Lithiated Thiolactams: New Synthesis of Azacycloalka[2,3-b]quinolin-4-ones

Hiroki Takahata, Nahoko Hamada, Takao Yamazaki*

Faculty of Pharmaceutical Sciences, Toyama Medical & Pharmaceutical University, 2630 Sugitani, Toyama 930-01 Japan

Lithiated enamines, generated from cyclic thioimidates by treatment with lithium diisopropy amide, react with *N*-alkylisatoic anhydrides to afford azacycloalka[2,3-*b*]quinolin-4-ones.

Because of its versatility, the thioamide group plays an important role in synthetic methodology^{1.2}. In particular, the thiolactam has been utilized in the synthesis of many natural products³⁻⁸. Although metallo-ketene-S,N-acetals derived from cyclic thioimidates may be regarded as interesting metalated enamines, their chemistry has scarcely been studied⁹. We embarked on studies to apply the reaction

389 May 1986 Communications

employing metalated enamines to heterocyclic synthesis. We describe here a new synthesis azacycloalka[2,3-b]quinolin-4ones by the reaction of lithiated enamines (4, 5, and 6) with N-alkylisatoic anhydrides (7a-e) as dipolarophilic synthon $(8)^{10,11}$.

8

Two equivalents of lithiated enamines (4, 5, and 6), generated from cyclic thioimidates (1, 2, and 3) by treatment with lithium diisopropylamide (0°C, 1 h, tetrahydrofuran), react with N-alkylisatoic anhydrides (7a-e) (\sim 78 °C, 1 h \rightarrow room temperature, 4 h-15 h) to afford azacycloalka[2,3b]quinolin-4-ones (9a-c, 10a-e, and 11a-e), respectively. Functionalized 4-quinolines are of pharmacological inter-

7 4-6

$$X^{1}$$
 X^{2}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{2}
 X^{2}
 X^{1}
 X^{2}
 X^{2}

Table. Compounds 9a-c, 10a-e, and 11a-e prepared

Scheme A

Prod- uct	Yield [%]	m.p. [°C]	Molecular Formula ^a	I.R. (Nujol) v[cm ⁻¹]	1 H-N.M.R. (CDCl ₃ /TMS _{int}) ^b δ [ppm]
9a	53 (48)°	282-284°	$C_{12}H_{12}N_2O$ (200.2)	3200, 1610, 1595	3.62 (s, 3H, N—CH ₃); 5.06 (br. s, 1H, NH)
9b	35	> 300°	$C_{18}H_{16}N_2O$ (276.3)	3160, 1610, 1595	4.51 (br. s, 1 H, NH); 5.29 (s. 2 H, N— $CH_2C_6H_5$)
9c	41	> 300°	$C_{13}H_{14}N_2O$ (214.3)	3140, 1625, 1595	2.44 (s, 3H, Ar—CH ₃); 3.63 (s, 3H, N—CH ₃); 5.10 (br. s, 1H, NH)
10a	64 (62)°	261-264°	$C_{13}H_{14}N_2O$ (214.3)	3180, 1610, 1595	3.62 (s, 3H, N—CH ₃); 4.58 (br. s, 1H, NH)
10b	53	> 300°	C ₁₉ H ₁₈ N ₂ O (290.4)	3180, 1615, 1595	4.27 (br. s, 1 H, NH); 5.32 (s, 2 H, N— $CH_2C_6H_5$)
10c	42	> 300°	$C_{14}H_{16}N_2O$ (228.3)	3300, 1620, 1585	2.42 (s, 3H, Ar—CH ₃); 3.60 (s, 3H, N—CH ₃); 4.75 (br. s, 1H, NH)
10d	62	297–299°	$C_{13}H_{13}CIN_2O$ (248.7)	3220, 1610, 1585	3.58 (s, 3H, N—CH ₃); 4.54 (br. s, 1H, NH)
10e	14	297–299°	$C_{19}H_{17}CIN_2O$ (324.8)	3220, 1610, 1585	4.31 (br. s, 1 H, NH); 5.27 (s, 2 H, N—CH ₂ C ₆ H ₅)
11a	25 (28)°	221-223°	$C_{14}H_{16}N_2O$ (228.3)	3260, 1610, 1590	3.68 (s, 3H, N—CH ₃); 4.32 (br. s, 1H, NH)
11b	31	243-245°	$C_{20}H_{20}N_2O$ (304.4)	3300, 1610, 1595	4.06 (br. s, 1 H, NH); 5.36 (s, 3 H, N—CH ₂ C ₆ H ₅)
11c	18	264–266°	C ₁₅ H ₁₈ N ₂ O (242.3)	3250, 1620, 1580	2.43 (s, 3H, Ar—CH ₃); 3.65 (s, 3H, N—CH ₃); 4.38 (br. s, 1H, NH)
11d	24	268-270°	C ₁₄ H ₁₅ ClN ₂ O (262.7)	3210, 1610, 1585	3.65 (s, 3H, N—CH ₃); 4.33 (br. s, 1H, NH)
11e	42	254256°	$C_{20}H_{19}CIN_2O$ (338.8)	3220, 1610, 1580	4.03 (br. s, 1 H, NH); 5.30 (s, 3 H, N—CH ₂ C ₆ H ₅)

Scheme B

The microanalyses were in satisfactory agreement with the calculated values: C \pm 0.46, H \pm 0.21, N \pm 0.20.

