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Abstract. A highly general, efficient and simple methodology for the regioselective synthesis of aryl tetrazole
amines has been explored. The present method involves consecutive desulphurization and C-N cross-coupling
reaction. Cheap, readily available and air stable cobalt catalyst has been used for this methodology. In addition,
the substrate scope has been demonstrated.
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1. Introduction

Very important heterocyclic class tetrazole is found in
compounds (Figure 1) having anti-asthmatic,1 antivi-
ral and anti-inflammatory2 and anti-neoplastic3 activ-
ities. In addition, tetrazoles are also used as ligands
in coordination chemistry and they show medicinal
applications.4 Therefore synthetic organic chemists
have drawn immense attention for the preparation of
substituted tetrazoles. In this connection, researchers
have developed traditional methods for the construc-
tion of tetrazoles. Especially, addition of NaNO2 to
amino-guanidine,5 addition of NaN3 to carbodiimides or
cyanamides,6 reaction of amines with a leaving group in
tetrazoles 5-position,7 nucleophilic substitution by N−

3

of (a) chlorine in α-chloroformamidines8 and (b) sulfur
from thioureas in presence of mercury9 or lead salts5c or
iodine.10 5-Substituted-1H -tetrazoles are also prepared
from the reaction between corresponding nitriles and
NaN3 via [3+2] cycloaddition using Zn (II) salts11 and
ZnO nanocrystal.12 Later, substituted tetrazoles have
been prepared from the reaction between substituted
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nitriles and TMSN3 using TBAF13 and Copper cata-
lyst.14 Often these methods use either toxic reagents
or harsh reaction conditions such as high temperature,
toxic reagents, unavailable starting precursors and lack
of regioselectivity.15 To overcome the above-mentioned
drawbacks we wish to develop a methodology for
the synthesis of substituted tetrazoles from thiourea
using cobalt via desulphurization/substitution/electro
cyclization/C-N cross-coupling reaction. To the best of
our knowledge, no report is available for the synthesis
of tetrazoles from thiourea using cobalt.

2. Experimental

2.1 General information

CS2, CoCl2 · 6H2O, CoSO4 · H2O, Co(NO3)2 · 6H2O, Et3N,
Pyridine, sodium bicarbonate and ammonia were purchased
from Aldrich and used without further purification. The
solvents were purchased and dried according to standard
procedure prior to use.11H NMR(400 MHz) spectra were
recorded with a Varian 400 spectrometer. Infrared (IR) spec-
tra were recorded on a Perkin Elmer Spectrum one FT-IR
spectrometer. Elemental analyses were recorded with Perkin
Elmer CHNS analyzer. VKSI Medico Centrifuge was used
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Figure 1. Some of the biological important aminotetra-
zoles.

for our experimental procedure for the synthesis of resulting
compounds.

2.2 Representative experimental procedure for the
synthesis of Phenyl tetrazole amine (1a)

To a stirred solution of DMSO (2–3 mL), thiourea (1 mmol, 76
mg) was added in slowly and followed by Et3N (1 mmol, 101
mg) and CoCl2 · 6H2O (50 mol%, 119 mg) at room temper-
ature. The whole reaction mixture stirred for one hour (until
black colour) at room temperature. The reaction was moni-
tored by TLC. After completion of the reaction (monitored by
TLC), add NaN3 (2 mmol, 130 mg) and the reaction mixture
stirred for 1 h. Later, iodobenzene (1 mmol, 204 mg), Cs2CO3
(1 mmol, 325 mg), CoCl2 ·H2O (10 mol%, 23.8 mg) and 1,10-
phenanthroline (20 mol%, 36 mg) were added consecutively
for several min and the reaction mixture was stirred for 18 h at
85 ◦C. The progress of the reaction was investigated by TLC
(5% ethylacetate in hexane). After completion of the reaction,
the reaction mixture was transferred into centrifuge tubes and
centrifuged for 10 min. Black solid settled at the bottom of
centrifuge tubes. The clear solution was concentrated using
rotary evaporator and the crude mixture was purified by silica
gel (60–120 mesh) column chromatography using 30% ethy-
lacetate in hexane as eluent to obtain a phenyl tetrazole amine
1a as a white solid.

