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ABSTRACT: We have designed linear metalloligands which contain a central photoactive [Ru(N∧N)3]
2+ unit bordered by

peripheral metal binding sites. The combination of these metalloligands with Zn(II) and Fe(II) ions leads to heterometallic
tetrahedral cages, which were studied by NMR spectroscopy, mass spectrometry, and photophysical methods. Like the parent
metalloligands, the cages remain emissive in solution. This approach allows direct incorporation of the favorable properties of
ruthenium(II) polypyridyl complexes into larger self-assembled structures.

1. INTRODUCTION

Self-assembled discrete supramolecular structures have dem-
onstrated valuable applications in sensing,1−4 separations or
selective encapsulation,5−7 drug delivery,8−10 and for control-
ling substrate reactivity and catalysis.11−17 Metallosupramo-
lecular cages18−27 often assemble predictable three-dimen-
sional architectures programmed by the coordination prefer-
ences of metal ions and geometries of organic linker units.
Early examples of catalytic metallosupramolecular cages
exploited the size restriction of the cavities to facilitate the
reaction occurring inside.28−30 Recent focus has turned to
transition-metal-catalyzed reactions, with the active species
encapsulated within,31−37 or appended to,38,39 the central
cavity. While co-encapsulation has proven to be an effective
approach for catalysis within cages, preorganizing the active
units into the components of the cage structure itself is
potentially a more robust method to ensure the catalyst cannot
dissociate from the cage structure. Examples of luminescent
cages40−48 have been reported, and recent work has
demonstrated photoinduced energy transfer between cages
and bound guests.49−51 The ruthenium(II) complex [Ru-
(bpy)3]

2+ (bpy = 2,2′-bipyridine) is perhaps the best known
photosensitizer,52 and in recent years has continued to show its
versatility in catalyzing a variety of photoredox reactions.53−59

These types of chromophores have been incorporated into

MOFs60−63 and molecular cages,41,64−68 and photocatalysis
has been recently reported within a molecular cage formed
with ruthenium(II) polypyridyl chromophores bridged by
palladium(II) ions.69 We reported [Ru(tpy)2]

2+ units (tpy =
2,2′:6′,2″-terpyridine) functionalized with pendant pyridyl
groups which could be assembled into discrete cages with
palladium(II) ions,70 although these cages are not emissive at
room temperature, as expected for this class of bistridentate
complexes.71 Herein, we report three new metallosupramo-
lecular cages based on metalloligands bearing a photoactive
[Ru(N∧N)3]

2+ motif where the useful photophysical properties
are maintained in the cage structures.
Complex [Ru(phen)2(1)](PF6)2 (Scheme 1) can be

functionalized with additional binding sites for metal ions,72

with the installation of 4-pyridyl groups allowing the assembly
of hetereodimetallic one-dimensional coordination polymers.72

In this work, a bidentate chelating site was chosen to direct the
assembly of a discrete tetrahedral structure in conjunction with
an octahedral metal ion, inspired by the work of Lindoy,73−75

Nitschke,51,76−82 Raymond,83−86 and Lusby.87−89
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2. EXPERIMENTAL SECTION
2.1. General. Synthetic schemes and detailed spectroscopic

assignments are given in the Supporting Information. 1H and
13C{1H} NMR assignments were made using 2D-NMR methods
(COSY, HSQC, HMBC) and are unambiguous unless stated
otherwise. 5-Bromo-2,2′-bipyridine,90 5,5′-dibromo-2,2′-bipyridine
(1),90 5-bromo-2-(1,3-dioxolan-2-yl)pyridine,91 2-(1,3-dioxolan-2-
yl)-5-pyridineboronic acid pinacol ester,92 and [Ru(phen)2(1)]-
(PF6)2

72 were prepared by reported procedures.
2.2. Single Crystal X-ray Diffraction. A summary of crystallo-

graphic data and refinement parameters is shown in Table S2. Data
were deposited with the Cambridge Structural Database (CCDC
entries: 1839130 and 1839131). Single crystals of {[Ru(phen)2(3)]-
(PF6)2·0.5(MeCN)} were measured by Si<111> monochromated

synchrotron X-ray radiation (λ = 0.71073 Å) (MX1 Beamline at the
Australian Synchrotron). Single crystals of 2,2′:5′,3″:6″,2‴-quaterpyr-
idine {1.5(C20H15N4)} were measured on a Bruker kappa-II CCD
diffractometer using IμS Incoatec Microfocus Source with Mo Kα
radiation (λ = 0.710723 Å).

