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Abstract

The reactivity of a bulky amine tris(phenolate) ligand toward Ta(NMe2)5 was investigated. The reaction leading to the final

product LigTa(NMe2)2 was slow and proceeded via an unusual dinuclear complex. The X-ray structures of both complexes were

solved. Significantly, although the reaction of Ta(OEt)5 with that ligand precursor is slow as well, no dinuclear intermediate is

observed during the reaction course.

� 2004 Elsevier B.V. All rights reserved.
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A number of tetradentate trianionic ligands of tri-
podal geometry have been reported in the last two de-

cades. Noteworthy members are the triamido-amine

[N3N] ligands family, that has been extensively studied

[1,2], and the amine tris(phenolate) ligands family in-

troduced more recently to the early transition metals

realm. Whereas complexes of the former with a variety

of early transition metals were prepared, and their re-

activity potential explored [2,3], the chemistry of the
latter ligands has been investigated less thoroughly [4–8],

being focused mainly on Group IV metals [5,6]. Re-

cently, we and others have begun extending this chem-

istry to Group V metals [7,8].
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One ligand of this family, bearingmethyl groups on the

2, 4 positions of the phenolate rings (Lig1H3) was shown

to undergo a fast and nearly quantitative reaction with a
variety of Ta(V) metal precursors, such as Ta(NMe2)5
[8b], Ta(OEt)5 [8b], Ta(OMe)5 [7b] and Ta(CH2Ph)5 [8b].

The reactions ultimately led to the formation of octahe-

dral complexes of the Lig1TaX2 type (Fig. 1). Lig1H3 is

the only tripodal ligand of this framework reported thus

far in relation to Group Vmetals. As the atomic radius of

Ta(V) is smaller than its Group IV analogues, we were

interested to reveal how the steric pressure affect the
binding of this ligand family around tantalum. Therefore,

we decided to explore the reactivity of the sterically
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Fig. 2. ORTEP representation of B, 50% probability ellipsoids. Se-

lected bond lengths (�A): Ta1–O2 1.933(3); Ta1–O3 1.944(3); Ta1–O4

2.029(3); Ta1–N5 2.002(4); Ta1–N6 2.019(3); Ta1–N7 2.387(3).
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Fig. 1. X¼OEt, OMe, NMe2, CH2Ph.
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crowded analogue, Lig2H3, carrying bulky t-Bu substit-

uents in the ortho (para) positions of the phenolate rings.
This ligand was previously employed in Ti(IV) chemistry

[5,6b], however, the coordination chemistry of this ligand

with groupVmetals and, in particular with Ta(V) has not

been described before.

Our first attempt to prepare Ta(V) complexes of this

ligand relied on Ta(CH2Ph)5, a readily available orga-

nometallic precursor [8b]. However, even after long re-

action times, the products mixture consisted mainly of
the unreacted starting materials. Therefore, we turned to

the more traditional metal precursor, Ta(NMe2)5 [9]. As

previously reported, the reaction of Ta(NMe2)5 with the

less bulky ligand Lig1H3 proceeded smoothly when the

reagents were mixed in ether at RT, and after 2 h, no

starting materials were detected in the reaction mixture

[8b]. In contrast, Lig2H3 led to the formation of several

products. Under the same reaction conditions, the
products mixture consisted of three species: the de-

sired product A, the unreacted ligand precursor Lig2H3,

and an additional product B (Scheme 1). On the other

hand, no traces of Ta(NMe2)5 were observed among the

products. Employing longer reaction times led to a

higher portion of A in the products mixture and when

the reaction was allowed to proceed for three days, no

other products besides A were detected. Therefore, we
propose that for the sterically crowded ligand Lig2H3,

the formation of the expected mononuclear complex A

may take place via some sort of long-lived, relatively

stable intermediate B.

A was characterized by means of 1H and 13C NMR,

that indicate a regular Cs-symmetrical complex

Lig2Ta(NMe2)2 [10]. The 1H NMR spectrum of A ex-

hibits two groups of aryl protons and two groups of t-Bu
Lig2H3 + Ta(NMe2)5 Lig2 Ta(NMe2)2 (A)

B + Lig2H3

Scheme 1.
substituents, of the relative intensity 2:1. The dimethy-

lamido groups, lying on the mirror plane, appear as two

distinct signals. Four of the six benzyl protons appear as

an AB system, while the other two, being reflected by the
mirror plane, give rise to a sharp singlet. In addition, A

was characterized by means of X-ray crystallography

[11]. The crystal structure of A reveals a mononuclear

octahedral complex Lig2Ta(NMe2)2 (Fig. 2). As may be

expected, the amine tris(phenolate) ligand binds to the

metal in a tetradentate fashion and the two remaining

dimethylamido groups occupymutually cis positions.We

have previously reported that the ‘‘labile’’ ligands X in
Lig1TaX2 (X ¼ OEt, NMe2) exhibit different reactivities,

attributed to the trans influence of the phenolate oxygen

vs. the central amine donor. This different trans influence

was expressed in different Ta–X bond lengths, i.e., Ta–

Xtrans-amine <Ta–Xtrans-phenolate [8b]. In contrast, the Ta–X

bond lengths in A are very similar (2.002trans-amine vs.

