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Abstract 

With the dual objective of investigating the site preferences of larger sized activator ions and to 

append luminescence property to the perovskite structured RbZnF3, doping of manganese(II), 

cerium(III), europium(III) and terbium(III) ions (5 mol %) was carried out. Although cubic 

symmetry of RbZnF3 was preserved for all the doped samples, site preference of rare-earth ions 

for the A-site Rb
+
 leading to an inverse perovskite arrangement has been noticed from careful 

analysis of lattice parameters from refinement of powder X-ray diffraction data. Undoped 

RbZnF3 exhibited rod-like morphology in the transmission electron microscopic image. In 

addition to an intense band around 230 nm assignable to the charge transfer from ZnF3
-
 to Rb

+
, 

typical transitions of respective dopant ions were observed in their UV-visible spectra. The doped 

samples showed luminescence in blue, green and red regions and time decay experiments 

suggested the uniform dispersion of them without any clustering effect. The lower phonon energy 

of RbZnF3 matrix by virtue of the presence of heavier rubidium at the A-site together with its 

doping with rare-earth ions resulting in an inverse perovskite like arrangement could favour their 

utility in various practical applications. 

Keywords: Fluoroperovskites; Wet-chemical synthesis; X-ray diffraction; Luminescence; 

Inverse perovskite. 
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Introduction 

The compositional flexibility along with wide occurrence of the perovskite structure adorns them 

with many interesting useful applications and thus attracted the attention of scientists of various 

disciplines [1-3]. Of these, their role as hosts for holding luminescent ions has been investigated 

at length [4, 5]. Though this structure is exhibited by a variety of compounds such as oxides, 

fluorides and chlorides, mixed metal fluorides are preferred host for holding luminescent ions as 

they are insulating and exhibit low phonon energy [6-8]. In an ideal cubic perovskite with the 

formula AMF3, ‘A’ is the monovalent atom (K, Rb, and Cs) and ‘M’ is the divalent atom (Mg, 

Mn, Co, Ni, Zn and Ca). Following the widely accepted tolerance factor based on the ionic radii 

of A
+
, M

2+
 and F

-
, the perovskite structure was found to be stable with a tolerance factor in the 

range of 0.8-1.0. This limit has been further extended to 0.707-1.225 [1]. For the tolerance factor 

in the range 0.707-1.0, distortion of ideal perovskite structure was observed primarily due to the 

tilting of MF6 octahedra, while shifting of M
2+

 ions away from the center of MF6 octahedra has 

been found to result in distortion for compounds with tolerance factor between 1.0 and 1.225 [9]. 

The divalent transition metal ions of the first row from Mn
2+

 to Zn
2+

 with the alkali metal ion 

show interesting variations when crystallize in perovskite structure which receive contributions 

from both the size of the alkali metal ions as well as from the electronic structure of the transition 

metal ions [10]. Considering the RbMF3 family, cubic perovskite without distortion has been 

observed for M = Mn
2+

, Co
2+

 and Zn
2+

, whereas tetragonal and hexagonal distortion was 

exhibited by RbCuF3 and RbNiF3, respectively [11, 12]. The hexagonal modification has been 

induced in other systems either by temperature or by substituting with appropriate M
2+

 ions [13, 

14]. Transformation from hexagonal to cubic in RbNiF3 has been found to be induced by 

applying physical pressures [15]. In some cases, even co-doping with alkali metal and rare earth 
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ion has given rise to the hexagonal perovskite arrangement [16]. Although most of the studies 

have been carried out by growing single crystals [16, 17], solution based and bulk synthesis have 

not been explored to a greater extent given the scenario of the recent discovery of interesting 

solar cell applications in hybrid perovskite system [18, 19]. Another important aspect with 

respect to mixed metal fluorides from the luminescence property perspective is their low phonon 

energy as compared to their oxide counterparts. Among mixed metal fluorides, reduction in 

phonon energy and decrease in multiphonon relaxation have been known to occur for alkali 

metals in the order Li > Na > K > Rb [20-26]. Therefore, it will be a natural consequence to 