{[Ru(phen)2(3)](PF6)2·0.5MeCN}. C55H37.5F12N10.5P2Ru, M =
1236.46, red platelets, triclinic, space group P1̅, a = 12.290(3) Å, b
= 14.930(3) Å, c = 15.050(3) Å, α = 109.38(3)°, β = 100.72(3)°, γ =
95.73(3)°, V = 2523.4(10) Å3, Z = 2, ρcalc = 1.627 g cm−3, μ(Mo Kα)
= 0.471 mm−1, T = 100(2) K, 84 390 reflections collected.
Refinement of 726 parameters using 11 909 independent reflections
against F2 converged at final R1 = 0.0776 (R1 all data = 0.0886), wR2 =
0.2198 (wR2 all data = 0.2367), GooF = 1.065.

{1.5(2,2′:5′,3″:6″,2‴-Quaterpyridine)}. C20H14N4, M = 310.35,
colorless plate, monoclinic, space group P21/c, a = 26.627(4) Å, b =

Scheme 1. Synthetic Route to Racemic Complexes [Ru(phen)2(3)](PF6)2 and [Ru(phen)2(4)](PF6)2 and the Numbering
Scheme Adopted

Figure 1. Partial 1H NMR spectra (500 MHz, CD3CN) of (a) [Ru(phen)2(4)](PF6)2; (b) [Ru(phen)2(3)](PF6)2; (c) [Ru(phen)2(6)](PF6)2; (d)
[Ru(phen)2(7)](PF6)2.
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7.2406(10) Å, c = 11.7009(15) Å, α = 90°, β = 102.112(10)°, γ = 90°,
V = 2205.7(5) Å3, Z = 6, ρcalc = 1.402 g cm−3, μ(Mo Kα) = 0.086
mm−1, T = 150(2) K, 19 035 reflections collected. Refinement of 325
parameters using 4816 independent reflections against F2 converged
at final R1 = 0.0524 (R1 all data = 0.0947), wR2 = 0.1494 (wR2 all data
= 0.1932), GooF = 1.029.

3. RESULTS AND DISCUSSION
3.1. A Sexipyridine-Functionalized Metalloligand. We

aimed to selectively install a ruthenium complex into a specific
site of a linear ligand with three identical bidentate domains.
This required a synthetic strategy where the desired
ruthenium-containing chromophore is synthesized first,
followed by elaboration directly upon the complex to introduce
the additional binding sites. This approach is essential to
ensure the ruthenium center, which can be generally
considered to be substitution inert, is selectively placed in a
single binding site of the ligand, with the remaining bidentate
sites available for coordination with labile metal ions for self-
assembly. We have previously shown heteroleptic ruthenium-
(II) polypyridyl complexes functionalized with bromo
substituents are suitable for palladium(0)-mediated cross-
coupling reactions,72 and here the complex [Ru(phen)2(1)]-
(PF6)2 (phen = 1,10-phenanthroline; 1 = 5,5′-dibromo-2,2′-

bipyridine, Scheme 1) was used. The required coupling
partner, 5-(2,2′-bipyridine)boronic acid pinacol ester (2) was

Figure 2. Left: an ORTEP representation of the complex cation in the single crystal X-ray structure of {[Ru(phen)2(3)](PF6)2·0.5MeCN}, with
thermal ellipsoids shown at 30% probability. Ru: teal, C: gray, N: blue, H: white. Right: a CPK representation of the face-to-face and edge-to-face
π−π stacking interactions, with alternating complexes shown in red and blue. Anions and solvent molecules are omitted for clarity.

Scheme 2. Formation of Tetrahedral Cage [Fe-5]20+a

aOnly three of the six ligands are shown for clarity.

