The One-dimensional Polyselenide Compound CsGaSe₃

Junghwan Do and Mercouri G. Kanatzidis*

East Lansing, Michigan / USA, Michigan State University, Department of Chemistry and Center for Fundamental Materials Research

Received December 19th, 2002.

Abstract. A new one-dimensional phase, CsGaSe₃ has been synthesized and characterized by single crystal X-ray diffraction, differential thermal analysis, and single crystal UV/Vis spectroscopy. The structure contains infinite chain anions, $[GaSe(Se_2)]^-$ separated by Cs cations. The Ga³⁺ cation is in a distorted tetrahedral environment coordinated by each two Se²⁻ and Se₂²⁻ ions. The red crystals of CsGaSe₃ absorb visible light at energies above 2.25 eV. Differential thermal analysis revealed that the compound does not melt below 1000 °C. Crystal data: CsGaSe₃, monoclinic, space group $P2_1/c$ (No 14), a=7.727(1), b=13.014(3), c=6.705(1), $\beta=106.39(3)^\circ$, Z=4, R1=0.0469.

Keywords: Semiconductors; X-ray diffraction; Crystal structure; Thermal analysis

Die eindimensionale Polyselenid-Verbindung CsGaSe₃

Inhaltsübersicht. Eine neue eindimensionale Phase, CsGaSe₃, wurde synthetisiert und durch Einkristall-Röntgenbeugung, Differentialthermoanalyse sowie durch Einkristall-UV/Vis-Spektroskopie charakterisiert. Die Struktur besteht aus unendlichen Anionen-Ketten, [GaSe(Se₂)]⁻, die durch Cs-Kationen getrennt sind. Das Ga³⁺-Kation ist in verzerrt tetraedrischer Anordnung durch je zwei Se²⁻- und Se₂²⁻-Ionen koordiniert. Die roten Kristalle von CsGaSe₃ absorbieren im sichtbaren Licht bei Energien über 2,225 eV. Die Differentialthermoanalyse zeigte, dass die Verbindung nicht unter 1000 °C schmilzt. Die Kristalldaten von CsGaSe₃ sind: monoklin, Raumgruppe $P2_1/c$ (No 14), a=7,727(1), b=13,014(3), c=6,705(1) Å, $\beta=106,39(3)^\circ$, Z=4, R1=0,0469.

1 Introduction

A large number of ternary group 13 chalcogenide compounds with a variety of metal cations including alkali metals has been reported. Depending on the reaction conditions and the size of cations, structures with discrete molecules [1-6], chains [7-11], layers [12-15], or frameworks [16-19] are formed. In the case of gallium, examples include discrete molecules, $[Ga_nQ_{2n+2}]^{(n+4)-}$ (Q = S, Se, Te; n = 1, 2, 4, 6) in K₅GaSe₄[1], A₆Ga₂Q₆ (A = Na, K, Cs; Q = S, Se, Te) [2-5], $Cs_8Ga_4Se_{10}$ [6] and $Cs_{10}Ga_6Se_{14}$ [6]. The chain-shaped molecules, $[Ga_nQ_{2n+2}]^{(n+4)-}$ (Q = S, Se, Te; n = 1, 2, 4, 6 have different lengths depending on the number of n, and are built up of edge-sharing tetrahedral GaQ_4 units. The compounds $KGaQ_2$ (Q = S, Te) [12-13], CsGaTe₂ [14], and TlGaSe₂ [15] are composed of linked adamantane-like Ga_4Q_{10} units that form $[GaQ_2]^-$ layers. $LiGaS_2$ [16] and AGa_3Q_5 (A = Li, Na; Q = Se, Te) [17–19] have open framework structures which consist of GaS4 tetrahedra sharing corners or edges. Also, two kinds of chain anions are known in $CsGaS_2$ [7], $TlGaQ_2$ (Q = Se, Te) [8-10] and $Na_4Ga_2S_5$ [11]. In CsGaS₂ and TlGaQ₂ (Q = Se, Te), the $[GaQ_2]^-$ chain is constructed by con-

Email address: kanatzid@cem.msu.edu

necting GaQ_4 tetrahedra sharing their edges, while $[Ga_2S_5]^{4-}$ chain in $Na_4Ga_2S_5$ is formed by GaS_4 tetrahedra sharing corners and edges.