evaluate the Rb-containing perovskites as host matrix to achieve maximum efficiency. Also, such 

an exercise will reveal the effect of chemical pressure on the overall symmetry of the perovskite 

lattice as well as the local site preferences for dopant ions. The presence of divalent zinc ion at 

the B-site in ABF3 would impart transparency to the host matrix due to its d
10

 electronic 

configuration. Generally, aqueous medium for solution based synthesis of mixed metal fluorides 

has the drawback of hydrolysis effect resulting in the deterioration of photoluminescence 

intensity and lifetime. The hydrolysis effect can be minimized by conducting fluorination 

reactions in non-aqueous medium. If it can be achieved at room temperature, it can certainly 

reduce the concentration of defects at the lattice sites induced by high temperature reaction 

conditions. With this entire scientific background, current study has been undertaken to 

understand the effect of doping divalent (Mn
2+

) and trivalent rare-earths (Ce
3+

, Eu
3+

 and Tb
3+

) on 

the structure and luminescence property of cubic RbZnF3.  

Materials and methods 

For the synthesis, zinc chloride salt was prepared in situ by reacting 0.0833 g (1 mmol) of ZnO 

(Sigma Aldrich 99.9%) with minimum amount of freshly prepared HCl (1:1 by volume). To this, 
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0.3135 g (3 mmol) of RbF (Alfa Aesar 99.9%) dissolved in 40 mL of methanol (Spectrochem) 

was added drop-wise under constant stirring. It was stirred for 4 h at room temperature to result 

in a white colored precipitate which was separated from the mother liquor by filtration. The 

filtrate was checked for the presence of Cl
-
 ions by adding aqueous AgNO3 solution. The washing 

was continued till the filtrate did not yield a curdy-white precipitate. 0.0099 g (0.05 mmol) of 

MnCl2.4H2O (Alfa Aesar 99.9%), 0.0183 g (0.05 mmol) of EuCl3.6H2O (Sigma Aldrich 99.9%), 

0.0186 g (0.05 mmol) of TbCl3.6H2O (Alfa Aesar 99.9%) and 0.0217 g (0.05 mmol) of 

Ce(NO3)3.6H2O (Alfa Aesar 99.5%) were used along with ZnO, (0.0774 g, 0.95 mmol) and RbF 

(0.3135 g (3 mmol)) to synthesize doped samples following a similar  procedure employed for 

making RbZnF3.  

Powder X-ray diffraction (PXRD) patterns of the samples were recorded using PANalytical 

X’Pert diffractometer, equipped with Xenon detector, employing CuKα radiation (λ = 1.5418 Å) 

with a scan rate of 1.0 s/step and step size of 0.02° at 25°C over 2θ range of 20-70°. High 

resolution transmission electron microscopic (HR-TEM) images were recorded using a FEI 

Tecnai electron microscope operating at an accelerating voltage of 200 kV (Electron Optics). 

UV-visible diffuse reflectance spectra of the samples were recorded using Perkin-Elmer 

(Lambda-35) spectrometer attached with an integrating sphere. BaSO4 was used as the reference. 

Reflectance data were converted to absorbance using Kubelka-Munk function. The conventional 

excitation and emission spectral measurements were carried out in powder form using Horiba 

Jobin Yvon Fluorolog modular spectrofluorometer at room temperature employing a continuous-

wave xenon lamp source as well as Cary Eclipse Fluorescence Spectrophotometer G9800AA.  

Results and discussion 
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The reaction between rubidium fluoride and zinc chloride (from ZnO) could be represented by 

the following equations: 

  

ZnO + 2HCl      ZnCl2 + H2O 

ZnCl2 + 3RbF      RbZnF3 + 2RbCl 

Dense white color solid, from this reaction after the removal of RbCl, was subjected to X-

diffraction experiments. In Fig. 1, PXRD pattern, EDX analysis, TEM, HR-TEM and selected 

area electron diffraction (SAED) pattern of the same have been presented. In the PXRD pattern, 

the position and intensity profile of the observed reflections matched with that of JCPDS File for 

