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The combination of the Nysted reagent and titanocene dichloride methylenates aldehydes and ketones to
give alkenes, and in a microwave-assisted process, esters and lactones give enol ethers. The methylenat-
ing agent in this one-pot procedure is presumed to be titanocene methylidene, which is the same reactive
intermediate as that generated from Tebbe, Petasis and Grubbs reagents, each of which have to be pre-
pared before use.
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Scheme 1.
The Tebbe reagent 1 and Petasis reagent 2 are widely used for
the methylenation of carbonyl compounds 5 to give alkenes 6
(Scheme 1).3 They are non-basic reagents that can be used for
the methylenation of aldehydes and ketones when a Wittig reagent
would promote epimerisation of chiral centres or retro-Michael
reactions, or would fail to react due to steric hindrance. Most
importantly, they will convert carboxylic acid derivatives directly
into hetero-substituted alkenes,3,4 rather than inducing the nucle-
ophilic substitution observed with Wittig reagents. Although, it is
too reactive to be isolated, titanocene methylidene 4 is believed
to be the reactive intermediate and the formation of Grubbs
reagent 3 from the Tebbe reagent and 2-methylpropene,5 and ther-
mal regeneration of the titanocene methylidene 4 supports this, as
does the isolation of related Schrock carbenes.6 Both the Tebbe
reagent 1 and the Petasis reagent 2 are prepared from titanocene
dichloride,7–9 and though both are available commercially as
solutions in toluene, they are extremely expensive, and the Tebbe
reagent in particular can be unsatisfactory when not freshly pre-
pared. It would be more satisfactory if titanocene methylidene 4
(or an equivalent titanium-containing 1,1-bimetallic3) could be
generated in situ in a one-pot procedure from titanocene dichlo-
ride without the use of reactive methyllithium or methylmagne-
sium halide.

The reagent 8 patented by Nysted in 1975 is believed to have
the structure shown,10 and is commercially available as a suspen-
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x: +44 141 330 4888.
, Richard.Hartley@chem.gla.
 sion in THF. We reasoned that the combination of titanocene

dichloride (7) and the Nysted reagent 8 would give titanocene
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Figure 1. Aldehydes and ketones 9a–h methylenated with isolated yields of
product alkenes 10a–h and conditions in parentheses.
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Figure 2. Esters 9i–k and lactones 9l–n methylenated and yields of enol ethers
10i–n produced using (a) a 1:1:2 mol ratio of ester/lactone, Nysted reagent and
titanocene dichloride; (b) a 1:2:4 mol ratio of ester/lactone, Nysted reagent and
titanocene dichloride; (c) with 1 equiv of ethyl pivalate. All reactions were carried
out at 75 �C in a microwave (100 W) for 22 min.
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methylidene 4 directly (Scheme 2). The Nysted reagent 8 has been
used with titanium tetrachloride, trichloride or dichloride to meth-
ylenate aldehydes and ketones,11–13 a reaction that also works with
Lewis acids such as boron trifluoride,12,14 but has never been used
in combination with titanocene dichloride, or to achieve methyle-
nation of carboxylic acid derivatives. Our approach could be
viewed as a simplified access to the reagent system, derived from
CH2(ZnI)2 and titanocene dichloride, used by Eisch and Piotrowski
to methylenate two ketones.15

Our methylenation was optimized by varying the ratio of
Nysted reagent 8 to titanocene dichloride (7), the number of equiv-
alents of the new reagent relative to the carbonyl compound, its
mode of preparation, and the reaction temperature. The expected
1:2 ratio of Nysted reagent 8 to titanocene dichloride (7) proved
most effective and heating was required to generate the reagent.
Although, 1 mol of Nysted reagent 8 should give rise to 2 mol of
titanium carbenoid 4 in this way (Scheme 2), it proved best to
use equimolar quantities of the carbonyl compound and the
Nysted reagent 8. Similarly, 2 equiv of Petasis reagent 2 are often
used in methylenation reactions because the reagent reacts with
the titanocene oxide side product.9

A range of carbonyl compounds 9a–n were methylenated using
the new reagent (Scheme 3, Figs. 1 and 2). When methylenating
aldehydes and ketones, the reagent was generated by heating the
Nysted reagent 8 and titanocene dichloride (7) together in THF un-
til a red solution was formed and then reactions were carried out at
a lower temperature.16,17 The electron-rich benzaldehyde and ace-
tophenone derivatives 9a,b reacted smoothly at room temperature.
In accordance with the nucleophilic nature of the reagent, the elec-
tron-poor derivatives 9c,d reacted much more rapidly and required
low temperature to avoid over-reaction, beginning at �78 �C and
allowing to warm for the short time shown. The a,b-unsaturated
aldehyde 9e and benzophenone 9f presented no problem and the
branched aldehyde 9g and cyclic ketone 9h were successfully
methylenated, though the yields were modest.

Reactions with carboxylic acid derivatives required higher tem-
perature and so pre-generation of the reagent was not necessary:
all components were simply mixed and heated together.18,19 Meth-
ylenations were best achieved using microwave irradiation
(100 W), which gave complete conversion in 22 min at 75 �C; con-
ventional heating required longer reaction times and led to decom-
position. Similar advantages to microwave heating have been
observed with the Petasis reagent.20 Alkanoate ester 9i worked
well, isolated yields were lower for enol ether 10j,k derived benzo-
ate derivatives and more equivalents of the reagent were required.
Methylenation of lactones 9l–n was successful with 1 equiv of the
reagent, but ethyl pivalate had to be included as a sacrificial steri-
cally-hindered ester9,21 to avoid products resulting from the reac-
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tion between the product enol ether and the titanocene
methylidene (the same type of reaction that is exploited to form
the Grubbs reagent 35). All the enol ethers were acid-sensitive, so
purification on neutral alumina was necessary; indeed the enol
ether 10m derived from (+)-sclareolide was so sensitive that
hydrolysis was carried out with HCl in THF–water and the yield
for the corresponding ketone is reported in parentheses.

In summary, we have introduced a new one-pot procedure for
the methylenation of carbonyl compounds by in situ generation
of titanocene methylidene or a related 1,1-bimetallic complex from
the commercially available Nysted reagent 8. Methylenation of es-
ters and lactones involves simply mixing the reagents and heating
them under microwave irradiation for less than half an hour. The



3022 A. Haahr et al. / Tetrahedron Letters 52 (2011) 3020–3022
brevity, simplicity and relatively low temperature of this one-pot
procedure should mean that it competes effectively with the pop-
ular Petasis and Tebbe reagents 1 and 2, which must be preformed
prior to use.
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