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p-Quinols are ubiquitous structural motifs of various natural products and pharmaceutical compounds, and versatile building 
blocks in synthetic chemistry. The reported methods for the synthesis of p-quinol require stoichiometric amounts of oxidants. 
Molecular oxygen is considered as an ideal oxidant due to its natural, inexpensive, and environmentally friendly characteristics. 
During the ongoing research of C–H bond hydroxylation, we found that multi-alkyl phenols could react with molecular oxygen 
under mild conditions. Herein, we describe an efficient oxidative de-aromatization of multi-alkyl phenols to p-quinols. 1 atm 
of molecular oxygen was used as the oxidant. Many multi-alkyl phenols could react smoothly at room temperature. Isotopic 
labeling experiment was also performed, and the result proved that the oxygen atom in the produced hydroxyl group is from 
molecular oxygen. 
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1  Introduction 

p-Quinol moiety (4-hydroxy-2,5-cyclohexadienone) is a 
structural component of a great number of natural products 
such as Teteapetalone [1], Manumycin A [2], Frondosin C 
[3], and Elisabethol [4] (Figure 1), as well as being useful 
synthetic intermediates in organic synthesis [5–8], and pre-
sent in various novel therapeutic agents [9–12]. In this con-
text, the development of efficient procedures for synthesis 
of p-quinols is of great importance [13,14]. A frequently 
used method for the preparation of p-quinols is oxidative 
de-aromatization of 4-substituted phenols [15–35]. Among 
those reported methods, stoichiometric amounts of oxidants, 
such as [(diacetoxy)iodo]benzene (PIDA) [15], [bis(trifluo-                                           
roacetoxy)iodo]benzene (PIFA) [16–19], thallium(III) ni-

trate trihydrate (Tl(NO3)3·3H2O, TTN) [20], 3-chloroper-          
benzoic acid (m-CPBA) [21,22], perchloric acid (HClO4) 
[23], periodic acid (H5IO6) [24], hydrogen peroxide (H2O2)  

 
Firgure 1  Natural products with p-quinol fragment. 



2 Liang et al.   Sci China Chem   June (2015) Vol.58 No.6 

[25,26], oxone (potassium peroxymonosulfate) [27–29], etc. 
[30–35] were employed. Molecular oxygen is natural, inex-
pensive and as a reagent, produces no environmentally 
harmful byproduct and is thus considered as an ideal oxi-
dant [36–39]. With the increasing demand for sustainable 
synthesis, the direct oxidation by using dioxygen as oxidant 
is highly desirable [40–45]. 

We recently reported a Cs2CO3/P(OEt)3/O2 system for 
the direct -hydroxylation of carbonyl compounds through 
the cleavage of C–H bond for the synthesis of tertiary 
-hydroxycarbonyls [46]. On the basis of this work, we 
apply this system to the oxidative de-aromatization of multi- 
alkyl phenols to p-quinols. Herein, we report a base cata-
lyzed synthesis of p-quinols with dioxygen as the oxidant 
under mild conditions. 

2  Experimental 

2.1  General information 

CsOH was purchased from Alfa Aesar Chemical Company 
and used as received. P(OEt)3 was purchased from Beijing 
Ouhe Company (China). DMSO and other solvents were 
purchased from Beijing Chemical Works and purified under 
standard conditions. Other commercially available com-
pounds were purchased from Sigma-Aldrich, Alfa-Aesar 
and Acros (USA) and used as received. Reactions were 
performed in a schlenk tube under standard conditions. 
Analysis of crude reaction mixture was done on an Agilent 
7890 GC System with an Agilent 5975 Mass Selective De-
tector (USA). Products were purified by flash chromatog-
raphy or by preparative thin-layer chromatography on silica 
gel. 1H NMR spectra were recorded on a Bruker AVIII-400 
spectrometers (Germany). Chemical shifts (in ppm) were 
were calibrated with CDCl3 (tetramethylsilane, =0 ppm). 
13C NMR spectra were obtained by using the same NMR 
spectrometers and were calibrated with CDCl3 (=77.00 
ppm). Mass spectra were recorded using a PE SCLEX 
QSTAR spectrometer (Thermo Finnigan, USA). High reso-
lution mass spectra were obtained with a Bruker APEX IV 
Fourier transform ion cyclotron resonance mass spectrome-
ter (USA) using electrospray ionisation (ESI).  

