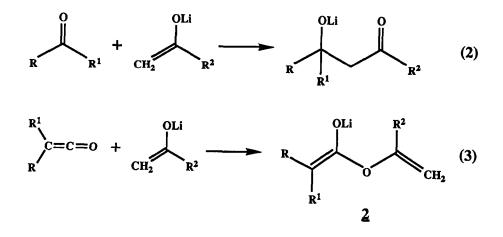
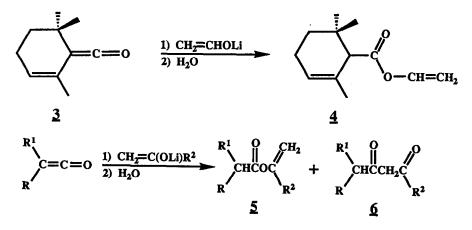

0040-4039/88 \$3.00 + .00 Pergamon Press plc

OXYGEN AND CARBON-ACYLATION OF ENOLATES BY KETENES Lynn M. Bairgrie, Régis Leung-Toung, and Thomas T. Tidwell* Department of Chemistry, University of Toronto Toronto, Ontario, Canada M5S 1A1

<u>Abstract</u>. Ketenes react with lithium enolates mainly by 0-acylation, thus providing a convenient route to vinyl esters and their enolates.


The C-acylation of alkyl, alkenyl, alkynyl, and aryllithium reagents by ketenes has recently been exploited for the regio- and stereospecific generation of enolates (Eq. 1).¹ These enolates, many of which are not available by ketone enolization, have been further utilized in silylations, alkylations, aldol reactions, and ketone formation.¹


The 0-acylation of alcohols and lithium alkoxides by ketenes has recently been reported to provide access to novel ketene acetals, ester enolates, and ester enols.²

Enclates can potentially be acylated by ketenes on either carbon or oxygen to give a new enclate, and polymerization of the ketene can result.^{3a} There are only a few reported examples ^{3b,c,d} of the reaction of enclates with ketenes, and interestingly these give 0-acylation of the enclate, contrary to the usual pattern of C-acylation of enclates by carbonyl compounds observed in the aldol reaction (Eq. 2).⁴ We now report that acylation of enclates by ketenes is affected by the metal cation and the ketene structure, and provides a convenient route to many ester enclates (2, Eq. 3).

1673

Thus reaction of the vinyl ketene 3^{1e} with the lithium enolate of acetaldehyde (generated from THF and <u>n</u>-BuLi at 25°C), followed by hydrolysis, gave the vinyl ester 4. The reaction of other ketenes with lithium enolates followed by hydration gave the vinyl esters 5, as reported in Table I. Some C-acylation product was observed in the reaction of PhCMe=C=O with the enolate of acetophenone and for PhC(<u>i</u>-Pr)=C=O only C-acylation product 6 was observed.

R = Ph; $R^1 = Me$, Et; $R^3 = H$, Me, Ph, t-Bu

Ketene	RLi ^a	Product	Yield ^b
PhCMe=C=0	CH2=CHOL1	PhCHMeCO2CH=CH2	40
11	CH2=C(OLi)Me	PhCHMeCO ₂ CMe=CH ₂	50
**	$CH_2 = C(OLi) - t - Bu$	$PhCHMeCO_2C(\underline{t}-Bu) = CH_2$	87
11	CH2=C(OLi)Ph	PhCHMeCO ₂ CPh=CH ₂	60 ^c
PhCEt=C=0	CH2=CHOLi	PhCHEtCO2CH=CH2	47
"	CH ₂ =C(OLi)Me	$PhCHEtCO_2CMe=CH_2$	40
11	$CH_2 = C(OLi) - \underline{t} - Bu$	$PhCHEtCO_2C(\underline{t}-Bu)=CH_2$	59
11	CH2=C(OLi)Ph	$PhCHEtCO_2CPh=CH_2$	60
$PhC(\underline{i}-Pr)=C=0$	CH ₂ =C(OLi)Me	PhCH(\underline{i} -Pr)COCH ₂ COCH ₃ \underline{d}	54
	CH2=C(OLi)Ph	PhCH(<u>i</u> -Pr)COCH ₂ COPh ^d	48

- ^a Acetaldehyde enolate was generated from the reaction of THF with <u>n</u>-BuLi at 25°C; the other enolates were prepared by reaction of the ketones with \underline{i} -Pr₂NLi in THF at -78°C, or with KH in THF at 25°C. The ketenes in THF at -78°C were then added dropwise to the enolate solutions at -78°C.
- ^b Determined by VPC or product isolation; products were identified by ¹H and ¹³C-NMR, IR, and accurate mass spectra.
- $\stackrel{c}{\sim}$ PhCHMeCOCH₂COPh(10%) also isolated
- $\frac{d}{d}$ The 1,3-diketones exist predominantly as enols.

Reaction of the potassium enolates $CH_2=C(OK)R^2$ (R^2 = Me, Ph, <u>t</u>-Bu), generated from the ketones by KH in THF, with PhCR¹=C=O (R^1 = Me, Et) gave only the C-acylation products 6, in 63-78% yields. Thus for these ketenes the choice of lithium or potassium cations permits formation of either the O-acylation product 5, or the C-acylation product 6, respectively. Acknowledgement. Financial support by the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

References

(1) (a) Baigrie, L.M.; Seikaly, H.R.; Tidwell, T.T. J. Am. Chem. Soc.
1985, 107, 5391-5396. (b) Häner, R.; Laube, T.; Seebach, D. <u>Ibid</u>. 1985, 107, 5396-5403. (c) Baigrie, L.M.; Lenoir, D.; Seikaly, H.R.; Tidwell, T.T.
J. Org. Chem. 1985, 50, 2105-2106. (d) Seikaly, H.R.; Tidwell, T.T.
<u>Tetrahedron</u> 1986, 42, 2587-2613. (e) Naef, F.; Decorzant, R. <u>Ibid</u>. 1986, 42, 3245-3250.

(2) (a) Lombardo, L. <u>Tetrahedron Lett</u>. 1985, 26, 381-384. (b) O'Neill,
P.; Hegarty, A.F. <u>J. Org. Chem</u>. 1987, 52, 2113-2114. (c) O'Neill, P.;
Hegarty, A.F. <u>J. Chem. Soc., Chem. Commun.</u> 1987, 744-745.

(3) (a) Yamashita, Y.; Miura, S.; Nakamura, M. <u>Makromol. Chem</u>. 1963,
68, 31-47. (b) Yoshida, K.; Yamashita, Y. <u>Tetrahedron Lett</u>. 1966, 693-696.
(c) House, H.O.; Auerbach, R.A.; Gall, M.; Peet, N.P. <u>J. Org. Chem</u>. 1973,
38, 515-522. (d) Brady, W.T.; Scherubel, G.A. <u>J. Am. Chem. Soc</u>. 1973, 95,
7447-7449.

(4) (a) Nielsen, A.T.; Houlihan, W.J. <u>Org. React.</u> 1968, 16, 1-438.
(b) Mukaiyama, T. <u>Ibid</u>. 1982, 28, 203-280.

(Received in USA 1 December 1987)