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Cp* Non-innocence Leads to a Remarkably Weak C–H Bond via Me-
tallocene Protonation 

Matthew J. Chalkley, Paul H. Oyala,* and Jonas C. Peters* 

Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, 

United States 

ABSTRACT Metallocenes, including their permethylated variants, are extremely important in organometallic chemistry. In partic-

ular, many are synthetically useful either as oxidants (e.g., Cp2Fe+) or as reductants (e.g., Cp2Co, Cp*2Co and Cp*2Cr). The latter 

have proven to be useful reagents in the reductive protonation of small molecule substrates, including N2. As such, understanding 

the behavior of these metallocenes in the presence of acids is paramount. In the present study, we undertake the rigorous characteri-

zation of the protonation products of Cp*2Co using pulse EPR techniques at low temperature. We provide unequivocal evidence for 

the formation of the ring protonated isomers Cp*(exo/endo-η4-C5Me5H)Co+. Variable temperature Q-Band (34 GHz) pulse EPR 

spectroscopy, in conjunction with DFT predictions, are key to reliably assigning the Cp*(exo/endo-η4-C5Me5H)Co+ species. We 

also demonstrate that exo-protonation selectivity can be favored by using a bulkier acid and suggest this species is thus likely a 

relevant intermediate during catalytic nitrogen fixation given the bulky anilinium acids employed. Of further interest, we provide 

physical data to experimentally assess the C−H bond dissociation free energy (BDFEC−H) for Cp*(exo-η4-C5Me5H)Co+. These ex-

perimental data support our prior DFT predictions of an exceptionally weak C–H bond (<29 kcal mol−1), making this system among 

the most reactive (with respect to C–H bond strength) to be thoroughly characterized. These data also point to the propensity of 

Cp*(exo-η4-C5Me5H)Co to mediate hydride (H−) transfer. Our findings are not limited to the present protonated metallocene sys-

tem. Accordingly, we outline an approach to rationalizing the reactivity of arene-protonated metal species, using decamethylnickel-

ocene as an additional example. 

1. INTRODUCTION 

Metallocenes such as ferrocene, chromocene, and cobaltocene 

have enjoyed a privileged role in the development of organo-

metallic chemistry and serve as useful reagents owing to their 

high compositional stabilities and accessible redox couples.1,2 

Indeed, many chemists first encounter metallocenes in the 

context of their one-electron redox chemistry, with the 

Cp2Fe+/0
, Cp2Cr+/0, and Cp2Co+/0 couples, and those of their 

related permethylated variants, being some of the most com-

monly exploited in all of synthetic chemistry.3 

An area where divalent metallocene reductants (e.g., Cp2*Cr, 

Cp2*Co) have been proven particularly effective is catalytic 

N2-to-NH3 conversion (N2RR).4,5,6 Schrock first identified their 

utility in this context via the discovery of a molybdenum 

tris(amido)amine ([HIPTN3N]Mo, HIPTN3N = [(3,5-(2,4,6- 
iPr3C6H2)2C6H3NCH2CH2)3N]3−) N2RR catalyst system em-

ploying lutidinium as the acid and Cp2*Cr as the reductant.4 

Since that discovery, other labs have exploited related cock-

tails that pair a metallocene reductant with an acid to drive 

N2RR using a range of metal catalysts, with selectivities and 

turnover numbers that continue to improve.5,6,7,8,9 

The protonation chemistry of metallocenes is well studied, 

especially among Group 810,11 and 1012,13 metallocenes. Relat-

ed studies on more reducing Group 6 and 9 metallocenes (e.g., 

Cp*2Cr, Cp2Co, Cp*2Co), which are relevant to the aforemen-

tioned proton-coupled reduction of N2, have been much more 

limited. While studies have shown that the release of H2 is 

highly favorable on both thermodynamic and kinetic 

grounds,14 protonated Group 6 and 9 metallocene intermedi-

ates have not been reliably identified and characterized. It has 

been presumed that the direct reactions of acids with reducing 

metallocenes are deleterious to selectivity for N2RR versus H2 

generation.4,15  

Our lab became interested in metallocenes following the ob-

servation that Cp*2Co could serve as the electron source for 

Fe-mediated N2RR in the presence of anilinium acids and an 

iron catalyst, P3
BFe (P3

B = tris(o-diisopropylphosphinophenyl)-

borane).8,9 Indeed, the selectivity for N2RR under these condi-

tions proved far more efficient for NH3 formation (up to 78%) 