2.2  General procedure for aerobic oxidative synthesis 
of p-quinols from multi-alkyl phenols 

CsOH (7.5 mg, 0.05 mmol), P(OEt)3 (167 mg, 1.0 mmol), 3 
(0.5 mmol) were added to a 25 mL Schlenk tube with a 
magnetic bar under O2. DMSO (2.0 mL) was added and 
then the mixture was stirred at room temperature (25 °C) 
under O2 (1 atm) for 12 h. The solution was then diluted 
with ethyl acetate (10 mL), washed with brine (3 mL), ex-
tracted with ethyl acetate (3×5 mL), dried over anhydrous 
Na2SO4, filtered, and evaporated under vacuum. The crude 

reaction mixture was purified by column chromatography 
on silica gel to get the desired product 4. 

2.3  Characterizations of products 

4a: 1H NMR (400 MHz, CDCl3): δ 6.62 (s, 2 H), 2.43 (brs, 
1 H), 1.85 (s, 6 H), 1.42 (s, 3 H); 13C NMR (100 MHz, 
CDCl3): δ 186.3, 147.4, 133.24, 133.21, 67.0, 26.9, 15.7 
ppm. 

4b: 1H NMR (400 MHz, CDCl3): δ 6.55 (s, 2 H), 1.84 
(brs, 1 H), 1.41 (s, 3 H), 1.21 (s, 18 H); 13C NMR (100  
MHz, CDCl3): δ 186.0, 145.3, 143.1, 67.3, 34.5, 29.3, 27.9 
ppm. 

4c: 1H NMR (400 MHz, CDCl3): δ 6.59 (s, 2 H), 1.80 (s, 
1 H), 1.23 (s, 18 H), 0.97 (s, 9 H); 13C NMR (100 MHz, 
CDCl3): δ 186.4, 147.3, 141.0, 73.8, 39.8, 34.8, 29.4, 25.4 
ppm. 

4d: 1H NMR (400 MHz, CDCl3): δ 6.44 (s, 2 H), 1.97 
(brs, 1 H), 1.75 (q, J=7.6 Hz, 2 H), 1.22 (s, 18 H), 0.73 (t, 
J=7.6 Hz, 3 H); 13C NMR (100 MHz, CDCl3): δ 186.4, 
147.0, 141.9, 70.7, 34.6, 33.6, 29.4, 8.2 ppm. 

4e: 1H NMR (400 MHz, CDCl3): δ 6.63 (d, J=3.2 Hz, 1 
H), 6.59 (s, 1 H), 2.42 (brs, 1 H), 1.84 (s, 3 H), 1.42 (s, 3 H), 
1.21 (s, 9 H); 13C NMR (100 MHz, CDCl3): δ 186.0, 145.5, 
145.4, 143.7, 134.5, 67.1, 34.2, 29.1, 27.4, 16.0 ppm. 

4f: 1H NMR (400 MHz, CDCl3): δ 6.38 (s, 2 H), 2.18 
(brs, 1 H), 1.68–1.55 (m, 2 H), 1.14 (s, 18 H), 0.83–0.75 (m, 
7 H); 13C NMR (100 MHz, CDCl3): δ 186.5, 147.3, 146.9, 
141.6, 140.9, 72.4, 44.6, 34.7, 34.6, 29.44, 29.41, 23.7, 13.4, 
12.5 ppm. 

4g: 1H NMR (400 MHz, CDCl3): δ 5.92 (s, 2 H), 2.87 
(brs, 1 H), 2.10 (s, 6 H), 1.43 (s, 3 H); 13C NMR (100 MHz, 
CDCl3): δ 185.8, 163.5, 125.6, 71.4, 25.8, 18.1 ppm. 

4h: 1H NMR (400 MHz, CDCl3): δ 6.51 (s, 2 H), 2.76 (t, 
J=8.4 Hz, 2 H), 2.28 (t, J=8.4 Hz, 2 H), 1.23 (s, 18 H); 13C 
NMR (100 MHz, CDCl3): δ 185.5, 175.7, 147.7, 137.1, 79.8, 
34.8, 33.2, 29.2, 28.5 ppm. 