N
N N

N

NH2

1-Phenyl-1H-tetrazol-5-amine (1a): Analytical TLC on silica
gel, 3:7 ethyl acetate/hexane (Rf 0.6). Yield 296 mg (92%),
White solid, M.p. 167–168 ◦C (Lit33 M.p. 162–163 ◦C). 1H
NMR (400 MHz, CDCl3), δ, ppm: 7.97 (2H, br. s, NH2);
7.61–7.57 (m, 2H, H Ar); 7.40–7.28 (m, 2H, H Ar); 7.21–
7.17 (m, 1H, H Ar). 13C NMR (100 MHz, CDCl3), δ, ppm:
137.8; 130.9; 130.6; 130.1; 128.9. FT-IR (KBr) cm−1: 3987;
3350; 3064; 1693; 1587; 1250; 1148; 1070; 909; 764. Anal.
Calcd. for C7H7N5: C, 52.17; H, 4.38; N, 43.45. Found: C,
52.30; H, 4.34; N, 43.36.

2.3 General procedure for the synthesis of diphenyl
tetrazole amine (1b)

To a stirred solution of DMSO (2–3 mL), thiourea (1 mmol,
76 mg) was added slowly, followed by Et3N (1 mmol, 101
mg) and CoCl2·6H2O (50 mol%, 119 mg) was added at room
temperature. The whole reaction mixture stirred for one hour
(until getting the black colour) at room temperature. The
reaction was monitored by TLC. After completion of the reac-
tion (monitored by TLC), to this, NaN3 (2 mmol, 130 mg)
was added. Then, the reaction mixture stirred for 1 h. Later,
iodobenzene (2 mmol, 408 mg), Cs2CO3 (1.5 mmol, 485 mg),
CoCl2 · H2O (10 mol%, 23.8 mg) and 1,10-phenanthroline
(20 mol%, 36 mg) were added consecutively for several min
and the reaction mixture was stirred for 24 h at 115 ◦C. The
progress of the reaction was investigated by TLC (5% ethylac-
etate in hexane). After completion of the reaction, the reaction
mixture was transferred into centrifuged tubes and the mixture
was centrifuged for 10 min by using centrifugation machine.
Black colour solid settled at the bottom of centrifuged tubes.
The clear solution was concentrated by using rotary evapora-
tor and the crude mixture was purified by silica gel (60–120
mesh) column chromatography using 30% ethylacetate in
hexane as eluent to obtain a phenyl tetrazole amine 1b as
a white solid.

N N
N

N
H
N

N ,1-Diphenyl-1H -tetrazol-5-amine1b: Analytical TLC on
silica gel, 3:7 ethyl acetate/hexane (Rf , 0.7); yield 95%;
1H NMR (400 MHz, CDCl3) δ 7.54–7.41 (m, 7H), 6.85 (d,
J = 8.8 Hz, 3H), 6.02 (br s, 1NH); 13C NMR (100 MHz,
CDCl3) δ 138.4, 132.8, 131.6, 129.2, 128.5, 128.1, 121.5,
120.9, 117.6; FT-IR (KBr) 3426, 3097, 1645, 1631, 1567,
1512, 1491, 1287, 1250, 1146, 1027, 896 cm−1. Anal. Calcd.
for C13H11N5: C, 65.81; H, 4.67; N, 29.52. Found: C, 65.90;
H, 4.65; N, 29.45.

3. Results and Discussion

As shown below Scheme 1, thiourea gave amino tetra-
zole A as intermediate via desulphurization followed
by cycloaddition. The intermediate A gave C-N cross-
coupled product with aryl iodide under mild reaction
conditions.

Initially, the optimization reaction condition was per-
formed using readily available thiourea as a model
substrate with various solvents, bases, ligands and cobalt
sources. We were glad to observe that the reaction
could give target product 1a in complete conversion
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Scheme 1. Pathway for the synthesis of phenyltetrazoleamine.