RbZnF3 (No. 20-1016) and confirmed the formation of cubic perovskite structure. The EDX 

spectrum of the sample confirmed the presence of Rb, Zn and F and equal concentrations of Rb 

and Zn. This was quite encouraging to be further applied for synthesizing doped samples. Rod-

like morphology was observed in TEM image of the sample and this was quite similar to the 

morphology reported earlier for KZnF3 obtained by solvothermal synthesis [27]. Lattice fringes 

with distances of 0.29 and 0.23 nm corresponding to (110) and (111) hkl planes of cubic structure 

were evident in HR-TEM analysis. Bright spots were observed in the SAED pattern indicative of 

crystalline nature of the sample. The spots were indexed corresponding to (110), (111), (200), 

(211) and (220) hkl planes of cubic RbZnF3. All these confirmed bulk as well as microscopic 

purity of our sample.  

 In order to determine the concentration of the dopant to be introduced in RbZnF3, samples 

with two different concentrations (5 and 10 mol %) of Mn
2+

 were prepared. From the powder X-

ray diffraction patterns of these samples, it was abundantly clear that dopant concentration of 5 

mol % produced monophasic sample and phase separation occurred when it was increased to 10 
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mol % (Fig. 2(a) and Fig.S1). It was therefore decided to investigate 5 mol % of dopant 

concentration for other impurity ions, viz., Ce
3+

, Eu
3+ 

and Tb
3+

-ions as it would facilitate to 

compare their spectral behavior. PXRD patterns of RbZnF3 doped with 5 mol% of Ce
3+

, Eu
3+ 

and 

Tb
3+

-ions have been presented in Fig. 2. In all these doped samples, peaks pertaining to cubic 

symmetry were present. While doping of Mn
2+ 

for six-fold coordinated Zn
2+

 could be reasoned 

out primarily based on ionic radii of these two ions (Zn
2+

:0.74 Å versus Mn
2+

:0.83 Å). However, 

such a scenario did not prevail for the rare-earth ions as they possessed ionic radii way higher 

than Zn
2+

-ion as well as exhibited preference for coordination numbers greater than six. When the 

divalent and trivalent ions could be interchanged between the tetrahedral and octahedral 

coordinated environments in a spinel arrangement, inverse spinel nomenclature was generally 

used. A similar situation prevailed in perovskite structure. In an inverse perovskite structural 

arrangement, ions with bigger size could occupy 12-fold coordinated position irrespective of their 

higher valence. Higher probability of such a scenario was feasible in fluoroperovskites [28]. 

Considering therefore higher probability of the doped RE
3+

-ions for Rb
+
 in RbZnF3, Rietveld 

refinement of PXRD patterns of RE
3+

 doped samples were performed considering them to replace 

XII coordinated Rb
+
-ion in perovskite structure (Fig. 2). For the Mn

2+
 doped samples, Rietveld 

refinement of PXRD pattern was carried out by including Mn
2+ 

in place of six coordinated Zn
2+

 

in the perovskite structural arrangement (Fig. 2). The crystallographic details from the Rietveld 

refinements of PXRD patterns and the atomic parameters after the final cycle of refinement have 

been compiled in Table 1-3. The refined parameter for cubic RbZnF3 and 5 mol% Mn
2+

, Tb
3+

, 

Eu
3+

 and Ce
3+ 

doped samples were 4.1190 (16), 4.1238 (28), 4.1141 (09), 4.1158 (12) and 4.1180 

(08) Å, respectively (Table 1). Small shrinkage of unit cell constant and unit cell volume for the 

Eu
3+

 and Tb
3+

 ions suggested their substitution for Rb
+
-ion as their ionic sizes in higher 
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coordination are less than XII coordinated Rb
+
-ion

 
[29]. The possible mechanism of charge 

compensation for a trivalent ion doped for divalent ions in mixed metal fluorides might be the 

generation of F
−
 interstitials causing asymmetry around the trivalent ion and disorder locally. 

These might also act as point defects in the lattice because of differences in the chemical valence 

and ionic radii among these ions [29]. 