Figure 3. Full HR-ESI mass spectrum of cage [Zn-5](PF6)20 in
MeCN. Inset: observed and theoretical isotope pattern for {[Zn-
5](PF6)15}

5+.
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synthesized from 5-bromo-2,2′-bipyridine. This borylation was
carried out by lithiation, quenching with tributylborate,
followed by the addition of pinacol. The boronic ester has
previously been synthesized using a Miyaura coupling
method;95 however, attempts to reproduce this reaction gave
the homocoupled 2,2′:5′,3″:6″,2‴-quaterpyridine product as
the major isolated species. See the Supporting Information for
details.93

The metalloligand [Ru(phen)2(3)](PF6)2 (3 = 2,2′:5′,3″:
6″,2‴:5‴,3⁗:6⁗,2⁗′-sexipyridine) was synthesized by palla-
dium(0)-catalyzed Suzuki coupling reaction between [Ru-
(phen)2(1)](PF6)2 and boronic ester 2. The reaction was
carried out with Cs2CO3 and Pd(PPh3)4 in DMF at 120 °C for
45 min in a microwave reactor. The metalloligand complex
[Ru(phen)2(3)](PF6)2 was isolated in 84% yield as the PF6

−

salt from an aqueous workup with KPF6. Attempts to prepare
the free sexipyridine ligand (3) by reaction of 1 and 2 under
identical conditions, or in other solvent mixtures (e.g., DMSO,
dioxane/i-PrOH, DMF/DME/water), did not afford the
desired compound. Instead, the major species identified in
the reaction mixture were free 1 and 2,2′:5′,3″:6″,2‴-
quaterpyridine. The latter was isolated, and its single crystal
X-ray structure determined (see section S7.2). This finding
suggests that the bromo-functionalized ligand is relatively
activated toward cross-coupling, with respect to dehalogena-
tion, when coordinated to the ruthenium(II) center. The
simpler model compound [Ru(phen)2(4)](PF6)2 (4 = 3,3′:
6′,2″:5″,3‴-quaterpyridine) was prepared in 61% yield using
an analogous procedure with 3-pyridineboronic acid neopentyl
glycol ester.

Scheme 3. Synthesis of the Racemic Complex [Ru(phen)2(7)](PF6)2 and the Numbering Scheme Adopted

Scheme 4. Synthesis of Cage [Zn-8]20+a

aOnly three of the six ligands are shown for clarity.
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Complexes [Ru(phen)2(3)](PF6)2 and [Ru(phen)2(4)]-
(PF6)2 were characterized in detail by 1H and 13C NMR,
electrospray ionization mass spectrometry (ESI-MS), absorp-
tion and emission properties, and for [Ru(phen)2(3)](PF6)2
also by single crystal X-ray diffraction. The 1H NMR spectra
are shown in Figure 1, and all signals were assigned using the
methods previously described.94 Upon exchange of bromo
groups for pyridyl functional groups, the 1H NMR signals of
the phenanthroline ligands are largely unaffected by the
changes in the bpy ligand. The signals corresponding to the
central bpy unit are in similar environments in [Ru(phen)2-
(3)](PF6)2 and [Ru(phen)2(4)](PF6)2, with the protons
shifted further upfield in the model complex. Similarly,
comparison of the signals for the B rings (see Scheme 1 for
atom labeling) in the complexes shows that the protons are
shifted further downfield in [Ru(phen)2(3)](PF6)2, with the
most pronounced change shown for HB3 upon substituting a
pyridyl ring in the 2-position, causing a shift of 1.05 ppm.
Single crystals of [Ru(phen)2(3)](PF6)2 suitable for X-ray

crystallography were grown by slow diffusion of diethyl ether
into an acetonitrile solution of the complex. The structure is
shown in Figure 2 and contains a single complex in the
asymmetric unit. The spy ligand (3) in the structure is slightly
bent due to coordination of the ruthenium(II) center to the
central bipyridyl unit (angle between atom C26, the center of

the C37−C40 bond, and atom C53 is 170°). One of the
terminal bpy units is involved in weak face-to-face π−π
stacking with the central bpy unit of an adjacent complex
(centroid-to-plane distance of 3.485 Å), whereas the other
terminal bpy unit is engaged in closer edge-to-face interactions
(centroid of ring containing N10 to C3i = 3.33(1) Å,
centroid···H−C = 2.58 Å, i = 1 = x, y, z). The terminal bpy
ligand not involved in face-to-face stacking is the more planar,
with the two pyridyl rings almost perfectly coplanar (angle
between the least-squares planes of the two rings = 2.96°; the
angle between the least-squares planes of the two rings of the
other terminal bpy unit is 11.14°). Coplanarity is expected for
free 2,2′-bipyridine units due to favorable intramolecular N···
HC interactions. The complexes are assembled via weak
phenyl−phenyl embraces96−98 between the equivalent phenan-
throline ligands of adjacent complexes (plane-to-plane
separation 3.464 Å).
The [Ru(phen)2(3)](PF6)2 complex was self-assembled into