Only selected values are given.

Reactions were carried out on a large scale [4, 5, or 6 (30 mmol)].

390 Communications synthesis

est¹²⁻¹⁷. Reaction of 4 with 7d, e gave intractable mixtures and 9d, e could not be isolated. The structures assigned to compounds 9, 10, and 11 were unambiguously confirmed by the I.R.- and ¹H-N.M.R. spectral data.

The formation of 9, 10, and 11 may possibly be explained by a mechanism as shown in Scheme B. An attack of the metalated enamine (4, 5, or 6) on the 4-carbonyl group of isatoic anhydrides (7) may generate the intermediate A. Cyclization of A with loss of carbon dioxide may furnish B. Subsequent elimination of methyl mercaptan from B may produce C, which yields 9, 10, or 11 after work-up.

This method should be applicable to the synthesis of a variety of other azacycloalka[2,3-b]quinolin-4-ones by using available cyclic thioimidates.

9-Alkyl-4-oxo-3,4-dihydro-1H,4H,9H-pyrrolo[2,3-b]quinolines (9a-c), 10-Alkyl-5-oxo-1,2,3,4-tetrahydro-5H,10H-benzo[g]naphand 11-Alkyl-6-oxo-2,3,4,5-tetrahydrothyridines (10a-e), 1H,6H,11H-azepino[2,3-b]quinolines (11a-e); General Procedure: A 15% solution of *n*-butyllithium in hexane (4 ml, 6 mmol) is added to a cooled tetrahydrofuran solution (12 ml) of diisopropylamine (0.61 g. 6 mmol) at 0°C with stirring under argon. To this mixture, the cyclic thioimidate 1, 2, or 3 (6 mmol) is injected. After this mixture is stirred for 1 h at 0°C, N-alkylisatoic anhydride 7a-e (3 mmol) in tetrahydrofuran (20 ml) is injected into the mixture at -78 °C. After stirring for 1 h at -78 °C, the mixture is gradually warmed to room temperature and stirred for additional hours (4 h for 9a-e; 15 h for 10a-e and 11a-e). The mixture is hydrolyzed by addition of aqueous ammonium chloride solution (10 ml) and extracted with ethyl acetate (3×20 ml). The organic layers are combined, dried with magnesium sulfate, and evaporated. The residue is purified by column chromatography on silica gel using chloroform/methanol (9:1) for **9a-c**, (19:1) for **10a-e**, or (100:3) for 11a-e as eluent. Further purification is achieved by recrystallization from methanol/diisopropyl ether.

Caution! Diisopropyl ether readily forms peroxides and may explode on shaking.

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (# 59771639).

Received: February 4, 1985

- ¹ Walter, W., Voss, J. in: *The Chemistry of the Amides*, Zabicky, J., Ed., Intersciences, London, 1970, p 383–514.
- ² Harada, T., Tamaru, Y., Yoshida, Z. *Tetrahedron Lett.* **1979**, 3525–3528, and references cited therein.
- Petersen, J.S., Fels, G., Rapoport, H. J. Am. Chem. Soc. 1984, 106, 4539-4547.
- ⁴ Magnus, P.G., Pappalardo, P. J. Am. Chem. Soc. 1983, 105, 6525-6526.
- ⁵ Haward, A. S., Katz, R. B., Michael, J. P. Tetrahedron Lett. 1983, 24, 829–830.
- Evans, D. A., Thomas, E. W., Chepeck, R. E. J. Am. Chem. Soc. 1982, 104, 3695–3700.
- ⁷ Hart, D.J., Tsai, Y. J. Org. Chem. 1982, 47. 4403-4409.
- Fukuyama, T., Dunkerton, L. V., Aratani, M., Kishi, Y. J. Org. Chem. 1975, 40, 2011–2012.
- Trost, B.M., Vaultier, M., Santiago, M.L. J. Am. Chem. Soc. 1980, 102, 7929-7932.
- Kappe, T., Stadlbauer, W. in: Advances in Heterocyclic Chemistry, A. R., Katritzky, A. J., Boulton, Eds, Academic Press, New York, 1981, Vol 28, p. 127–182.
- ¹¹ Reed, J. N., Snieckus, V. Tetrahedron Lett. **1984**, 25, 5505–5508.
- ¹² Eiden, F., Dobinsky, H. German Patent 2113343 (1972) Chem. Pharm. Fabrik; C.A. 1972, 77, 164660.
- ¹³ Hass, G., Rossi, A. Swiss Patent 578534 (1976); C. A. 1977, 86, 29656.

¹⁴ Hall, C. M., Johnson, H. G., Wright, J. B. J. Med. Chem. 1974, 17, 685.

- ¹⁵ Mitscher, L. A., Gracey, H. E., Clark, III, G. W., Suzuki, T. J. Med. Chem. 1978, 21, 485.
- ¹⁶ Erickson, B. H., Hainline, C. F., Lenon, L. S., Matson, C. J., Rice, T. K., Swingle, K. F., Winkle, M. V. J. Med. Chem. 1979, 22, 816.
- ¹⁷ Victor, D. R., James, F., John, N. K., Raymond, P., Freeman, S. M., Bryan, Y. D. German Patent 3011994 (1980); C. A. 1981, 94, 83968.