Table 1. Optimization for the synthesis of phenyltetrazoleaminea.

N N
N

H
NH2N III. PhI (1 eq), Cobalt source (10 mol %)

base (1 eq), ligand (20 mol %)
85 °C, 18 h

I. Solvent, Et3N (1 eq)
CoSO4.H2O (50 mol %)
RT, 1 h.

II. NaN3, RT, 1 h
H2N NH2

S

N N
L3

NH2H2N OHHO

L2L1

A

1a
+

1b

N N
N

NH2N

N N
N

NHN

Entry Solvent Cobalt source Base Ligand Conversion (%)b

A 1a 1b

1 EtOH CoCl2 · 6H2O K3PO4 · 3H2O L3 100 n.d. n.d.
2 EtOAc CoCl2 · 6H2O K3PO4 · 3H2O L3 100 n.d. n.d.
3 DMF CoCl2 · 6H2O K3PO4 · 3H2O L3 35 65 n.d.
4 DMSO CoCl2 · 6H2O K3PO4 · 3H2O L3 30 70 n.d.
5 DMSO CoCl2 · 6H2O KOH L3 20 80 n.d.
6 DMSO CoCl2 · 6H2O K2CO3 L3 45 55 n.d.
7 DMSO CoCl2 · 6H2O Cs2CO3 L3 n.d. 100 n.d.
8 DMSO CoCl2 · 6H2O Cs2CO3 L1 80 20 n.d.
9 DMSO CoCl2 · 6H2O Cs2CO3 L2 60 40 n.d.
10 DMSO CoSO4 · H2O Cs2CO3 L3 n.d. 100 n.d.
11 DMSO Co(NO3)2 · 6H2O Cs2CO3 L3 n.d. 100 n.d.
12c DMSO CoSO4 · H2O Cs2CO3 L3 45 55 n.d.
13d DMSO CoSO4 · H2O Cs2CO3 L3 50 50 n.d.
14 DMSO CoSO4 · H2O Cs2CO3 - 80 20 n.d.
15 DMSO - Cs2CO3 - 100 n.d. n.d.
16e DMSO CoSO4 · H2O Cs2CO3 L3 n.d. 100 n.d.
17f DMSO CoSO4 · H2O Cs2CO3 L3 n.d. 85 15
18g DMSO CoSO4 · H2O Cs2CO3 L3 n.d. 50 50
19h DMSO CoSO4 · H2O Cs2CO3 L3 n.d. n.d 100

aReaction conditions: Thiourea (1 mmol), solvent (2 mL), Et3N (1 eq), CoSO4 · H2O (50 mol%), 1 h, room temperature, then,
NaN3 (2 mmol), room temperature, then, iodo benzene (1 mmol), catalyst (10 mol%), ligand (20 mol%), base (1 mmol), 18 h,
85 ◦C. bConversion was confirmed crude 1H NMR. cCobalt source (5 mol%) used. dCs2CO3 (0.5 equiv) used. eIodobenzene
(2 eq) was used. f Iodobenzene (2 eq) and temp 100 ◦C were used. gIodobenzene (2 eq), temp. 100 ◦C and Cs2CO3 (1.5 eq)
were used. hIodobenzene (2 eq), temp 115 ◦C and Cs2CO3 (1.5 eq) were used (n.d. for not detected).
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Table 2. Substrate scope for the synthesis of substituted aryltetrazoleaminesa.

N N
N

NH2N

III. ArI (1 eq), CoCl2.6H2O (10 mol %)
Cs2CO3 (1 eq), 1,10-Phen (20 mol %)
85 °C, 18 h

I. DMSO, Et3N (1 eq)
CoCl2.6H2O (50 mol %)
RT, 1 h.

II. NaN3, RT, 1 hH2N NH2

S

R = EDG, EWG

Entry Substrate Product Yieldb

I

I

I

I

Cl

I

MeO

I

Me

I

Me

NO2

F

I

Me

Me

1

4

2

3

9

8

5

11

95

84

98

95

83

56

76

83

I

NC

I

I

10

6

7

90

47

43

Me

MeOOC

(1a)