In this paper, we report the polychalcogenide flux synthesis and characterization of the new ternary gallium selenide compound, CsGaSe₃. To the best of our knowledge this rather simple compound has not been reported. It possesses a novel chain structure with tetrahedral $[GaSe_2(Se_2)_2]^-$ anions linked to each other by sharing corners as well as linking corners (via Se-Se bonds) to form infinite $[GaSe(Se_2)]^-$ chains.

2 Experimental

2.1 Reagents

The following reagents in this work were used as obtained: Ga (shots, 99.999 %; Cerac, Milwaukee, WI), As₂Se₃ (99.9 %; Strem Chemicals, Newburyport, MA), Se (99.999 %; Noranda Advanced Materials, Quebec, Canada). N,N-dimethylformamide (Spectrum Chemicals, ACS reagent grade); diethyl ether. The Cs₂Se starting material was prepared by a stoichiometric reaction of cesium metal and selenium in liquid NH₃. Ga₂Se₃ was prepared by heating a stoichiometric ratio of the elements in an evacuated silica ampule. The mixture was heated to 800 °C in 10 h and kept for 24 h. It was cooled to 50 °C in 10 h. The Ga₂Se₃ was ground and stored in a nitrogen filled glovebox.

2.2 Synthesis of CsGaSe₃

Compound $CsGaSe_3$ was initially synthesized from a mixture of 0.344g (1.0 mmol) Cs_2Se , 0.094g (0.25 mmol) Ga_2Se_3 , 0.193g

^{*} Professor Dr. Mercouri G. Kanatzidis

Department of Chemistry and Center for Fundamental Materials Research

Michigan State University

East Lansing, Michigan 48824 / USA

(0.5 mmol) As₂Se₃, and 0.317g (4.0 mmol) Se. The reagents were mixed, sealed in an evacuated silica tube, and heated at 550 °C for 4 days. The tube was cooled at a rate of 5 °C/h to 250 °C followed by rapid cooling to room temperature. The solid products were washed with N,N-dimethylformamide (DMF) and diethyl ether. Product isolation afforded red rod-shaped single crystals of CsGaSe₃ as a single phase. Electron microprobe analysis of the crystals gave an average composition of Cs_{0.90}Ga_{0.97}Se_{3.00}. The structural details of the compound were determined by a singlecrystal X-ray diffraction study. The product slowly decayed in air but is stable in water and common polar solvents, such as dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). A reaction without As_2Se_3 ($Cs_2Se:Ga_2Se_3:Se = 4:1:16$) also gave a single phase of CsGaSe₃. In addition a quantitative synthesis of pure CsGaSe₃ was achieved by a reaction of the stoichiometric amounts of Cs₂Se/ Ga₂Se₃/Se at 550 °C for 4 days.

2.3 Characterization

Elemental analysis on the products was performed with a JEOL JSM-35C scanning electron microscope (SEM) equipped with a Tracor Northern energy dispersive spectroscopy (EDS) detector. The sample was carbon coated and analyzed using a 20kV accelerating voltage and an accumulation time of 30s.

UV/Vis optical transmission measurements were performed at room temperature on single crystals using a Hitachi U-6000 microscopic FT spectrophotometer with an Olympus BH-2 metallurgical microscope over a range of 400-800 nm.

Differential thermal analysis (DTA) was performed on Shimadzu DTA-50 thermal analyzer. Samples (~30 mg) of ground crystalline material was sealed in a carbon coated silica ampoule under vacuum. A similar ampoule of equal mass filled with Al₂O₃ was sealed and placed on the reference side of the detector. Sample was heated to 1000 °C at 10 °C/min, isothermed for 3 min followed by cooling at -10 °C/min to 50 °C. Residues of the DTA experiments were examined by X-ray powder diffraction. The reproducibility of the sample was checked by running multiple heating and cooling cycles.

Raman spectra were recorded on a Holoprobe Raman spectrograph equipped with a CCD camera detector using 633 nm radiation from a HeNe laser for excitation. Laser power at the sample was estimated to be about 5 mW and the focused laser beam diameter was ca. 10 μ m. The resolution of the spectra was 4 cm⁻¹. Sixty four scans were allowed to obtain good quality spectra.