than our originally published conditions using KC8 and 

[H(OEt2)2][BArF
4] (HBArF

4, BArF
4 = tetrakis(3,5- 

bis(trifluoromethyl)phenyl)borate)).16,17 However, contrary to 

our mechanistic experiments with HBArF
4, reaction of 

P3
BFeN2

− with anilinium acids led neither to the observation of 

relevant intermediates (e.g., P3
BFe(NNH2)

+) in freeze-quench 

spectroscopic methods, nor to the observation of fixed-N 

products upon annealing.9,18,19 

The apparent need for both acid and reductant to be present to 

achieve productive N–H bond formation is reminiscent of 

Schrock and coworkers’ observations when attempting to 

functionalize [HIPTN3N]Mo–N2 with catalytically relevant 

reagents.20 In both cases, we have hypothesized that metallo-

cene-mediated proton-coupled electron transfer reactions may 

play a key role in N–H bond-forming steps.7,9,21 Furthermore, 

given the ubiquity of these metallocene reagents in N2RR, we 

wondered whether metallocene-mediated N–H bond forming 

steps might provide a contributing, or even dominant, mecha-

nistic pathway. 

Page 1 of 9

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

Density functional theory (DFT) studies by our group support-

ed the notion that protonation of metallocenes such as Cp2*Co 

or Cp2*Cr by catalytically relevant acids is thermodynamically 

favorable. To our surprise, these DFT studies also predicted 

that ring protonation is thermodyamically favored versus pro-

tonation at the metal (to form a hydride).8 Such selectivity 

would contrast with the classic case of ferrocene, where proto-

nation at iron has been firmly established.10,22 The Cp2*Co and 

Cp*2Cr ring-protonated species are predicted to have remarka-

bly weak C–H bond dissociation enthalpies (BDE <37 kcal 

mol−1), which should in turn make them excellent PCET do-

nors.7,9 These observations intimate that protonated metallo-

cene intermediates might thereby offer viable pathways for N–
H bond formation via PCET (or even hydride transfer; vide 

infra), in addition to the more commonly presumed pathway 

for deleterious H2 evolution (Figure 1). 

 

Figure 1: Reaction pathways to consider for protonated Cp*2Co species, 

illustrating both undesired HER and possible N–H bond forming steps 

relevant to N2RR. 

We previously reported preliminary investigations into the 

protonation of Cp*2Co. In brief, slow addition of a toluene 

solution of Cp*2Co to a vigorously stirred suspension of tri-

fluoromethanesulfonic acid (HOTf) in toluene at −78 °C led to 

precipitation of a purple solid that could be isolated via filtra-

tion.  On the basis of the X-band continuous wave (CW) elec-

tron paramagnetic resonance (EPR) spectrum (77 K, Figure 4) 

of the solid, we speculated that it was a protonated Cp*2Co 

species.8 Herein, we undertake the rigorous characterization of 

the protonation products of Cp*2Co using pulse EPR tech-

niques, and provide unequivocal evidence for the assignment 

of the ring protonated isomers Cp*(exo/endo-η4-C5Me5H)Co+. 

Variable temperature Q-Band (34 GHz) pulse EPR spectros-

copy, in conjunction with DFT predictions, are key to enabling 

the assignment. We also demonstrate that exo-protonation can 

be favored when using a bulkier acid. Of further interest, we 

provide physical data to experimentally assess the C−H bond 

dissociation free energy (BDFEC−H) for Cp*(exo-η4-

C5Me5H)Co+, which support our earlier DFT predictions that it 

has an exceptionally weak C–H bond (Figure 1). This behavior 

should not be limited to the present protonated metallocene, 

and we thus outline a general approach to understanding the 

reactivity of arene-protonated metal species. 