molecular cages by reaction with labile metal(II) ions. The self-
assembly was attempted with a variety of first row transition
metalsiron(II), cobalt(II), cobalt(III), nickel(II), and zinc-
(II)to probe a number of possible structures from different
preferred coordination geometries. However, using iron(II)
and zinc(II) gave the most success in the self-assembly, while
the other metal ions produced species that were difficult to
identify or isolate.
As an example, 3 equiv of [Ru(phen)2(3)](PF6)2 and 2

equiv of Fe(BF4)2·6H2O were reacted in acetonitrile at 80 °C
for 24 h, followed by anion metathesis with aqueous KPF6. The
resulting red solid was collected on Celite and washed with
water, then dissolved in acetonitrile. The self-assembled
structures are consistent with the [Fe4L6](PF6)20 stoichiometry
expected for the tetrahedral cage [Fe-5](PF6)20 (Scheme 2).
High resolution electrospray ionization (ESI) mass spectrom-
etry revealed highly charged 4+, 5+, and 6+ species for
iron(II)-containing cages corresponding to the loss of
counterions, in each case matching calculated isotope patterns
(see Figures S3 and S4). The 1H NMR spectrum of the
reaction of [Ru(phen)2(3)](PF6)2 with Fe(BF4)2·6H2O
(Figure S17) shows a mixture of species in solution, so we
monitored the assembly process over time to investigate
whether this was due to prematurely terminating the reaction
before thermodynamic equilibrium had been reached.
The reaction of [Ru(phen)2(3)](PF6)2 with Fe(BF4)2·6H2O

in CD3CN was monitored by 1H NMR at 80 °C for several
days (Figure S19). Upon initial mixing of the reagents, a broad
featureless 1H NMR spectrum is observed, consistent with a
kinetic mixture of different oligomeric products. After heating,
the spectrum becomes simpler with sharper signals suggesting
the presence of several similar products. After 24 h, no further
changes in the 1H NMR spectrum were observed, and the
reaction appears to be complete and that the end product
mixture is a thermodynamic minimum. The reaction was
treated with aqueous KPF6, and the resulting precipitate was
collected on Celite, washed with water, and redissolved in
CD3CN. It is clear one of the species present in the reaction is
removed (decomposed) by this procedure; for example, the
signal at 9.0 ppm disappears after workup. The number of
separate signals in the spectrum after workup indicated the
major product formed has low symmetry (i.e., not T
symmetry). The concentration dependence of the mixture
was also studied in CD3CN (Figure S23), and although signals
became sharper at lower concentrations, no evidence for a

Figure 4. A semi-empirical (PM3) model of cage [Zn-8]20+.
Hydrogen atoms are omitted for clarity. Zn(II) (purple) and Ru(II)
(teal) are shown as balls; all bonds are shown as sticks. The Ru(II)
ions are modeled as Δ isomers and the Zn(II) ions as Λ isomers. The
top zinc(II) ion is shown coordinated to three separate residues
colored red, green, and blue.

Table 1. Summary of Calculated Diffusion Coefficients and
Hydrodynamic Radii Measured by NMR in CD3CN

a

compound
diffusion coefficient/

10−10 m2 s−1
hydrodynamic

radius/Å

[Ru(phen)2(3)](PF6)2 10.4 ± 0.5 6.2 ± 0.3
[Ru(phen)2(7)](PF6)2 11.7 ± 0.3 5.4 ± 0.2
[Fe-5](PF6)20 5.51 ± 0.05 11.6 ± 0.1
[Zn-5](PF6)20 5.60 ± 0.05 11.4 ± 0.1
[Zn-8](PF6)20 4.35 ± 0.08 14.7 ± 0.3

aHydrodynamic radii calculated using the Stokes−Einstein equation.
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change in the product distribution was observed over the
concentration range studied (∼0.2 to 1 mM). The related
reaction of [Ru(phen)2(3)](PF6)2 and Zn(NTf2)2 in acetoni-
trile gave a self-assembled product with highly charged HR-
ESI-MS signals corresponding to sequential loss of PF6