3  Results and discussion 

Our original intention is the direct hydroxylation of electron 
rich arenes with O2 as the oxidant through the cleavage of 
C–H bond. Direct transformation of C–H bonds into desired 
functionalities could improve the atom economy and more 
importantly the step-economy of organic synthesis [47,48]. 
Over the past decade, C–H bond functionalization has be-
come one of the most exciting and rapidly developing fields 
of organic chemistry [49–55]. Initially, we conducted an 
experiment of electron rich substrate 2,6-di-tert-butylphenol 
1 under our precious conditions. However, the expected 
aromatic C–H bond hydroxylation product was not found. 
Interestingly, the corresponding p-quinone 2, which is the 
over-oxidation product of p-quinol, was obtained although 
in low yield (Eq. (1)): 



 Liang et al.   Sci China Chem   June (2015) Vol.58 No.6 3 

  

(1)

 

This positive outcome indicated that the electron rich 
phenol could react with O2 under mild conditions. Base on 
this result and our precious hydroxylation reaction [46], 
which was proposed to proceed carbanion intermediate 
generated by Cs2CO3, we envisioned that the p-substituted 
electron rich phenols could be easily converted to phenox-
ide anion with an appropriate base, and then the anion could 
be transferred to C-4 position, generating a carbanion. If the 
reaction is conducted under O2, the carbanion could react 
with O2 in the way as our previous work, and a hydroxyl 
group could be obtained at C-4. This one-pot method, if 
successful, could offer a new approach to the highly valua-
ble p-quinols.  

Consequently, 2,4,6-trimethylphenol (3a) was used as a 
model substrate for evaluating the feasibility of the hypoth-
esis. To our delight, when 3a was treated with Cs2CO3 (10 
mol%) under a dioxygen atmosphere (1 atm) in DMSO at 
room temperature for 12 h, this reaction produced 
4-hydroxy-2,4,6-trimethylcyclohexa-2,5-dienone (4a) in 
15% yield (Table 1, Entry 1). However, other weak bases, 
such as Na2CO3, K2CO3, Li2CO3, and NaHCO3 failed to 
give the product (Table 1, Entries 2–5). Further screening of 
the cesium bases indicated that CsF, CsOAc, CsNO3 were 
less efficient than Cs2CO3 (Table 1, Entries 6–8). Similar 
results were obtained when NaOH and KOH was employed 
(Table 1, Entries 9, 10). CsOH gave the highest yield among 
the bases examined (Table 1, Entry 11). Gratifyingly, the 
efficiency was significantly improved by the addition of 
P(OEt)3 as the reductant and 4a could be isolated in 99% 
yield (Table 1, Entry 12). Slightly lower yield was observed 
when P(OEt)3 was replaced by PPh3 (Table 1, Entry 13). 
However, the reaction did not proceed in the presence of 
Na2S2O3 and NaI (Table 1, Entries 14, 15). Several solvents 
were also tested, and found that polar solvent (DMF, DMAc, 
NMP) gave the good yields although lower than DMSO, 
whereas non-polar solvent (toluene, DCE, CH3CN, THF) 
failed to give the desired product (Table 1, Entries 16–22). 
A lower yield was obtained when O2 was replaced with air 
(Table 1, Entry 23). Finally, the reaction could not work in 
the absence of a catalyst (Table 1, Entry 24). 

Next, the scope of this base catalyzed oxidative de-aro-                          
matization of multi-alkyl phenols with molecular oxygen 
was examined under the optimized reaction conditions (Ta-
ble 2). The reactions proceeded smoothly, and the corre-
sponding p-quinols were formed in moderate to excellent 
yields. It is noteworthy that product 4a, obtained in 99% 
yield, is the precursor of vitamin E [56,57]. The oxidation 
of 2,6-di-tert-butyl-4-methylphenol afforded the product 4b 
in quantity yield. Substrate bearing a sterically hindered tBu 
group at para position was also tested, and the desired  

Table1  Screening on different parameters a) 

 
Entry Cat. Additive Solvent Yield b) 