 

2. RESULTS 

2.1 Pulse Electron Paramagnetic Resonance Spectros-

copy on Protonated Cp*2Co. To interrogate the reaction of 

Cp*2Co with HOTf, we employed Q-band pulse EPR experi-

ments at very low temperatures. Electron spin-echo (ESE) 

detected, field-swept spectra at Q-band, performed at 6 K and 

10 K, clearly identify the presence of two different species 

with dramatically different g-anisotropy in the precipitated 

solid (Figure 2). Fortuitously, measurement of the approxi-

mate spin-lattice relaxation rates via inversion recovery (see 

SI) reveals that the two species have significantly different T1’ 

times. The species with higher g-anisotropy (g = [2.625, 2.349, 

1.984]) exhibits a much shorter T1’ than the species exhibiting 

a narrower spectrum (g = [2.170, 2.085, 2.005]), even at 6 K. 

This difference in relaxation rates becomes more dramatic 

upon warming the sample to 10 K; at this temperature, T1’ for 

the species with high g-anisotropy is short enough to greatly 

diminish its electron-nuclear double resonance (ENDOR) re-

sponse relative to the other species, even at magnetic fields 

with significant spectral overlap. Thus, the signals arising 

from these two species in pulse EPR experiments can be large-

ly isolated by recording spectra at these two different tempera-

tures (6 K and 10 K; Figure 2).  

Figure 2: Pseudomodulated23 Q-band ESE-detected EPR spectra of the 
reaction of Cp*2Co with HOTf (black traces), and DOTf (blue traces) 

measured at 10 K (top traces) and 6 K (bottom traces). See SI for acquisi-

tion parameters. Simulations for each species are displayed in red (See SI 
for simulation details). The sharp signals with asterisks above them are 

due to a background signal arising from a component of the EPR cavity 

(See SI for more detail). 

For the narrower, more slowly relaxing species, a comparison 

of the Q-band ESE-detected EPR spectra from the reaction of 

Cp*2Co with HOTf and DOTf shows a clear change, from 16 

resolved splittings centered at 1270 mT, to the 8 lines ex-

pected for a large hyperfine coupling to an I = 7/2 59Co nucle-

us (A(59Co)10 K = [15, 15, 225] MHz). This observation indi-

cates that, at least at the orientation corresponding to g3, there 

is a single 1H nucleus with a hyperfine coupling of approxi-

mately ½ of the magnitude of the 59Co hyperfine coupling. 

Analysis of the field-dependent 1H ENDOR (Figure 3a-b) at 

10 K, with corroboration from 2H hyperfine sub-level correla-

tion (HYSCORE) spectra (see SI) of each respective species, 

allows determination of the full hyperfine tensor of this acid-

derived proton: A(1H)10 K = [106.5, 112.5, 108.2] MHz, with 

aiso = 109.1 MHz. Comparing this value to that known for the 

hydrogen atom (1420 MHz) indicates that approximately 0.08 

e− are localized on this proton.24 The amount of spin density 

localized on this proton is unusually large, even when com-

pared with highly reactive, paramagnetic transition metal hy-

drides.25  

Characterization of the species with greater g-anisotropy was 

targeted by performing analogous experiments at 6 K. In this 
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case, the Q-band ESE-detected EPR spectra for this species in 

samples generated with HOTf and DOTf are indistinguishable, 

indicating that the 1H hyperfine coupling to the acid-derived 

proton is small in comparison to the 59Co hyperfine and the 

inhomogeneous line broadening. This was confirmed via field- 

dependent ENDOR (Figure 3c-d) and HYSCORE (see SI) 

spectra acquired at 6 K, which reveal a single acid-derived 

proton coupling of A(1H)6 K = [19.0, 15.0, 19.5] MHz, aiso = 

17.8 MHz. 

Figure 3: a) Q-band Davies ENDOR spectra at 10 K and b) narrow Q-

band Davies ENDOR spectra at 10 K. c) Q-band Davies ENDOR spectra 
at 6 K and d) narrow Q-band Davies ENDOR spectra at 6 K. Data from 

the reaction with HOTf (black) and DOTf (blue) are shown. A simulation 

(red) is given and in the spectra at 6 K the simulation is further decom-
posed into the components for the 1H simulation (green) and the 59Co 

simulation (light blue). See SI for full acquisition parameters and simula-

tion details. 