UV-visible spectra of doped samples have been reproduced in Fig. 3. Bands at 265, 307, 371, 

392, 415, and 523 nm, were noticed for RbZnF3:Mn
2+

 sample (Fig. 3(a)). The ground state 

configuration (t2g)
3
(eg)

2
 of Mn

2+
 (3d

5
) in cubic crystalline field have been found to result in 

6
A1g, 

4
A1g, 

4
Eg, 

4
T2g, and 

4
A2g states along with other doublet states. Following this, observed 

absorbance could be attributed to the transitions from 
6
A1g (S) (ground state) to 

4
T1g (F), 

4
T1g (P), 

4
T2g (D), 

4
Eg (D), 

4
A1g (G) and 

4
T1g (G) (excited states), respectively of Mn

2+
-ion [30]. Bands 

signifying the transitions from 5d to 4f (
2
F7/2 and 

2
F5/2) of Ce

3+
 ion were present at 255 and 283 

nm in addition to an intense band around 230 nm arising from ligand to metal charge transfer in 

the UV-visible spectrum of RbZnF3:Ce
3+

 sample (Fig. 3(b))[31]. In the UV-visible spectrum of 

RbZnF3:Eu
3+

 sample,  transitions from the ground state of Eu
3+

 ion to its excited states of 
5
L6, 

5
D2 

and 
5
D0 appeared as bands at 397, 468 and 595 nm, respectively (Fig. 3(c)). Additionally, ligand-

to-metal charge transfer (LMCT) bands in the UV region of the spectrum (234 and 272 nm) 

existed. Similarly, bands attributable to the transitions from 
7
F6 (ground state) to 

5
D2 and 

5
D3 of 

Tb
3+

 (excited states) appeared at 331 and 373 nm, respectively for RbZnF3:Tb
3+

 sample (Fig. 

3(d)).  

Bands at 330, 351 and 394 nm arising possibly from the transitions of 
6
A1g (S) (ground state) to 

the 
4
Eg (D), 

4
T2g (D), 

4
A1g (G), 

4
T2g (G) and 

4
T1g (G) (excited states) of octahedrally coordinated 

Mn
2+

-ion, respectively were present in the photoluminescent excitation spectrum of 
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RbZnF3:Mn
2+

 sample (Fig. 4(a)) [32]. Similarly, emission maxima occurring at 563 nm was 

attributed to 
4
T1g (G) → 

6
A1g (S) transition of Mn

2+
-ion. From the excitation and emission spectra 

of RbZnF3:Ce
3+

 sample shown in Fig. 4(b), bands at 315 and 346 nm arising possibly from the 

parity-allowed transitions from the lowest 5d excited state to the spin-orbit component 
2
D of the 

doublet ground state, 
2
F5/2 and 

2
F7/2 of Ce

3+
-ion were noticed [33, 34]. In the excitation spectrum 

monitored at an emission wavelength of 320 nm, band at 246 nm assignable to the transition from 

4f ground state of Ce
3+

 to the 5d excited state was observed. These features confirmed its 

presence in coordination environments higher than six. Luminescence emission in the red region 

at 593, 615, 650 and 698 nm were observed for Eu
3+

-doped sample (Fig. 4(c)). They 

corresponded to the 
5
D0 → 

7
FJ (J = 1, 2, 3 and 4) transitions of Eu

3+
-ion, of which 

5
D0 → 

7
F1 and 

5
D0 → 

7
F3 transitions at 593 and 650 nm signified magnetic dipole transition and the rest were 

related to electric dipole transition. Their asymmetry ratio was found to depend strongly on the 

local symmetry of Eu
3+

 ions. The occupation of Eu
3+

 ions in octahedral sites, would introduce 

center of inversion for it. Under such conditions, intensity of magnetic dipole transition would be 

relatively strong, while the electric dipole transition would be very weak due to its partly 

forbidden nature. A strong electric dipole transition observed in the present case was an 

indication of electric field of low symmetry at the Eu
3+

 ions (Cnv, Cn and Cs) [35]. Moreover 

Judd-Oflet (J-O) intensity parameter (ΩJ) could provide additional information of covalent nature 