(2a)

(3a)

(4a)

(5a)

(6a)

(7a)

(8a)

(9a)

(10a)

(11a)

R

N
N N

N
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N
N N

N

NH2

OMe

N
N N

N

NH2
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N
N N

N
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F

N
N N
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N N

N
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N
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N
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N
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N
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N
N N

N
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N
N N

N
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aReaction conditions: Thiourea (1 mmol), DMSO (2 mL), Et3N (1 eq), CoCl2 ·6H2O (50 mol%), 1 h, room temperature, then,
then, NaN3 (2 mmol), room temperature, 1 h, then, CoCl2 · 6H2O (10 mol%), ArI (1 mmol), ligand (20 mol%), Cs2CO3 (1
mmol), 18 h, 85 ◦C. bIsolated yield.
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Table 3. Substrate scope for the synthesis of substituted diaryltetrazoleaminesa.

N N
N

N
H
N

III. ArI (2 eq), CoCl2.6H2O (10 mol %)
Cs2CO3 (1.5 eq), 1,10-Phen (20 mol %)
115 °C, 24 h

I. DMSO, Et3N (1 eq)
CoCl2.6H2O (50 mol %)
RT, 1 h.

II. NaN3, RT, 1 hH2N NH2

S

R = EDG, EWG

Entry Substrate Product Yieldb

I

I

Cl

I

MeO

I

Me

1

2

6

5

3

95

95

78

74

I

NC

I

4

82

43

Me

(1b)

R

N N
N

N
H
N

N N
N

N
H
N

OMe

MeO

N N
N

N
H
N

Cl

Cl

N N
N

N
H
N

CN

NC

N N
N

N
H
N

Me

Me

N N
N

N
H
N

Me

Me

(2b)

(3b)

(4b)

(5b)

(6b)

aReaction conditions: Thiourea (1 mmol), DMSO (2 mL), Et3N (1 eq), CoCl2 · 6H2O (50 mol%), 1 h, room temperature, then
NaN3 (2 mmol, 130 mg), room temperature, 1 h, then Aryl iodide (2 mmol), CoCl2 · 6H2O (10 mol%), ligand (20 mol%),
Cs2CO3 (1.5 mmol), 24 h, 115 ◦C. bIsolated yield.

using 10 mol% cobalt source, 20 mol% Ligand (1,10-
Phenanthroline) and 1 equiv. Cs2CO3 at 85 ◦C (Table 1,
entries 7 & 10–11). In case of solvent optimization,
DMSO was effective to provide the target product 1a.

Other solvents such as EtOH and EtOAc could obtain
amino tetrazole A in complete conversion, but it didn’t
give target product1a (Table 1, entries 1, 2). The reaction
using Cs2CO3 exhibited greater reactivity compared to
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Scheme 2. Proposed mechanism.

that of K3PO4 · 3H2O, K2CO3 and KOH. In a set of lig-
andsL1–L3 screened,L3 (Table 1, entry 7) was found to
be the most effective in comparison to L1, L2 (Table 1,
entries 8–9). Cobalt sources (CoCl2 ·6H2O, CoSO4·H2O
and Co(NO3)2·6H2O) exhibited a similar catalytic activ-
ity (Table 1, entries 7 & 10,11). Lowering the amount
of base (1 equiv) or the cobalt source (5 mol%) led
to the N -arylation to afford target product in less con-
version (Table 1, entries 12–13). Control experiments
without ligand (Table 1, entry 14) and the cobalt source
(Table 1, entry 15) confirmed that the formation of final
product was not observed. Very interestingly, the above
reaction condition couldn’t give diphenyltetrazolamine
1b. Therefore, we have focused for the synthesis of
diphenyltetrazolamine from thiourea. In this connec-
tion, the standardization was done and the reaction could
give product 1b in complete conversion using iodoben-
zene (2 eq), Cs2CO3 (1.5 eq) at 115 ◦C (Table 1, entry
19).