Additionally, features from 59Co (A(59Co)6 K = [245, 160, 187] 

MHz) are observable in the ENDOR spectra at all fields, 

which is likely due to the more isotropic nature of the coupling 

symmetry of this species in comparison to the species with 

smaller g-anisotropy. In the ENDOR acquired at 1230 mT, 

additional splittings due to the 59Co nuclear quadrupole inter-

action are resolved. Simulations of these ENDOR spectra in-

dicate a quadrupole coupling constant of e2qQ/h = 170 MHz, 

with negligible electric field gradient rhombicity (η). These 

values are very similar to those reported for Cp2Co+ (e2qQ/h = 

171.5 MHz and η = 0), as determined by nuclear quadrupole 

resonance. This suggests that protonation results in only a 

relatively minor perturbation of the environment around Co.26 

2.2 Stereochemical Assignment of Cp*2Co Protonation. 

Notably, both of the proton hyperfine coupling tensors are 

highly isotropic in nature, with only small anisotropic compo-

nents (T(1H)10 K = [−2.6, 3.4, −0.9] MHz; T(1H)6 K = [1.2, −2.8, 

1.7] MHz). To evaluate possible chemical assignments for 

these observations, DFT calculations were performed to opti-

mize the structure of the three plausible protonation isomers 

(i.e., Co–H, exo-C–H, and endo-C–H) and then single point 

calculations were performed to predict the relevant hyperfine 

tensors (Figure 5a).27 Consistent with previous experimental 

observations for paramagnetic transition metal hydrides, DFT 

predicts the Co–H isomer to have a large, roughly axial dipo-

lar coupling tensor (T(1H)Co–H = [34.1, −20.7, −12.9]).28,29 Fur-

thermore, the predicted aiso value for the Co–H of −50 MHz is 

inconsistent with our experimental EPR data for the protonat-

ed species. In contrast, the hyperfine coupling tensor for both 

exo- and endo-isomers are predicted to be far more isotropic 

(T(1H)exo-C−H = [−2.4, 3.8, −1.4] and T(1H)endo-C−H = [−3.1, 8.7, 

−5.6]), consistent with the EPR data available. Importantly, 

our DFT calculations also predict that the two ring-protonated 

isomers have very different aiso values, with the exo-isomer 

predicted to have aiso = 119 MHz and the endo-isomer predict-

ed to have aiso = 31 MHz. Thus, we assign the species with 

small g-anisotropy to be the exo-isomer and that with large g-

anisotropy to be the endo-isomer. 

Assuming this assignment is correct then, on the basis of the 

recorded CW EPR spectra, the endo-isomer is formed in high-

er yield with HOTf (Figure 4, top). We wondered whether it 

might be possible to achieve preferential exo-functionalization 

by using a bulkier acid. Indeed, we have found that slow addi-

tion of a toluene solution of Cp*2Co at −78 °C to a rapidly 

stirred suspension of the more sterically encumbered 

bis(trifluoromethane)sulfonimide (HNTf2) in toluene also pre-

cipitates a purple solid (Figure 4, bottom). Analysis of this 

solid by CW X-Band EPR at 77 K reveals a near complete 

  
Figure 4: (top) X-Band CW EPR spectrum of the reaction of Cp*2Co with 

HOTf (black) and its simulation (red). (bottom) X-Band CW EPR spec-
trum of the reaction of Cp*2Co with HNTf2 (black) and its simulation 

(red). The simulations are generated using the same parameters (see SI) 

except for the weighting of the two species. For the top simulation it is 

10:1 endo:exo and in the bottom simulation it is 3:10 endo:exo.

Page 3 of 9

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

 
Figure 5: a) DFT optimized structures for the protonated form of Cp*2Co. The predicted A(1H) values are for the proton circled in red. b) X-ray crystal 

structure of Cp*(exo-η4-C5Me5H)Co. Thermal ellipsoids are shown at 50% probability. c) Experimentally derived 1H hyperfine parameters for the endo- and 

exo-isomers of protonated Cp*2Co. 