− anions
from the tetrahedral cage [Zn-5](PF6)20 (Figure 3), and the
1H NMR spectrum was also consistent with the product
distribution similar to that described with iron(II) (Figure
S17).
It is known that related, but smaller, tetrahedral cages

formed with short, rigid ligands can exist as mixtures of
stereoisomers which differ only in the stereochemistry of the
vertices (Λ or Δ).78,79 However, in the case of cage [M-5]20+,
the ruthenium(II) center on the metalloligands can also be Λ
or Δ configuration. This combination will give rise to the
possibility of many diastereomers with a large number of
slightly different proton environments to result in the observed
complicated spectrum. Free rotation about the carbon−carbon
bonds between the bpy units of the metalloligand would allow
the [Ru(phen)2(bpy)] units to rotate to avoid any unfavorable
steric clashes between neighboring units. This may result in
ruthenium(II) centers on adjacent metalloligands being
sufficiently close to cause noticeable differences in their 1H
NMR environments, but not so restricted that the stereo-
chemistry of one center can dictate the stereochemistry of the
next. Similarly, the stereochemistry of the ruthenium(II)
centers can be expected to have little influence on the

stereochemistry of the vertices simply due to the geometrical
arrangement of the groups.
To alleviate some of the complexity caused by this

isomerism, [Ru(phen)2(3)](PF6)2 was prepared as the
enantiopure Λ isomer. This was achieved by resolving
[Ru(phen)2(py)2]

2+ (py = pyridine) into its enantiomers,99

followed by chelation of 1 to form Λ-[Ru(phen)2(1)](PF6)2.72
The Suzuki coupling with 2 was also carried out in the
microwave as for the racemic complex, giving Λ-[Ru(phen)2-
(3)](PF6)2 in 47% yield. The formation of cage [Fe-5]20+ with
the enantiopure metalloligand Λ-[Ru(phen)2(3)](PF6)2 re-
sulted in some simplification of the 1H NMR spectrum
compared to that of the cage assembled with the racemate
(Figure S20). There was a significant increase in the
proportion of the product with the signal at 9.0 ppm, which
was removed during workup, as occurred for the racemic case.
The final isolated sample has a relatively simple spectrum and
suggests a single major tetrahedral cage species. Circular
dichroism spectra of Λ-[Ru(phen)2(3)](PF6)2 and its self-
assembled [Fe-5](PF6)20 cage are essentially identical (Figure
S31), indicating that the only chirality in the cage arises from
the ruthenium(II) centers; i.e., the orientation of the metal
ions at the vertices is not influenced by the chirality of the
metalloligand.

3.2. A Cage with Capped Vertices. To use the assembled
cages for photoredox applications, two key requirements are
(i) the photophysical properties of the ruthenium(II)

Figure 5. All samples were measured in acetonitrile at 298 K with [RuII] ≈ 0.06 mM. (a, b) Absorption spectra of the metalloligands and the
respective cages formed with Zn(II) and Fe(II) metal centers. Extinction coefficients are normalized to the concentration of ruthenium(II) centers
present for comparison. The Zn(II) cages display the same absorption profiles as the mononuclear complexes, showing that self-assembly with
Zn(II) has no effect on absorption energies. (c, d) Normalized emission (λex = 450 nm) of the metalloligands and their respective cages formed
with Zn(II) and Fe(II) metal centers. The cages retain the emissive properties of the ligands, with some quenching which is more prevalent in cage
[Zn-8](PF6)20.
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chromophores must be preserved in the assembled species and
(ii) the cages must not disassemble, even at very low
(catalytic) concentrations. Transition metal centers such as
iron(II) can be highly effective for quenching ruthenium(II)
excited states by acting as effective electron acceptors/
donors.100−102 A safer option is to opt for d10 metal ions as
the vertices of the cage, such as zinc(II), which are generally
resistant to redox processes. However, the d10 configuration
leads to two consequences: the Zn−N bonds are typically
labile, and there are no strong coordination geometry
preferences around the zinc(II) center. These issues create
difficulties with using zinc(II) ions for self-assembly. We were
inspired by Würthner and co-workers,3 who prepared an
impressive tetrahedral cage with zinc(II) vertices and the
p y r i d y l im i n e c h em i s t r y u s e d e x t e n s i v e l y b y
Nitschke.77,80,103−106 In that example, a perylene bisimide
featuring 2-pyridylcarboxaldehyde substituents was condensed
with a tridentate capping unit, tren (tren = tris(2-aminoethyl)-
amine), and a source of zinc(II) ions to form tris-
(pyridylimine) binding units as the vertices of the cage. A
1:0.9:0.7 ratio of diastereomeric cages was reported at 50 °C in
CD3CN, consistent with the poor transfer of chiral information
between the vertices expected for long ligands.3 We would
expect a similar situation for our ruthenium(II)-containing
cages prepared using the same approach, although these cages
would be significantly smaller. Suzuki coupling of [Ru(phen)2-
(1)](PF6)2 and a pyridyl unit with a protected aldehyde group
and a boronic ester gave [Ru(phen)2(6)](PF6)2 which was
deprotected to generate the desired dialdehyde complex
[Ru(phen)2(7)](PF6)2 in 85% yield over these two steps
(Scheme 3). The complexes were also fully characterized by
1H and 13C NMR, electrospray ionization mass spectrometry
(ESI-MS), and absorption and emission properties. The 1H
NMR spectra are shown in Figure 1, and display similar trends
as [Ru(phen)2(3)](PF6)2 and [Ru(phen)2(4)](PF6)2 upon
substituting pyridyl groups for the bromo functionalities, with
the signal of HB3 being shifted downfield by 0.38 ppm on
substitution.
To prepare the desired cage [Zn-8]20+, 3 equiv of