and local coordination of Eu
3+

-ion. The parameter Ω2 and Ω4 corresponding to the transition 
5
D0-

7
F2 and 

5
D0-

7
F4, respectively have been related directly to the emission intensity. Parameter, Ω2 

(3.06×10
-20

 cm
2
) revealed about the existence of covalency and the structural changes in the local 

site symmetry of the Eu
3+

-ion (short range effect).  Parameter, Ω4, known to provide information 

about the long range effect, was estimated to be 9.83×10
-20

 cm
2
. The fact that Ω2 was less than Ω4 
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for the Eu-doped RbZnF3 suggested a low degree of covalency for Eu
3+

 in the lattice [36-41]. The 

domination of 
5
D0 → 

7
F2 electric dipole transition at 615 nm over the 

5
D0 → 

7
F1 magnetic dipole 

transition at 593 nm led us to the conclusion that the Eu
3+

 ions were located in a disordered 

manner among the Rb
+
 sites in RbZnF3 lattice explaining very well the absence of any inversion 

symmetry [29,36]. In the excitation spectrum monitored at an emission wavelength of 615 nm, 

bands at 360, 380 and 394 nm assignable to the 
7
F0 (ground state) to 

5
D4, 

5
G2 and 

5
L6 (excited 

state) transitions, respectively could be located. The observed bands at 315, 340, 350, 368 and 

375 nm in the excitation spectrum of Tb
3+

 doped sample were assigned to transitions 
7
F6 (ground 

state) to 
5
D0, 

5
L8, 

5
L9, 

5
L10 and 

5
G6 (excited state) of Tb

3+
-ion, respectively (Fig. 4(d)). Emission 

bands in the green region at 468, 488, 545, 585 and 620 nm appeared for this sample which might 

be originating from 
5
D3 → 

7
F2, 

5
D4 → 

7
F6, 

5
D4 → 

7
F5, 

5
D4 → 

7
F4 and 

5
D4 → 

7
F3 transitions of 

Tb
3+

-ion [41, 43].  

The emission decay curves for the doped samples have been presented in Fig. 5. While a bi-

exponential behavior using the function I = I0 (exp (-t/τ1) + exp (-t/τ2)) (I0 is the initial emission 

intensity at t = 0) could be employed for a satisfactory fitting of  the decay curves from Mn
2+

 and 

Ce
3+

 doped samples, single exponential behavior using the function I = I0e
-t/τ 

(where, I0 is the 

initial emission intensity and τ is the emission lifetime) was found to be suffice for fitting of 

decay curves from Eu
3+

 and Tb
3+

 doped samples.   From the fitting of decay of 
4
T1g → 

6
A1g (563 

nm) transition of RbZnF3:Mn
2+

 sample, decay times of 0.081 and 0.019 ms were estimated with a 

decay quantum efficiency of 74.5 and 25.5%, respectively (Fig. 5(a)). Similarly, decay times for 

RbZnF3:Ce
3+

 were found to be 0.180 and 0.026 ms with decay efficiency of 79.25 and 20.25%, 

respectively (Fig. 5(b)). 
5
D0 → 

7
F2 (615 nm) transition of Eu

3+
-ion and 

5
D4 → 

7
F5 (545 nm) 

transition of Tb
3+

-ion decayed in 0.393 and 0.281 ms, respectively. The higher decay times could 
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be an over estimation. However, these times were considerably slower than decay time estimated 

for other doped fluoride host lattices investigated in the literature [44]. 

Conclusions 

In summary, undoped and spectroscopically active ions doped haloperovskite RbZnF3 were 

synthesized following a non-aqueous method. The cubic symmetry of the host lattice was 

preserved with dopants exercising their site preferences. The doped samples showed 

luminescence in blue, green and red regions and the time decay experiments suggested the 

uniform dispersion of them in the bulk samples. Of all the samples, strong green and red emission 

from Tb
3+ 

and Eu
3+

-doped samples, respectively with higher decay time suggested their use as 

efficient phosphor materials. These results will be beneficial to discover and optimize these 

systems for applications involving upconversion and other related optical phenomena. 
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Figure Captions 

Fig. 1 (a) Powder X-ray diffraction pattern, (b) EDX spectrum with analysis, (c) transmission 

electron microscopic image and (c) high resolution transmission electron microscopic image 

along with the selected area electron diffraction pattern of RbZnF3 (in the inset). 