 

inversion of the protonation-site selectivity. Both of the proto-

nation reactions are under kinetic control due to the rapid pre-

cipitation upon proton transfer. With the smaller HOTf, endo-

protonation is preferred (Figure 5a), but with the bulkier 

HNTf2, steric clash with the opposite Cp* ring leads to exo-

protonation being favored (Figure 5b).  

Further chemical confirmation of the protonation site was ob-

tained by pre-functionalization of the Cp* ring. Taking a cue 

from classic literature, we noted that Wilkinson et al. previ-

ously characterized a far more stable, neutral ring-

functionalized species, Cp(η4-C5H6)Co.30 By analogy to their 

approach, we generated Cp*(exo-η4-C5Me5H)Co in moderate 

yield via the reaction of Cp*2Co+ with  excess tetrabu-

tylammonium borohydride in refluxing THF. The stereospeci-

ficity of exo-functionalization could be confirmed in the solid 

state by XRD analysis (Figure 5b) and in solution via NMR 

spectroscopy. 

Although our efforts to use common oxidants (i.e., Fc+, Ag+) 

to affect the electron transfer were unsuccessful, we found that 

Cp*(exo-η4-C5Me5H)Co could be oxidized by reaction with 

HBArF
4 at −78 °C in pentane. The purple precipitate was ana-

lyzed by X-Band CW EPR and, as expected, demonstrated 

only the signal that we had assigned to the exo-isomer. To 

confirm that the strongly coupled proton observed derived 

from our pre-functionalized ring and not the acid, Cp*(exo-η4-

C5Me5D)Co was reacted with HBArF
4. Only the formation of 

Cp*(exo-η4-C5Me5D)Co+ was detected by EPR (Scheme 1, see 

SI).  

2.3 Thermochemical Measurements. We were also interest-

ed in experimentally validating the DFT-predicted thermo-

chemical properties of these species. The high kinetic instabil-

ity of Cp*(exo/endo-η4-C5Me5H)Co+ in solution precludes 

direct measurement of the thermochemical properties that we 

have predicted by DFT. Of particular interest is experimental 

validation of a remarkably weak BDFEC-H. We therefore 

Scheme 1. Proposed Mechanism for the Oxidation of 

Cp*(exo-η4-C5Me5D)Co with HBArF
4 

 

turned to the neutral species Cp*(exo-η4-C5Me5H)Co as a 

means to indirectly measure pertinent thermochemical proper-

ties for Cp*(exo-η4-C5Me5H)Co+. 

One important parameter in this regard is the Cp*(exo-η4-

C5Me5H)Co+/0 redox couple. In cyclic voltammograms (CVs) 

of Cp*(exo-η4-C5Me5H)Co, obtained at typical scan rates (0.01 

to 1.0 V s−1) at room temperature in butyronitrile,31 only an 

irreversible oxidation is observed. Continuing to scan these 

voltammograms further in the cathodic direction leads to the 

observation of the fully reversible Cp*2Co+/0 couple (Figure 6, 

top), consistent with the loss of 0.5 equivalents of H2, as ex-

pected from Cp*(exo-η4-C5Me5H)Co+ in solution. By scanning 

rapidly (>10 V s−1) at room temperature (Figure 6, bottom), or 

alternatively by cooling the reaction mixture to −78 °C (see 

SI), voltammograms with appreciable reversibility could be 
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obtained, from which E0 could be determined to be −0.62 V vs 

Fc+/0 (Figure 7).  

Figure 6: Cyclic voltammograms of the Cp*(exo-η4-C5Me5H)Co+/0 couple 

at room temperature in a 0.4 M [TBA][PF6] solution of butyronitrile. (top) 

Scan showing that the oxidation of Cp*(exo-η4-C5Me5H)Co0 leads to the 

emergence of the Cp*2Co+/0 couple. (bottom) Variable scan rate measure-

ments on the Cp*(exo-η4-C5Me5H)Co+/0 feature. 

To further confirm this value, the methylated derivative, 

Cp*(η4-C5Me6)Co, was prepared.13 The oxidation event for 

this species is reversible.32 This result is consistent with the 

significantly higher kinetic barrier anticipated for Me• 
loss/transfer compared to H• loss/transfer. In acetonitrile, the 

E0 we measure for Cp*(η4-C5Me6)Co+/0 is −0.61 V vs Fc+/0, in 

good agreement with our experimental data for the Cp*(exo-

η4-C5Me5H)Co+/0 couple. 