2.4 X-ray Diffraction

The crystal structure of CsGaSe₃ was determined by single-crystal X-ray diffraction methods. Preliminary examination and data collection were performed on a SMART platform diffractometer equipped with a 1K CCD area detector using graphite monochromatized Mo K_a radiation at room temperature. A hemisphere of data was collected with narrow scan widths of 0.30° in ω and an exposure time of 30 s/frame. The data were integrated using the SAINT program [20]. The program SADABS was used for the absorption correction [20]. The initial positions for all atoms were obtained using direct methods and the structures were refined by full-matrix least-squares techniques with the use of the SHELXTL crystallographic software package [20]. The final R values are R1 =0.0469 [I > $2\sigma(I)$] and wR2 = 0.1361 [all data]. Crystallographic details are given in Table 1. The fractional atomic coordinates, equivalent isotropic and anisotropic displacement parameters are given in Table 2 and 3.

Table 1	Crystallographic de	etails for CsGaSe
---------	---------------------	-------------------

formula weight	439.51
space group	$P2_1/c$ (No. 14)
a, Å	7.727(1)
b, Å	13.014(3)
c, Å	6.705(1)
β , deg	106.39(3)
$V, Å^3$	646.8(2)
Z	4
<i>T</i> , K	293(2) K
λ, Å	0.71073
$\rho_{\text{calcd}}, \text{g/cm}^3$	4.513
μ , cm ⁻¹	265.35
F(000)	752
Measured reflections	9184
Independent reflections	1496
crystal size, mm ³	0.30 x 0.12 x 0.10
θ range, deg	2.75-27.91
GOF on F_0^2	1.058
R1 $[I > 2\sigma(I)]$	0.0469
wR2 ^{a)} (all data)	0.1361

^{a)} wR2 = $[\Sigma w (|F_0| - |F_0|)^2 / \Sigma w |F_0|^2]^{1/2}; w = 1/[\sigma^2 (F_0^2) + (0.084P)^2 + 3.04P];$ $P = [Max(F_o^2, 0) + 2F_c^2]/3$

Table 2 Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for CsGaSe₃

	X	у	Z	$U_{eq}^{\ \ a)}$
Cs	7458(1)	4187(1)	2120(1)	43(1)
Ga	1821(1)	2720(1)	1420(1)	22(1)
Se(1)	2930(1)	762(1)	-1543(1)	29(1)
Se(2)	9973(1)	6714(1)	1901(1)	28(1)
Se(3)	4491(1)	1752(1)	1380(1)	30(1)

^{a)} U_{ea} is defined as one third of the trace of the orthogonalized U_{ii} tensor.

Table 3 Anisotropic displacement parameters ($Å^2 \times 10^3$) for CsGaSe₃

	U_{II}	U_{22}	U33	U ₂₃	U_{I3}	U_{12}
Cs	35(1)	34(1)	61(1)	-9(1)	17(1)	1(1)
Ga	22(1)	21(1)	24(1)	-1(1)	6(1)	0(1)
Se(1)	36(1)	19(1)	32(1)	1(1)	9(1)	5(1)
Se(2)	27(1)	28(1)	27(1)	3(1)	6(1)	10(1)
Se(3)	21(1)	26(1)	39(1)	0(1)	1(1)	3(1)

The anisotropic displacement factor exponent takes the form: $-2\pi^2 \left[h^2 a^{*2} U_{11} + k^2 b^{*2} U_{22} + l^2 c^{*2} U_{33} + 2kl b^*c^* U_{23} + 2hl a^*b^* U_{13} + 2hk a^*b^* \right]$ $b^* U_{12}$]

Powder X-ray diffraction analyses were performed using a calibrated CPS 120 INEL X-ray powder diffractometer (Cu K_a radiation) equipped with a position-sensitive detector, operating at 40kV/20mA with a flat sample arrangement.

3 Results and Discussion

3.1 Structure of CsGaSe₃

The structure of CsGaSe₃ is CsAlTe₃-type [21] and is built up of infinite $\frac{1}{\infty}[GaSe_3]^-$ chains separated by Cs⁺ cations, Figure 1. There is one crystallographically independent gallium atom in a slightly distorted tetrahedral coordination surrounded by each two Se^{2-} and Se_2^{2-} ions. The GaSe₄ tetrahedra are connected to each other by sharing corners and also by forming Se-Se bonds involving Se atoms of an-

Fig. 1 View of the unit cell along the c axis, 30% thermal ellipsoids. Cesium and gallium atoms are shown as black circles. Selenium atoms are shown as empty circles.