Having the optimal conditions studied, the scope of
the protocol was next explored to substituted phenyl-
tetrazoleamines (Table 2). The substrates having both
electron donating and electron withdrawing groups on
the aryl rings could give their respective target products
1a–11a in moderate to high yield. Aryl iodide having
electron donating substituents (4-Me, 2-Me, 4-OMe and
2, 4-diMe) showed greater reactivity compared to that
of bearing electron withdrawing substituents (4-Cl, 4-F,

4-CN and 4-COOMe groups). The phenyl ring having
electron donating groups such as 4-methyl, 4-methoxy
could give their respective aromatic cyanamides 2a,
3a in 95–98% yield. The unsubstituted phenyl ring
also gave target product 1a in excellent yield. Elec-
tron withdrawing groups such as 4-fluoro and 4-chloro
substituents provided their target products 4a and 5a
in 76% and 84% yields, respectively. Aryl ring bear-
ing other strong electron withdrawing substituents like
nitrile, ester and nitro could give target products 6a–
8a in moderate yield. Aryl iodides bearing ortho and
meta-substituted methyl groups readily underwent the
reaction to give final products 9a, 10a in 83–90%
yields. Di-Methyl substituent on aryl ring gave tar-
get product in 83% yield. In addition, we explored
the construction of diaryltetrazolamine under optimized
reaction conditions (Table 3). Aryl iodides containing
both electron donating and electron withdrawing groups
as well as disubstituted groups readily underwent the
reaction to provide target products 1b–6b in 43–95%
yields.

The mechanism for the formation of substituted tetra-
zoles from thiourea is shown in below Scheme 2. We
propose the mechanism from the experimental evi-
dence and literature reports.18d-i Cobalt can co-ordinate
with thiourea, followed by removal of protons to afford
intermediate R via intermediates P and Q. The interme-
diate R may provide unsubstituted tetrazoles along with
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I. DMSO, Et3N (1 eq)
CoCl2.6H20 (50 mol %), RT, 1 h

III. ArBr (1 eq), CoCl2.6H20 (10 mol %)
Cs2CO3 (1 eq), 1,10-Phen (20 mol %),
85 °C, 12 h

Yield 19%

II. NaN3, RT, 1 hH2N NH2

S

N N
N

NH2N

Scheme 3. Reaction with Aryl bromide.

byproduct CoS and polysulphide16 via desulphuriza-
tion/substitution/electrocyclization.17On the other hand,
oxidative addition of aryl iodide with cobalt complex
can lead to the formation of a which can undergo inter-
molecularC-N cross-coupling reaction18 with unsubsti-
tuted tetrazoles using the base to give the intermediate b
that can complete the catalytic cycle by reductive elim-
ination to get target product arylamino tetrazoles. In
addition, the atomic absorption of the aqueous solution
active cobalt salt, CoSO4 · H2O was measured to reveal
the presence trace of copper19a which was observed
in the iron-catalyzed19b cross-coupling reactions as the
active catalyst. However, in the present protocol, no
trace of copper was detected with the detection limit
of 1 ppm. This experiment clearly suggests that copper
doesn’t involve in the present methodology.

In addition, we have also tried the reaction with aryl
bromide under optimized reaction conditions
(Scheme 3). Unfortunately, the reaction could give tar-
get product in 19% yield only. However, no reaction
could occur with aryl chloride under optimized reaction
conditions.

4. Conclusions

In conclusion, we have developed a methodology for
the regioselective synthesis of aryltetrazoleamines from
thiourea in one pot multistep reaction. It is a gen-
eral, efficient and easy method. Although the overall
isolated yields look moderate, considering that the
reactions are multi processes, the yields are in fact
good to excellent. Many reports are available for the
preparation of aminotetrazoles. However, the simplic-
ity, environmental acceptability and cost-effectiveness
of the cobalt make this method more practical. The
reactions involved desulphurization followed by inter-
molecular C-N cross-coupling reaction.

Supplementary Information (SI)

Experimental data of all synthesized compounds and 1H &
13C NMR scanned copies are available at www.ias.ac.in/
chemsci.
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