An estimate of the hydricity (ΔG(H−)) of Cp*(exo-η4-

C5Me5H)Co provides another useful parameter. Dissolution of 

Cp*(exo-η4-C5Me5H)Co in MeCN-d3 and reaction with 1 atm 

of CO2 or with excess [Pt(dmpe)2]
2+ (dmpe = 1,2-

dimethylphosphinoethane), leads in both cases to quantitative 

hydride transfer. From this observation we can determine a 

lower bound for the hydricity of Cp*(exo-η4-C5Me5H)Co 

(ΔG(H−) <41 kcal mol−1; Figure 7).33 This is in good agree-

ment with our DFT prediction of ∆G(H−) = 37 kcal mol−1 for 

this species. The C–H bond of Cp*(exo-η4-C5Me5H)Co is thus 

about 15 kcal mol−1 more hydridic than the C–H bonds in the 

common biological hydride donors NADH and NADPH.34 

These observations hint at the possibility that, at least in prin-

ciple, species such as Cp*(exo-η4-C5Me5H)Co could mediate 

hydride transfer steps relevant to N2RR, such as that shown in 

Figure 1. 

In an attempt to estimate the homolytic C−H bond strength 

(BDFE) of Cp*(exo-η4-C5Me5H)Co, it was reacted with excess 

4-methoxy-2,2,6,6-tetramethyl-1-piperidinyloxy (4-

MeOTEMPO⦁). To our surprise, two equivalents of 4-

MeOTEMPO−H were formed. The first equivalent derives from 

the expected H-atom abstraction to form Cp*2Co, providing an 

upper limit to the BDFEexo-C–H: <65 kcal mol−1 (eq 1, Figure 

7).24 The second 4-MeOTEMPO−H equiv is derived from a sec-

ond H-atom abstraction step between 4-MeOTEMPO⦁ and 

Cp*2Co (eq 2). This generates the known fulvene species, 

Cp*(η4-C5Me4CH2)Co.35 These observations are consistent 

with our BDFEC–H predictions for the C–H bond in both 

Cp*(exo-η4-C5Me5H)Co and Cp*2Co (53 and 62 kcal mol−1, 

respectively). 

Cp*(exo-η4-C5Me5H)Co + 4MeOTEMPO• →  

   Cp*2Co + 4MeOTEMPO–H        (1) 

Cp*2Co + 4MeOTEMPO• →  

 Cp*(η4-C5Me4CH2)Co + 4MeOTEMPO–H             (2) 

With this thermochemical data for Cp*(exo-η4-C5Me5H)Co in 

hand, it is possible to constrain the BDFEC−H for Cp*(exo-η4-

C5Me5H)Co+. Using the bound established for the BDFEC−H 

for neutral Cp*(exo-η4-C5Me5H)Co, we can establish an upper 

limit for the BDFEC–H of Cp*(exo-η4-C5Me5H)Co+ of 34 kcal 

mol−1. But using the upper limit determined for the ΔG(H−) of 

Cp*(exo-η4-C5Me5H)Co allows us to place an even lower up-

per limit for BDFE(Cp*(exo-η4-C5Me5H)Co+) of <29 kcal 

mol–1.  This experimental upper limit predicted from the solu-

tion phase data is in reasonable agreement with our gas-phase 

DFT prediction of 23 kcal mol−1.36 The C–H bond of Cp*(exo-

η4-C5Me5H)Co+ is extremely weak. 

 
Figure 7: Thermochemistry of neutral and cationic Cp*(exo-η4-

C5Me5H)Co. Computational values are shown in parentheses. Thermody-

namic quantities are in kcal mol–1 and potentials are against Fc+/0.  