1 Cs2CO3 – DMSO 15% 

2 Na2CO3 – DMSO trace 

3 K2CO3 – DMSO trace 

4 Li2CO3 – DMSO trace 

5 NaHCO3 – DMSO trace 

6 CsF – DMSO 8% 

7 CsOAc – DMSO 7% 

8 CsNO3 – DMSO trace 

9 NaOH – DMSO 18% 

10 KOH – DMSO 20% 

11 CsOH – DMSO 37% 

12 CsOH P(OEt)3 DMSO 99% 

13 CsOH PPh3 DMSO 90% 

14 CsOH Na2S2O3 DMSO trace 

15 CsOH NaI DMSO trace 

16 CsOH P(OEt)3 DMF 94% 

17 CsOH P(OEt)3 DMAc 93% 

18 CsOH P(OEt)3 NMP 86% 

19 CsOH P(OEt)3 toluene   N.R. c) 

20 CsOH P(OEt)3 DCE N.R. 

21 CsOH P(OEt)3 CH3CN N.R. 

22 CsOH P(OEt)3 THF N.R. 

  23 d) CsOH P(OEt)3 DMSO 41% 

24 – P(OEt)3 DMSO N.R. 

  a) Reaction conditions: 3a (0.5 mmol), catalyst (0.05 mmol), additive 
(1.0 mmol), solvent (1 mL), stirred at RT (25 °C) under O2 (1 atm) for 12 h; 
b) isolated yield; c); N.R.means no reaction; d) the reaction was carried out 
under air (1 atm). 

 
 
product 4c could be still isolated in excellent yield. Ethyl 
group substituted also produced the target product 4d in 
96% yield. 2-tert-Butyl-4,6-dimethylphenol gave the corre-
sponding product 4e in good yield. Notably, different sub-
stituted at 2,4,6-position, the reaction selectively afforded 
the corresponding p-quinol 4f. 3,4,5-Trimethylsubstituted 
phenol could also perform in this transformation, leading to 
the corresponding oxidative hydroxylation product 4g in 
moderate yield. Interestingly, when the para-substituent 
contains an ester group, the reaction afforded lactone prod-
uct 4h, which was generated by the intramolecular trans-
esterification of the ester group with the produced hydroxyl 
group. Unfortunately, p-cresol did not proceed under the 
optimized conditions. The yield of 4i was still very low 
(<10%) even if the reaction temperature was raised to 60 °C.  
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Table 2  Substrate scope of aerobic oxidative synthesis of p-quinols a) 

 
Entry Substrate Product Yield b)

1 

 

O

OH

4a

 

99% 

2 

  

99% 

3 

  

93% 

4 
tBu

OH

tBu

3d

  

96% 

5 

 

tBu

O

OH

4e

 

71% 

6 

OH

tBu

3f

  

90% 

7 

  

51% 

8 

 
 

86% 

9 

 

O

OH

4i

 

trace 

  a) Reaction conditions: 3 (0.5 mmol), CsOH (0.05 mmol), P(OEt)3 (1.0 
mmol), DMSO (1 mL), stirred at RT (25 °C) under O2 (1 atm) for 12 h; b) 
isolated yield.  
 
 
The multi-alkyl group was essential to the success of this 
transformation.  

To illustrate the original of oxygen atom of the hydroxyl 
group in products, the 18O-labeling experiment was 
conducted. The analysis of the product by HRMS indicated 
that the oxygen atom in the hydroxy group was from  

 

Scheme 1  A plausible mechanism for the oxidative de-aromatization of 
multi-alkyl phenols with dioxygen. 

molecular oxygen (Eq. (2)):   

  

(2)

 

On the basis of our previous work, a possible mechanism 
is shown in Scheme 1. Firstly, the substrate multi-alkyl 
phenols 3 could undergo a deprotonation process by the 
base catalyst to produce the corresponding phenoxide anion 
A with its resonance structure carbanion B. Subsequently, 
carbanion B is trapped by O2 to afford superoxide anion C, 
which could abstract a proton from multi-alkyl phenols 1 to 
form superoxide D and regenerate phenoxide anion A to 
complete the catalytic cycle. Finally, superoxide D 
undergoes reduction by P(OEt)3

 to produce the p-quinol 
product 4. 

4  Conclusions 

In conclusion, we have demonstrated a base initiated oxida-
tive de-aromatization of multi-alkyl phenols to p-quinols. 1 
atm of molecular oxygen was employed as the oxidant. The 
reaction could proceed well at room temperature. Several 
p-quinols were obtained in moderate to excellent yield. The 
18O-labeling result indicated that the oxygen atom of 
hydroxy group in product was originated from molecular 
oxygen. This reaction was proposed to proceed through 
phenoxide anion and carbanion intermediates. 
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