Fig. 2 Rietveld refinement fitting of powder X-ray diffraction pattern of (a) RbZnF3 and (b) 

manganese (II), (c) cerium (III), (d) europium (III) and (e) terbium (III) doped RbZnF3 samples; 

red, experimental data; green line, calculated profile; pink line below, difference profile; vertical 

bars, Bragg position.  

Fig. 3 UV-visible spectra of (a) manganese (II), (b) cerium (III), (c) europium (III) and (d) 

terbium (III) doped RbZnF3 samples.  

Fig. 4 Photoluminescence excitation and emission spectra of (a) manganese (II), (b) cerium (III), 

(c) europium (III) and (d) terbium (III) doped RbZnF3 samples at room temperature. The 

excitation wavelength (λex) and emission wavelength (λem) employed for obtaining the spectra are 

indicated in the respective plots. 

Fig. 5 Photoluminescent emission life time (τ) decay curves of (a) manganese (II), (b) cerium 

(III), (c) europium (III) and (d) terbium (III) doped RbZnF3 samples at room temperature.   
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  Fig. 5 

 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

23 

 

Table 1 Summary of the crystallographic details from the Rietveld refinements of PXRD patterns 

undoped and doped RbZnF3. 

 

 

 

 

 

 

 RbZnF3 RbZnF3:Mn
2+

 RbZnF3:Ce
3+ 

RbZnF3:Eu
3+

 RbZnF3:Tb
3+

 

Crystal 

system 

Cubic Cubic Cubic Cubic Cubic 

Space 

group 
Pm m Pm m Pm m Pm m Pm m 

a (Å) 4.1190 (16) 4.1238(28) 4.1180 (08) 4.1158 (12) 4.1141 (09) 

Cell 

volume 

(Å
3
) 

69.255 (4) 70.699 (7) 69.836 (4) 69.722 (6) 69.636(5) 

Formula 

weight 

(g/mol) 

207.84 207.32 210.57 211.17 211.52 

Z 1 1 1 1 1 

ρ calc 

(g/cm
3
) 

4.9382 4.8692 5.0209 5.0290 5.0289 

2θ range 20-70° 20-70° 20-70° 20-70° 20-70° 

No. of 

parameters 

13 17 10 9 13 

Rp (%) 0.1150 0.1889 0.1945 0.1823 0.1673 

Rwp (%) 0.1505 0.2458 0.2519 0.2514 0.2224 

χ
2
 2.558 3.754 1.752 1.439 1.407 
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Table 2 Refined atomic parameters after the final cycle of refinement of RbZnF3. 

 

 

 

 

Atom Site S.O.F x y z U [Å
3
] 

Rb 

Zn 

F 

1a 

1b 

3c 

1 

1 

1 

0.0 

0.5 

0.0 

0.0 

0.5 

0.5 

0.0 

0.5 

0.5 

0.0250 

0.0250 

0.0250 
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Table 3 Refined atomic parameters after the final cycle of refinement for the rare-earth ion doped 

RbZnF3. 

 

 

 

Atom Site S.O.F x y z U [Å
3
] 

Rb 1a 0.95 0.0 0.0 0.0 0.0250 

RE 1a 0.05 0.0 0.0 0.0 0.0250 

Zn 1b 1.00 0.5 0.5 0.5 0.0250 

F 3c 1.00 0.0 0.5 0.5 0.0250 
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Highlights of the study 

 Wet-chemical synthesis of cubic fluoroperovskite RbZnF3 

 Site selective doping at the Rb and Zn-sites 

 Inverse perovskite arrangement for rare-earth ion doped samples. 

  Luminescence in blue, green and red regions from doped samples with high decay time. 
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