3. DISCUSSION 

It is well established that group 8 metallocenes form metal 

hydrides upon protonation.10,11,22 In the case of ferrocene, 

computational trajectories have been used to argue that there is 

fast exchange between a terminal hydride and a hydride that 

forms an agostic interaction with the Cp ring.37,38 In contrast, 

neutral group 10 metallocenes (Cp2Ni and Cp*2Ni), and the 

isoelectronic Cp2Co−, are known to undergo exo-

protonation.12,13,39 Here we find that, consistent with the near 

isoenergetic energies predicted by DFT, Cp*2Co undergoes 

both exo- and endo-protonation on the ring. This result pro-

vides a distinct example of a metallocene that undergoes non-

specific protonation. Furthermore, the protonation selectivity 

can be altered by changing the steric profile of the acid.  

We suspect that formation of the exo-isomer is likely critical 

to observing productive PCET reactions in N2RR mediated by 

the P3
BFe-system, as this isomer provides significantly less 

steric shielding for the reactive H•. Given the steric profile of 

the catalytically relevant acids that we and others have used 

(e.g., anilinium and pyridinium),4,5,6,7,8,9 we expect that exo-

protonation is far more likely under N2RR conditions. Indeed, 

we have calculated only small barriers (∆G‡ <5 kcal mol−1) for 

the exo-protonation of Cp*2Co by substituted anilinium triflate 

acids.9 Facile endo-protonation by these acids is inconsistent 

with simple space-filling models.  
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Although Cp* is most typically considered to be an innocent 

ligand, evidence continues to emerge that it can be involved in 

the management of protons. In addition to the well-established 

protonation of Cp*2Ni,13,40 several half-sandwich Rh complex-

es have recently been reported to form Cp*–H linkages fol-

lowing reductive elimination of a Rh–H. 41,42,43 In these cases, 

the Cp*–H bond has been directly implicated in H– transfer, 

either to H+ or to NAD+.  

The present study illustrates that Cp*–H linkages are not lim-

ited to H– transfer pathways. Rather, the type of reactivity can 

be predicted by the tendency of the metal center to achieve a 

closed-shell, 18e− d6 configuration. Thus, the d7 Co center in 

Cp*(exo-η4-C5Me5H)Co+ should favor a one electron process 

(H• transfer), while the d8 Co center in Cp*(exo-η4-

C5Me5H)Co should favor a two electron process (H− transfer), 

akin to those observed for the aforementioned d8
 Rh centers. 

In this work, we have derived a BDFE for three different C–H 

bonds relevant to decamethylcobaltocene (Cp*(exo-η4-

C5Me5H)Co+, Cp*(exo-η4-C5Me5H)Co, and Cp*(η5-

C5Me4CH2H)Co) (Figure 8). All of these bonds are weak, but 

that in Cp*(exo-η4-C5Me5H)Co+ is significantly weaker than 

the other two. This can be readily explained in terms of the 

two primary factors affecting the stability of the starting and 

product complexes: aromaticity and electron count. In the case 

of H-atom abstraction from Cp*(exo-η4-C5Me5H)Co or from a 

methyl substituent in Cp*2Co, these factors offset one another 

to provide a weak, but not an exceptionally weak, C–H BDFE. 

For Cp*(exo-η4-C5Me5H)Co, H-atom abstraction aromatizes 

the Cp* ring, offset by the formation of a 19e− center. On the 

other hand, in Cp*2Co, H-atom abstraction transforms the 19e− 

center to an 18e− center, but the Cp* ring is dearomatized. 

Only in the case of Cp*(exo-η4-C5Me5H)Co+ are both stabiliz-

ing factors driving formation of the product. H-atom abstrac-

tion affords aromatic, 18e− Cp*2Co+, and correspondingly the 

C–H bond is remarkably weak (BDFE <29 kcal mol−1). 

