. J.* **2018**, *24*, 5450–5455. (b) Algarra, A. G.; Sewell, L. J.; Johnson, H. C.; Macgregor, S. A.; Weller, A. S. A Combined Experimental and Computational Study of Fluxional Processes in Sigma Amine-Borane Complexes of Rhodium and Iridium. *Dalton Trans.* **2014**, *43*, 11118–11128. (39) (a) Li, H.; Ma, N.; Meng, W.; Gallucci, J.; Qiu, Y.; Li, S.; Zhao, Q.; Zhang, J.; Zhao, J.-C.; Chen, X. Formation Mechanisms, Structure, Solution Behavior, and Reactivity of Aminodiborane. J. Am. Chem. Soc. **2015**, 137, 12406–12414. (b) Kawano, Y.; Shimoi, M. H/D Scrambling in a Chromium-Catalyzed Dehydrocoupling Reaction of a Borane-Dimethylamine Adduct. Dalton Trans. **2017**, 46, 11950–11955.

(40) Izgi, M. S.; Onat, E.; Çelik Kazici, H.; Şahin, Ö. Hydrogen Production through the Cooperation of a Catalyst Synthesized in Ethanol Medium and the Effect of the Plasma. *Energ. Source. Part A* **2019**, 1-14.

(41) (a) Narayana, C.; Periasamy, M. A Simple Convenient Method for the Generation of Diborane from NaBH₄ and I₂. *J. Organomet. Chem.* **1987**, 323, 145–147. (b) Chen, X.; Bao, X.; Billet, B.; Shore, S. G.; Zhao, J.-C. Large-Scale and Facile Preparation of Pure Ammonia Borane through Displacement Reactions. *Chem. Eur. J.* **2012**, *18*, 11994–11999.

(42) Keskin, E.; Coşkuner Filiz, B.; Kiıliıç Depren, S.; Kantürk Figen, A. Recommendations for Ammonia Borane Composite Pellets as a Hydrogen Storage Medium. *Int. J. Hydrogen Energ.* **2018**, *43*, 20354–20371.