Fig. 2 View of a [GaSe(Se₂)]⁻ chain, 30 % thermal ellipsoids.

other corner. Therefore, each gallium atom is linked by each two Se^{2–} and Se₂^{2–} ion to form $\frac{1}{\infty}$ [GaSe(Se₂)][–] chains along the *c*-axis, Figure 2. The Ga-Se bond lengths range from 2.383(1) to 2.424(1) Å and the interchain distances are above 3.816(2) Å (Se3-Se1). The crystallographically unique Cs⁺ cation is eleven-coordinate by Se atoms in the range of 3.686(1)-4.200(1) Å, Figure 3.Other compounds that have the same structure include TIBS₃ [22].

Many known A/Ga/Q (A = alkali metals, Q = chalcogen) structures are based on GaQ₄ tetrahedra, which are connected to each other sharing their corners and edges. Unlike other known compounds the unique feature of CsGaSe₃ is the presence of diselenide groups in the structure. This is a rare example of a compound containing polychalcogenide bonds in the A/Group13/Q system (A = alkali metals, Q = chalcogen). Compound (Ph₄P)[Ga(Se₆)₂] is another example that contains polychalcogenide Se₆²⁻ ligands and adopts a very open framework [22]. The structure of CsGaSe₃ is closely related to CsGaS₂ [7], TlGaQ₂ (Q = Se, Te) [8–10] and Na₄Ga₂S₅ [11] containing [GaQ₂]⁻ chains, which are constructed by connecting tetrahedral GaQ₄ sharing their edges. Substitution of one Se²⁻ ion in the [GaSe₂]⁻ chains for Se₂²⁻ ion results in the [GaSe(Se₂)]⁻

Fig. 3 Local environments of the Cs atom, 30 % thermal ellipsoids.

Table 4 Selected bond lengths/Å and angles/° for CsGaSe₃

Cs-Se(1)#1	3.6858(12)	Cs-Se(2)#2	3.7408(12)		
Cs-Se(2)	3.8436(12)	Cs-Se(1)#3	3.8497(13)		
Cs-Se(3)	3.8602(12)	Cs-Se(3)#1	3.9090(12)		
Cs-Se(2)#4	3.9500(14)	Cs-Ga	4.0157(12)		
Cs-Se(1)#5	4.0676(14)	Cs-Se(3)#6	4.0725(16)		
Cs-Se(2)#7	4.1104(16)	Cs-Se(1)#8	4.2001(13)		
Ga-Se(2)#4	2.3834(13)	Ga-Se(2)#2	2.4051(12)		
Ga-Se(1)#5	2.4179(12)	Ga-Se(3)#9	2.4238(12)		
Se(1)-Se(3)	2.3712(13)				
Se(2)#4-Ga-Se(2)#2	110.21(5)	Se(2)#4-Ga-Se(1)#5	107.15(4)		
Se(2)#2-Ga-Se(1)#5	109.85(4)	Se(2)#4-Ga-Se(3)#9	115.02(5)		
Se(2)#2-Ga-Se(3)#9	109.11(5)	Se(1)#5-Ga-Se(3)#9	105.31(5)		
Symmetry transformations used to generate equivalent atoms:					

chain. Recently and during the revision of this paper the isostructural $CsGaS_3$ was also reported. [24]

3.2 Characterization of CsGaSe₃

 $CsGaSe_3$ does not dissolve in polar solvents such as dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). $CsGaSe_3$ exhibits an optical absorption edge at 2.25 eV determined by single-crystal optical transmission measurements, and this energy is consistent with the red color of the compound, Figure 4.

Preliminary differential thermal analysis showed that the compound CsGaSe₃ attacks the silica tube above \sim 700 °C. Thus, carbon-coated silica tube was used and the experiment indicated no melting below 1000 °C. Visual inspection

Fig. 4 Optical absorption spectrum showing absorption edges at 2.25 eV. The sharp noises at high absorbance are due to the very low transmission of light at those energies.

Fig. 5 Raman spectrum of CsGaSe₃. The peak at 238 cm⁻¹ is due to Se-Se stretching.

of the sample after the DTA experiment confirmed the lack of melting of the sample.

The Raman spectrum of CsGaSe₃ shows shifts at ~187, ~226, ~238, ~259, ~272 cm⁻¹, Figure 5. Most probably the absorptions at 187 and 238 cm⁻¹ can be assigned to the Cs-Se and Se-Se stretching vibrations, respectively. The shifts at 226, 259 and 272 cm⁻¹ can be assigned to the Ga-Se vibrations because the Ga-Se vibrations of β -Ga₂Se₃ containing GaSe₄ tetrahedra occur in the region at 220, 240, 250, 280, and 300 cm⁻¹ [25].