Reagents with such weak X−H bonds have been sought due to 

their utility in organic synthesis for the stepwise reduction of 

unsaturated substrates, such as olefins, ketones, aldehydes, 

esters, and enamines via H• transfer.44,45 Traditional strategies 

for developing such reagents have focused on reactive metal 

hydrides, for which the M• product of an overall hydrogen 

atom transfer is stabilized by dimerization via M–M bond 

formation, and/or the formation of bridging carbonyl prod-

ucts.46 Another strategy has involved the coordination of sub-

strates that contain otherwise strong X–H bonds to a highly 

reducing, but nonetheless oxophilic/azaphilic, metal centers, 

resulting in remarkable weakening of the X–H bond.47 One 

system where this phenomenon has proven particularly effec-

tive for engendering synthetically useful PCET reactions is 

SmI2-H2O, in which coordination of H2O to SmII
 has been 

estimated to result in an O–H bond weakening of almost 100 

kcal mol–1.48,49,50,51   

The present study presents the protonation of Cp*2Co to form 

Cp*(η5-C5Me5H)Co+ as a distinct and promising strategy for 

developing extremely strong PCET donors. In general, this 

strategy involves coupling a d7 (or d4) metal ion to a dearoma-

tized arene ligand. Given the prevalence of sandwich and half- 

sandwich complexes in organometallic chemistry, it is likely 

that as yet unrecognized examples of such PCET reagents 

already exist, or are readily accessible.  

Cp*(exo-η4-C5Me5H)Ni2+ provides one such example. Electro-

chemical oxidation of the stable Cp*(exo-η4-C5Me5H)Ni+ to 

Cp*(exo-η4-C5Me5H)Ni2+ leads to rapid generation of 

 
Figure 8: (top) A comparison of the experimental BDFEC–H for a variety 
of related Cp*Co-species, demonstrating the importance of aromaticity 

and electron count in predicting the stability of the indicated C–H bond. 

(bottom) A comparison of computational BDFEC–H values for a redox 

series of [Cp*(exo-η4-C5Me5H)Ni]n+. 
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Cp*2Ni2+ on the CV time scale. This transformation was origi-

nally proposed to occur via H+ loss followed by e− loss.52 Al-

ternatively, we suspect that, in analogy to Cp*(exo-η4-

C5Me5H)Co+, this transformation may occur via rapid H• loss. 

In contrast, electrochemical reduction of the cation Cp*(exo-

η4-C5Me5H)Ni+ to Cp*(exo-η4-C5Me5H)Ni is fully reversible 

on the CV time scale.52 

These results emphasize that the electron count of the metal 

center, instead of its reducing power, can be a good predictor 

of the reactivity. Indeed, our DFT calculations and the relative 

experimental stability of Cp*(exo-η4-C5Me5H)Ni and 

Cp*(exo-η4-C5Me5H)Ni+ suggest that even though H• loss 

involves formal oxidation of the metal center the d9 NiI and d8 

NiII species are less prone to PCET reactivity. However, upon 

oxidation to the d7 NiIII species the C–H bond is weakened by 

approximately 20 kcal mol−1. This weakening is due to the 

high stability of the 18e−, d6 Cp*2Ni2+ product resulting from 

net hydrogen atom transfer. 

4. CONCLUSION 

We have demonstrated using pulse EPR spectroscopy, sup-

ported by DFT calculations, that for Cp*2Co the Cp* ring is 

the site of protonation. Both ring-protonated isomers (endo 

and exo) can be formed and observed, with the selectivity be-

ing determined by the bulk of the acid. For the exo-species, we 

were able to use the one-electron reduced, neutral congener, 

Cp*(exo-η4-C5Me5H)Co, to verify our DFT prediction that the 

protonated species, Cp*(exo-η4-C5Me5H)Co+, has a remarka-

bly weak C−H bond (<29 kcal mol−1). This is consistent with 

the suggestion that it may serve as a PCET donor in catalytic 

N2RR in which it is generated in situ. 

The facile protonation of Cp*2Co to generate Cp*(exo-η4-

C5Me5H)Co+ points to a more general strategy for developing 

conceptually related, strong PCET donors. Such strategies 

would complement current approaches for the development of 

PCET reagents, which rely on creating weak M–H bonds or 

coordination-induced weakening of O–H or N–H bonds. 

We have also shown that Cp*(exo-η4-C5Me5H)Co+ can be 

converted from a PCET donor to a strong hydride donor by 

one electron reduction, as demonstrated by the capacity of 

Cp*(exo-η4-C5Me5H)Co to convert CO2 to formate. This ob-

servation highlights the dual potential for metallocenes to me-

diate both hydride transfer and PCET steps during the proton-

coupled reduction of small molecule substrates (Figure 1). 

Both types of reactivity differ from the canonical role associ-

ated with metallocenes as electron transfer reagents. 
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