[Ru(phen)2(7)](PF6)2, 2 equiv of tren, and 2 equiv of
Zn(NTf2)2 were reacted in acetonitrile at 50 °C for 5 h,
followed by anion exchange with aqueous KPF6 as described
previously (Scheme 4). High resolution ESI-MS (Figures S5
and S6) showed a series of highly charged (7+, 6+, 5+, 4+)
signals with isotope patterns matching the calculated patterns
for sequential loss of PF6

− from [Zn-8](PF6)20. Additional
higher mass signals of the same charge were observed for each
of these signals, possibly corresponding to the encapsulation of
neutral solvent molecules. The aromatic region of the 1H
NMR spectrum (Figure S18) is considerably simpler than
those of the [M-5]20+ cages, in part due to this cage having
fewer proton environments. The signals are broad and
consistent with a collection of equilibrated isomers. The
concentration dependence of the mixture was also studied in
CD3CN (Figure S24), and although some hydrolysis was
observed at low (∼0.1 mM) concentrations, no significant
change in the product distribution was observed. This is also
consistent with the formation of discrete species of the same
size, as opposed to mixtures of oligomers which might be
expected to show more pronounced concentration depend-
ence.
Using variable temperature NMR in DMSO-d6, we

monitored the 1H NMR spectrum over a range from 25 to

125 °C (Figure S22). At higher temperatures, the aromatic
signals do significantly sharpen, yet are unable to reach a
completely symmetrical fast exchange regime. Significantly, on
cooling the sample back to room temperature, a spectrum
identical to that prior to heating was obtained, verifying the
observed changes are not due to irreversible decomposition of
the cage and suggesting a highly robust structure.
The self-assembly of cage [Zn-8]20+ was also monitored in

CD3CN with the reaction mixture maintained at 50 °C for 5
days (Figure S21). Immediately after mixing, the aldehyde is
consumed, as expected, and significant shifts in the signals of
the methylene linkers of the tren residue are observed. The
aromatic region of the 1H NMR spectrum did not display any
further changes after 5 h of heating. However, the aliphatic
region did continue to undergo significant changes. Initially, a
series of relatively sharp signals between 4.0 and 2.5 ppm are
observed, potentially due to partially condensed tren units
(that would still be expected to be reasonable ligands for
zinc(II)). Following extensive heating, the methylene groups
are able to adopt a wide range of relative conformations which
must be close in energy in part due to the flexible coordination
geometry of the zinc(II) center. After workup, all of the sharp
signals from the aliphatic region are removed, suggesting these
may be structures that feature free amine groups that might
result in higher solubility in water.

3.3. Molecular Modeling. In order to estimate the size of
the tetrahedral cage [Zn-8]20+, a simple PM3 model was
calculated and is shown in Figure 4. The estimated length of
one edge of the tetrahedron is approximately 26 Å, and the
central cavity has a volume of approximately 340 Å3.