We made efforts to prepare ion-exchanged compounds such as LiGaSe₃ using a method described earlier [26]. CsGaSe₃ was mixed with LiI at a ratio of 1:30 (CsGaSe₃: LiI) in a nitrogen-filled glovebox. The mixture was ground into a fine powder and pressed into a pellet to allow better interphase contact. The resulting pellet was sealed in an evacuated pyrex tube, and heated at various temperature for 2 days. The X-ray powder diffraction pattern of resulting product was identical to CsGaSe₃ indicating no lithium exchange.

In conclusion, a rather simple one-dimensional compound $CsGaSe_3$ containing diselenide ions in A/Group13/ Q (A = alkali metals; Q = chalcogen) system has been synthesized and fully characterized. The presence of diselenide anions in the compound obtained from a polychalcogenide flux suggest possible new phases formed by combinations of various polychalcogenide anions and tetrahedral building units of gallium cations.

Note added in proof: While this manuscript was in review the related isostructural sulfur analog CsGaS₃ was reported: M. S. Devi, K. Vidyasagar, J. Chem. Soc., Dalton Trans. **2002**, 4751.

Acknowledgements. Financial support from the National Science Foundation (DMR-0127644) is gratefully acknowledged.

References

- [1] B. Eisenmann, A. Hofmann, Z. Kristallogr. 1991, 197, 163.
- [2] H. J. Deiseroth, H. Fu-Son, Z. Naturforsch. 1983, 38b, 181.
- [3] B. Eisenmann, A. Hofmann, Z. Kristallogr. 1991, 197, 143.
- [4] B. Eisenmann, A. Hofmann, Z. Kristallogr. 1991, 197, 147.
- [5] B. Eisenmann, A. Hofmann, Z. Kristallogr. 1991, 197, 149.
- [6] H. J. Deiseroth, Z. Kristallogr. 1984, 166, 283.
- [7] D. Schmitz, W. Bronger, Z. Naturforsch. 1975, 30b, 491.
- [8] D. Müller, G. Eulenberger, H. Hahn, Z. Anorg. Allg. Chem. 1973, 398, 207.
- [9] K. J. Range, G. Mahlberg, S. Obenland, Z. Naturforsch. 1977, 32b, 1354.
- [10] A. S. Avilov, K. A. Agaev, G. G. Guseinov, R. M. Imamov, *Kristallografiya*1969, 14, 443.
- [11] K. O. Klepp, Z. Naturforsch. 1992, 47b, 937.
- [12] P. Lemoine, D. Carre, M. Guittard, Acta Crystallogr. 1984, C40, 910.
- [13] J. Kim, T. Hughbanks, J. Solid State Chem. 2000, 149, 242.
- [14] E. J. Wu, M. A. Pell, T. M. Fuelberth, J. A. Ibers, Z. Kristallogr. 1997, 212, 91.
- [15] D. Müller, H. Hahn, Z. Anorg. Allg. Chem. 1978, 438, 258.
- [16] J. Leal-Gonzalez, S. S. Melibary, A. J. Smith, *Acta Crystallogr.* 1990, *C46*, 2017.
- [17] L. Kienle, H. J. Deiseroth, Z. Kristallogr. 1996, 211, 629.
- [18] L. Kienle, H. J. Deiseroth, Z. Kristallogr. 1998, 213, 21.
- [19] L. Kienle, H. J. Deiseroth, Z. Kristallogr. 1998, 213, 20.
- [20] SAINT, Version 4.05; SADABS; SHELXTL, Version 5.03, Siemens Analytical X-ray Instruments, Madison, WI, 1995.
- [21] B. Eisenmann, J. Jäger, Z. Kristallogr. 1991, 197, 251.
- [22] C. Püttmann, F. Hiltmann, W. Hamann, C. Brendel, B. Krebs, Z. Anorg. Allg. Chem. 1993, 619, 109.
- [23] S. Dhingra, M. G. Kanatzidis, Science1992, 258, 1769.
- [24] M. S. Devi, K. Vidyasagar, J. Chem. Soc., Dalton Trans. 2002, 4751.
- [25] M. Takumi, Y. Koshio, K. Nagata, Phys. Stat. Sol. 1999, 211b, 123.
- [26] K. Chondroudis, M. G. Kanatzidis, J. Solid State Chem. 1998, 136, 328.