2.019trans-phenolate), probably due to the steric pressure

imposed by three t-Bu groups inside the ‘‘phenolates
pocket’’. To minimize repulsive steric interaction, the top

dimethylamido unit is rotated to a conformation that

seems to reduce its ability for p-donation (for an ‘‘unro-

tated’’ dimethylamido group in B see below). A lesser

degree of p-donation by this dimethylamido nitrogen

(N5) in A may explain a relatively short trans Ta–N7

bond (2.387 �A).

In contrast to A, the nature of B was much less ob-
vious. To identify the structure of this intermediate, we

isolated bright-yellow crystals of B by fractional crys-

tallization from pentane [12]. Its 1H NMR spectrum

displayed two groups of aromatic protons and two

groups of t-Bu substituents, each having a relative in-

tensity of 2:1. The NMe2 region was somewhat more

complicated, featuring four signals of relative intensities

of 4:1:1:1. Single crystals of B were obtained by crys-
tallization from cold pentane, and its X-ray structure

was solved [13,14], revealing an unusual dinuclear



Fig. 3. ORTEP representation of B, 40% probability ellipsoids. The H

atoms, a disordered pentane molecule, and the disorder in t-Bu groups

are omitted for clarity. Selected bond lengths (�A): Ta1–O3 1.947(5);

Ta1–O4 1.928(5); Ta1–N5 2.028(6); Ta1–N6 1.970(6); Ta1–N7

2.067(6); Ta1–N8 2.571(6); Ta2–O9 1.952(6); Ta2–N10 2.000(7); Ta2–

N11 2.027(6); Ta2–N12 2.026(7); Ta2–N13 1.952(6).

Lig2H3 +Ta(OEt) 5 Lig2Ta(OEt)2
slow

Scheme 2.
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complex, in which two Ta(V) centers are bound to one

amine tris(phenolate) ligand (Fig. 3). The structure of B

may be roughly divided into two segments, intercon-
nected by the ligand backbone, designated as [Ta1] and

[Ta2]. The metal center in [Ta1] is hexa-coordinate, with

an [ONO] ligand fragment and three NMe2 groups each

bound in a mer fashion forming a nearly perfect octa-

hedral geometry. The remaining phenolate group binds

to the second, penta-coordinate [Ta2], along with four

NMe2 groups. The geometry of this segment is nearly

square-pyramidal, with the phenolate oxygen lying in
the basal plane, and one of the dimethylamido nitrogens

(N11) occupying the axial position. The phenolate ox-

ygens in the two segments exhibit a different binding

mode: the Ta–O–C bond angles in the [Ta1] segment are

substantially narrower (142–145�) than their counter-

part in the [Ta2] segment, which is almost linear (174�).
The orientation of the central NMe2 ligand in [Ta1] is

noteworthy, as it may shed light on the inertness of B.
To avoid overlapping, the Me groups of the ‘‘central’’

NMe2 ligand move as far as possible from the ortho t-Bu

substituents. Thus, one of the dimethylamido methyl

groups has to point directly toward the ortho-substituent

of the ‘‘incoming’’ (third) phenolate on the reaction

pathway leading to A. This repulsive interaction may be

responsible for the relative inertness of this intermediate

[14]. Interestingly, the dimethylamido nitrogen (N6)
seems to interact strongly with the metal via p-donation
(Ta1–N 1.971 �A), thus lengthening the trans Ta–N bond

(2.571 �A).
In addition to Ta(NMe2)5, Ta(OEt)5 may also serve

as a suitable metal precursor. The differences between

these two are the reduced basicity, as well as the reduced
steric bulk of the ethoxy ligand, in comparison to the

dimethylamino ligand. According to the NMR spectra,

the reaction of the ligand precursor with Ta(OEt)5 (in

ether at RT) led to the slow formation of the expected

mononuclear di(ethoxy) complex Lig2Ta(OEt)2 (C).

However, for this metal precursor, no dinuclear inter-

mediate was detected. Thus, after 2–3 h, the reaction

mixture consisted exclusively of the final product and
both starting materials, in the relative ratios of 2:1:1.

Carrying out the reaction for 2 d leads to a high-yield

formation of white C, contaminated by the traces of the

ligand precursor and the metal precursor (<10%). Pure

Lig2Ta(OEt)2 was obtained upon recrystallization from

pentane in ca. 50% yield [15], and is proposed to be

isostructural with A according to its spectroscopic data

scheme 2.
In conclusion, we have shown that an amine

tris(phenolate) ligand carrying bulky t-Bu substituents

can wrap around a Ta(V) center, leading to an octahe-

dral Lig2TaX2 (A) complex, provided that a suitable

precursor is employed (Ta(NMe2)5 or Ta(OEt)5). Even

with such a precursor, the reaction is slow and may go

through an intermediate dinuclear complex Lig2Ta2X7

(B, X¼NMe2), in which two Ta(V) centers are in dif-
ferent environments. When the ‘‘leaving’’ ligand X is less

easily protonated, and less bulky (OEt vs. NMe2), a

kinetic product analogous to the intermediate B is not

observed in the products mixture. We are currently in-

vestigating the reactivity of these species.
Supplementary information

Crystallographic data for complexes A and B have

been deposited with the Cambridge Crystallographic

Data Centre as Supplementary Publications No. CCDC

238150 and No. CCDC 238151. Copies of the data can

be obtained free of charge on application to CCDC, 12

Union Road, Cambridge CB2 1EZ, UK (fax: (+44)

1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
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