3.4. Diffusion NMR Studies. Diffusion NMR, often
presented as DOSY plots, is a powerful tool for differentiating
species on the basis of their rates of diffusion, and for
estimating their relative sizes. It has become a standard tool of
supramolecular chemists for characterizing molecular cages
and capsules.107−110 We measured the diffusion coefficients of
the mononuclear [Ru(phen)2(3)](PF6)2 and [Ru(phen)2(7)]-
(PF6)2 complexes, in addition to the self-assembled cage
structures formed from these components; the data are shown
in Table 1. The measured diffusion coefficients of the
mononuclear complexes correspond to hydrodynamic radii of
5.4 and 6.2 Å. From the X-ray crystal structure of
[Ru(phen)2(3)](PF6)2, the smallest box that encapsulates
the cation is approximately 25.6 × 9.6 × 10.7 Å which might
suggest a hydrodynamic radius ∼ 8 Å if this volume is
approximated as a sphere. The observed hydrodynamic radius
is a little shorter, perhaps not surprising given the complex is
far from being approximately a sphere.
As expected, the self-assembled structures have smaller

diffusion coefficients than the mononuclear metalloligands. For
cages [Fe-5]20+ and [Zn-5]20+, these correspond to hydro-
dynamic radii of 11.6 and 11.4 Å, respectively. For cage [Zn-
8]20+, the expected length (from a PM3 model) for one edge of
the tetrahedron is approximately 26 Å. Such a tetrahedron
which would fit inside a sphere of radius 16 Å and, as this is a
more reasonable approximation for a sphere, we observe good
agreement with the calculated hydrodynamic radius (14.7 Å).
It must be emphasized that, in estimating sizes, no
consideration has been given to the volume of the many
anions present which must diffuse with the cationic cage, and it
is remarkable that there is any agreement at all with predicted
sizes. That said, there is no doubt the mononuclear complexes
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have been assembled into much larger structures, consistent
with the proposed tetrahedral cages.
3.5. Photophysical Properties. Finally, we turn our

attention to the photophysical properties of the cages. Figure
5a shows the absorption spectra of [Ru(phen)2(3)](PF6)2,
[Fe-5](PF6)20, and [Zn-5](PF6)20, normalized for the
concentration of ruthenium(II) in all cases. The absorption
spectra of [Ru(phen)2(3)](PF6)2 and [Zn-5](PF6)20 are
essentially identical as the coordination of zinc(II) to the
terminal bpy groups will not generate a new chromophore. In
both compounds, the MLCT band has a maximum absorption
at 450 nm and the ligand-centered transitions appear at higher
energies, with the extended conjugation of ligand 3 resulting in
the absorbance band at 350 nm. In cage [Fe-5](PF6)20,
coordination of the iron(II) ions shifts the energy of this
ligand-centered transition. Figure 5b makes the same
comparison between [Ru(phen)2(7)](PF6)2 and [Zn-8]-
(PF6)20. Here, some change in the absorption spectrum is
observed as an aldehyde group is being replaced with an imine,
which has some influence on the electronic properties of the
ruthenium(II) center. Panels (c) and (d) in Figure 5 compare
the emission data for the mononuclear complexes with the
cage structures, normalized for absorption at 450 nm. In cages
[Zn-5](PF6)20 and [Fe-5](PF6)20, minimal quenching is
observed relative to the mononuclear parent complexes and
both cages remain strongly emissive in solution. The emission
energy of [Fe-5](PF6)20 is blue-shifted compared to both [Zn-
5](PF6)20 and its parent complex. Cage [Zn-8](PF6)20 also
remains emissive in solution, although it experiences a
noticeably greater level of quenching compared to the [M-
5](PF6)20 cages.

4. CONCLUSIONS
Using a metalloligand approach, we have installed inert
luminescent [Ru(bpy)3]-like complexes on the linker units of
tetrahedral molecular cages. These cages retain the photo-
physical properties of the parent complexes and are not
susceptible to disassembly, even at low concentrations. The
formation of a complicated mixture of stereoisomers, even
where the stereochemistry of the ruthenium centers was
controlled, prevents a detailed analysis of their host−guest
chemistry, but we anticipate this approach will prove useful for
preparing functional molecular photoreactors.
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